BTO Program Peer Review

Working Fluids Low GWP Refrigerants - CRADA

Ed Vineyard

Oak Ridge National Laboratory vineyardea@ornl.gov (865) 574-0576 3 April 2013

ENERGY Energy Efficiency & Renewable Energy

Problem Statement:

- High GWP refrigerants increase CO₂ equivalent emissions for HVAC&R equipment
- Low GWP alternatives may increase energy consumption, introduce safety risks, require significant modifications to equipment, and have higher costs

Impact of Project:

- Primary market segment is the residential and commercial HVAC&R industry
- Provide the HVAC&R industry with validated and standardized LCCP modeling tools
 - Enable the optimal design of HVAC&R equipment with lower life cycle greenhouse gas emissions
- Provide information for optimal selection of refrigerant replacements for HVAC&R systems

ENERGY Energy Efficiency & Renewable Energy

Project Focus:

- Reduce energy and carbon emissions used in HVAC&R equipment by 50% compared to today's best common practice
- Alternative refrigerants with low global warming potential (GWP) are needed to achieve these goals
- Provide guidance to the HVAC&R community on selecting alternative, energy-efficient, low GWP refrigerants
- Enable U.S. manufacturers to position themselves as world leaders in the next generation of alternative refrigerant technologies
 - Job creation and growth

Approach

ENERGY Energy Efficiency & Renewable Energy

- Develop alternative low GWP refrigerants in cooperation with Honeywell and DuPont
- Develop Life Cycle Climate Performance (LCCP) tool
 - Assess environmental impacts of alternative refrigerants
 - Direct emissions: refrigerant leaks
 - Indirect emissions: energy consumption
 - Identify candidate alternative refrigerants for experimental study
- Characterize performance of candidate alternative refrigerants in HVAC&R equipment
 - Compressor calorimeter evaluations
 - Supermarket refrigeration system
 - Suggest appropriate lower GWP alternatives for HVAC and commercial refrigeration applications

Approach continued

- Supports AHRI Low-GWP Alternative Refrigerants Evaluation Program (AREP)
 - Industry-wide cooperative research program
 - Performance evaluation of low-GWP refrigerant candidates
 - 38 refrigerant candidates supplied by 6 refrigerant suppliers
 - 21 entities conducting performance evaluations of refrigerants
 - Equipment manufacturers, universities, national laboratories
 - Compressor calorimeter tests, system drop-in tests, soft-optimized system tests
 - Evaluation results to be released to the public

Key Issues:

- Large quantity of high GWP refrigerants currently in use in existing HVAC&R equipment
- History
 - Montreal Protocol: Transformation of refrigerant industry
 - Chlorofluorocarbons (CFC)
 - » Production ceased in 1996 (developed countries)
 - Hydrocholorofluorocarbons (HCFC)
 - » Reduce use by 75% by 1 Jan 2010 (developed countries)
 - » 100% reduction by 2030
 - Kyoto Protocol
 - » Hydrofluorocarbons (HFC) (Zero ODP, High GWP)
 - » GWP levels are under debate (European push for low)

Approach

ENERGY Energy Efficiency & Renewable Energy

Key Issues (continued):

- Identify low GWP refrigerant replacements which are drop-in replacements:
 - Minimal equipment modification, high efficiency, low cost
- Optimize HVAC&R equipment for low GWP refrigerants if no suitable drop-in replacements are found

Distinctive Characteristics:

- Develop an open-source LCCP design tool with industry input (AHRI)
 - Anticipated to be the internationally recognized "go-to" tool to assess environmental impacts of HVAC&R equipment
- Determine low GWP refrigerant performance:
 - Supermarket refrigeration system, under controlled lab conditions
 - Compressor calorimeter evaluations
 - HVAC, HPWH, and refrigerators

Energy Efficiency & Renewable Energy

Accomplishments:

- Developed an Open Source LCCP Tool
 - Calculates CO₂ equivalent emissions of refrigeration systems
 - Web-based and desktop versions available at http://lccp.umd.edu/
 - Tool interfaces with third-party system modeling tools, load models and emissions and weather databases
 - Currently models medium-temperature, low-temperature and combined medium- and low-temperature refrigeration systems
 - Future version to model air-source heat pumps, chillers and secondary loop refrigeration systems

Accomplishments and Progress

Energy Efficiency & Renewable Energy

Accomplishments:

- Compressor calorimeter evaluation of R-410A alternatives
 - Three low GWP alternatives
 - R-32, DR-5, L-41A
 - Scroll compressor
 - Air-conditioning and heat pump applications
 - Performance of alternatives are comparable to R-410A
- Supermarket refrigeration system installed
 - Compressor rack and condenser
 - Display cases
 - Fully instrumented

U.S. DEPARTMENT OF

ENERGY

Progress on Goals:

