

Familiar Materials

Better Performance

Vladimir Kochkin Joseph Wiehagen April 2013

Wall Innovation Metrics

- High R (thermal and air barrier)
- High Performance
 - Durable, structural
- Build-able
- Low transition risk to builders
- 50% Building America Goal
- ≈ R25+ (CZ 4 and higher)

Background

- Technologies for high-R walls have been proposed and used for over 25 years
- But real market penetration is very low
- Often the last EE measure implemented by builders (e.g. E*)

Background

- High-R wall solutions have not achieved a broad level of standardization and commonality
 - A large set of methods and materials entered the market
 - Multiple and conflicting details
- Wall characteristics are more critical
 - = RISK

New Home Starts – Wall Framing

FRAMING	2001	2006	2011
2x4 @ 16" o.c.	74%	73%	57%
2x4 @ 24" o.c.	2%	3%	4%
2x6 @ 16" o.c.	22%	22%	32%
2x6 @ 24" o.c.	2%	2%	6%
Other	1%	0%	1%
TOTAL	100%	100%	100%

New Home Starts – Wall Sheathing

FRAMING	2001	2006	2011
None (concrete, SIPs or others)	10%	12%	9%
WSP (Plywood, OSB, ZIP)	65%	68%	80%
1/2 inch fiberboard	3%	3%	<1%
1/8 inch (Thermoply,			
EnergyBrace)	3%	2%	3%
SIS	n/a	n/a	1%
Foam (XPS, EPS, ISO)	17%	12%	5%
Other	3%	4%	0%
TOTAL	100%	100%	100%

New Home Starts

Oversheathing

Oversheathing	2006	2011
Shares of Homes with 2nd Layer		
of Foam Sheathing	7%	9%

Housewrap

Housewrap	2006	2011
Homes with housewrap	54%	75%

New Home Starts – Cavity Insulation

FRAMING	2006	2011
Fiberglass batt	76%	68%
Fiberglass blown	7%	8%
Spray foam	3%	11%
Cellulose	11%	8%
Other or none	3%	5%
TOTAL	100%	100%

Increasing Wall Insulation

- When builders are asked how would they go about increasing the wall R-value
 - About 60% say they would use
 2x6 or increase the cavity R-value
 - Less than 15% say they would use exterior foam

Barriers to Adoption

- "Devil is in the details"
 - Claddings
 - Windows
 - Trim
 - Vapor retarder
 - Framing layout

- Attachments/ connections
- Drainage plane
- Air barriers
- Etc etc etc

Vision for a Wall Construction Guide

Provide practical (and preferred) solutions for high-performance walls

- (1) can be readily implemented in the field using available methods and materials
- (2) can withstand the test of time from environmental and structural loads
- (3) grounded in research and testing

Guide Format

- Builder-focused and graphics-rich
 - Application (climate zone)
 - Wall Systems (preferred solutions, not concepts)
 - Details
 - Material characteristics
 - High-R options
 - Integration
 - "Hot spots"

Current High-R Options

- Deeper cavity
 - Thermal bridging limitation
 - R-value limit
 - Practical wall thickness limit

- Ext Rigid Insul.
 - OSB behind foam
 - Cladding attachments
 - Foam attachment
 - Windows
 - Drainage plane
 - Panelization

Is there another way?

- Hybrid: Extended Plate & Beam System
 - R25+
 - Off-the-shelf materials
 - Standard cavity (2x4 or 2x6)
 - OSB on the exterior, so is drainage plane
 - Standard window installation
 - Integrated rigid foam insulation
 - Site-built or panelized
 - Rim headers integral part of the system

Extended Plate & Beam

- Plates and studs are different width
- R25 (2x4 studs & 2x6 plates)
- R30 (2x6 studs & 2x8 plates)

Mock-up Wall

2-inch Rigid Foam

Exterior OSB

Initial Shear Wall Testing

Equivalent to IRC 6"oc nail spacing

Response mode = typical wood wall

Multi-ply rim header (beam)

Header built into the floor

Moisture Performance

- WUFI Simulations by Sam Glass (FPL)
 - Baltimore, Chicago, Minneapolis
 - 2x4s&2x6p, 2x6s&2x8p
 - OSB uncoupled from cavity by foam
 - OSB MC fluctuates with seasons and depends on cladding but always below 20%
 - For walls without a vapor retarder, cavity RH higher in very cold climates

EP&B Summary

- Developed for R25+ walls
- Structural sheathing on the exterior
- Foam sheathing to exterior of studs
- Window placement and drainage plane standard methods
- Rim header sufficient span most openings
- Warm Cavity

EP&B Summary (cont'd)

- Same construction methodology for R25 and R30 options
- Under development
 - Siding attachment
 - OSB and plate attachment
 - Window and door installation
 - Rim header: lumber, EWP
 - Moisture management
 - Additional shear wall testing

EP&B Summary (cont'd)

- Field-framed or panelized
- Standard construction details
- Durable by design

= Simplified transition from conventional framing options