- Open source LCCP tool developed
 - International interest:
 - Demonstration of tool through webinars
 - Peer review of tool at national and international forums
 - » IIR Working Group on LCCP
 - » ASHRAE MTG on Low GWP Refrigerants
 - » Significant feedback regarding LCCP modeling methodology and CO₂ emissions factors
- Compressor calorimeter evaluation of R-404A alternatives in-progress (ARM-31a, D2Y-65, L-40)
- HPWH and Refrigerator tests with 1234yf
- Evaluation of alternative refrigerants in supermarket refrigeration system in-progress (R-404A, R-407F, R-1234yf blends)

Original initiation date: September 1, 2011 Planned completion date: September 30, 2014

Refrigeration system evaluation delayed due to failure of false load heat exchanger

Summary					Legend								
WBS Number or Agreement Number					Work completed								
Project Number 18810					Active Task								
Agreement Number 6800					Milestones & Deliverables (Original Plan)								
							Milestones & Deliverables (Actual)						
	FY2012				FY2013			FY2014					
Task / Event	Q1 (Octt-Dec)		Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Octt-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Octt-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
	ΗŬ		ŤT	ТŤГ		ΗŤΤ		ΗŤΤ	ΗŤΤ		ΗŤΓ	ТŤГ	
Project Name: Working Fluids - Low GWP Refrigerants (CRADA)													
Milestone: LCCP Web Tool Development (Supermarket Refrigeration)													
Milestone: LCCP Desktop Tool Development (Supermarket Refrigeration)													
Current work and future research													
Milestone: Refrigeration System Evaluation													
Milestone: LCCP Analysis: Refrigeration System													
Milestone: Calorimeter Evaluations													
Milestone: LCCP Tool Expansion (ASHP, Secondary Loop)													
Milestone: Heat Pump Evaluation													
Milestone: LCCP Analysis: Heat Pump													
Milestone: Sensitivity/Validation of LCCP Tool													
Milestone: Evaluation of low GWP in optimized equipment													
Milestone: Field evaluation of low GWP in third-party installation													

11 | Building Technologies Office

ENERGY Energy Efficiency & Renewable Energy

Project Budget: Total - \$4100k (DOE) Partner (Honeywell and DuPont) Budget - \$4000k Variances: None Cost to Date: \$3800k Additional Funding: FY14 - \$1000k

Budget History								
FY2011		FY2	2012	FY2013				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$2000k	\$1400k	\$1700k	\$1200k	\$400k	\$1400k			

Project Integration, Collaboration & Market Impact

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Partners, Subcontractors, and Collaborators:

- ORNL
 - Expertise in HVAC&R equipment performance evaluation and modeling
- Honeywell
 - Supplier of alternative lower GWP refrigerants
 - Expertise in refrigeration equipment selection, operation and modeling
- DuPont
 - Supplier of alternative lower GWP refrigerants
 - Expertise in refrigeration equipment selection, operation and modeling
- University of Maryland
 - LCCP Design Tool development
 - Expertise in modeling thermal systems

Honeywell

Project Integration, Collaboration & Market Impact

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Technology Transfer, Deployment, Market Impact:

- Web-based LCCP tool has received over 450 unique hits since public release (March 2012)
 - User feedback has resulted in continuous improvement of the tool
- Several publications and a webinar publicizing the LCCP tool have generated international interest
- Results from calorimeter evaluations and supermarket refrigeration system will be used to guide decisions on use of alternative lower GWP refrigerants
 - Provide information for future regulations limiting/banning use of high GWP HFC refrigerants

Project Integration, Collaboration & Market Impact

ENERGY En

Energy Efficiency & Renewable Energy

PUBLICATIONS

- Abdelaziz et al. 2012. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool. 14th International Refrigeration and Air Conditioning Conference, 16-19 July 2012, Purdue University, West Lafayette, IN.
- Sharma et al. 2013. Evaluation of Alternative Refrigerant Performance in Air to Refrigerant HXs. 2013 Winter ASHRAE Meeting, 26-30 January 2012, Dallas, TX.
- Fricke et al. 2013. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options. 2nd IIR International Conference on Sustainability and the Cold Chain, 2-4 April 2013, Paris.

WEBINAR

 Introduction to Life Cycle Climate Performance (LCCP) Design Tool. Webinar hosted by University of Maryland, 8 Feb 2013.

FORUMS

- International Institute of Refrigeration (IIR) Working Party on LCCP Evaluation
- American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Multi-Disciplinary Task Group (MTG) on Alternative Low GWP Refrigerants
 IMPACT
- Publications/webinars and ORNL's participation in IIR and ASHRAE forums has generated international interest in LCCP and the evaluation of low GWP refrigerants

Next Steps and Future Plans:

- Complete compressor calorimeter evaluations of R-404A alternatives (ARM-31a, D2Y-65, L-40)
- Evaluate energy efficiency of alternative refrigerants in supermarket refrigeration system:
 - Baseline refrigerant (R-404A)
 - Low GWP refrigerants (R-407F, R-1234yf blends)
- Assess environmental impacts of alternative refrigerants using LCCP tool
- Provide recommendations to the HVAC&R community for selecting alternative low GWP refrigerants
- Additional efforts: Field evaluations of energy and LCCP performance of alternative low GWP refrigerants in HVAC&R equipment