

ResStock – Evaluating Home Performance Upgrades Across the U.S. Residential Building Stock

March 29, 2017

<u>Moderator:</u> Linh Truong– National Renewable Energy Laboratory

Panelist: Eric Wilson– National Renewable Energy Laboratory

Some Housekeeping Items

Two Options for Audio (select audio mode):

1. Listen through your computer.

Please select the "mic and speakers" radio button on the right hand audio pane display

2. Listen by telephone.

Please select the "telephone" option in the right-hand display, and a phone number and PIN will display.

- 3. Panelists Please mute your audio device when not presenting
- 4. Technical Difficulties: Contact the GoToWebinars Help Desk: 888.259.3826

Some Housekeeping Items (cont'd)

To ask a question:

Select the 'questions' pane on your screen and type in your question.

If you are having difficulty viewing the materials through the webinar portal:

You may find PDF copies of the presentation at the website listed here and you may follow along as our speaker presents. Today's webinar is being recorded and the recording will be available on the DOE YouTube channel within a few weeks.

http://energy.gov/eere/buildings/building-america-meetings#current

Agenda

✓ Welcome and Introductory Remarks

✓ Overview of Building America (buildingamerica.gov)

Linh Truong - National Renewable Energy Laboratory

✓ Presentations

- Eric Wilson- National Renewable Energy Laboratory
- ✓ Questions and Answers

✓ Closing Remarks

Building America

Building America Website:

- Program information
- Top Innovations
- Climate-specific case studies
- Building America Update newsletter
- Building America Solution Center
- Publications Library

www.buildingamerica.gov

Eric Wilson, Research Engineer, National Renewable Energy Laboratory

Eric joined NREL in 2010. His recent activities include developing multifamily modeling capabilities for the BEopt building energy optimization software, developing an analysis framework and data visualization for national residential building stock models, and leading updates of the Building America House Simulation Protocols. Prior to joining NREL, Eric researched the energy implications of pressure drop in residential duct systems. He also performed energy audits and design assistance for a state energy program and conducted blower door tests on tribal housing across the country.

ResStock: Evaluating Home Performance Upgrades Across the U.S. Residential Building Stock

Eric Wilson, ResStock Project/Product Lead
Craig Christensen, ResStock Initial Concept & Strategic Direction
Scott Horowitz, Residential Analysis & Tools Team Lead
Residential Buildings Research Group
National Renewable Energy Laboratory
March 29, 2017

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Acknowledgments

ResStock development has been supported by:

U.S. Department of Energy

- Office of Energy Efficiency and Renewable Energy Building Technologies Office, Residential Buildings Integration
- Office of Energy Policy and Systems Analysis (EPSA)
- EERE Office of Strategic Programs
- U.S. Environmental Protection Agency (EPA) Region 8 Office Region 10 Office

Bonneville Power Administration (BPA)

Industry partnerships under development

ResStock and ComStock leverage long-term investment in building energy modeling by DOE

- Context & Motivation
- ResStock Approach
- Example Results
- Looking Ahead

Data-driven, physics-based simulation of the U.S. Residential and Commercial building stocks

Data-driven, physics-based simulation of the U.S. Residential and Commercial building stocks

using large public and private datasets and modern computing resources

Data-driven, physics-based simulation of the U.S. Residential and Commercial building stocks

using large public and private datasets and modern computing resources

to achieve unprecedented granularity in modeling building energy use and demand

Data-driven, physics-based simulation of the U.S. Residential and Commercial building stocks

using large public and private datasets and modern computing resources

to achieve unprecedented granularity in modeling building energy use and demand

FREE & OPEN SOURC

Homes use 22% of primary energy in U.S.

Source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 2.1 (March 2015). Preliminary data for 2014

Note: Sum of individual percentages may not equal 100 because of independent rounding

Homes use 37% of electricity in U.S.

If just one of every 10 U.S. homes cut its energy use by 25%, Americans could save a total of more than **\$5 billion per year** on their energy bills.

 U.S. DOE Building Technologies Office's Multi-Year Program Plan for Fiscal Years 2016 through 2020

E Wixgant S

How do we find the

best opportunities?

NE Prescott St

Prescott S

NE Presco

NE Going St

Wvoant/St

All single-family homes in Washington and Oregon

For credible estimates of housing stock energy efficiency potential, we need to avoid falling into the *flaw of averages* trap.

The ResStock Approach

Approach

Approach – Data Sources

Costs

EIAElectricity and fuel costsNRELOpenEl.org Utility Rate DatabaseNREL/NavigantMeasure Cost Database

Climate Locations

NREL

TMY3 weather data

Approach – Data Sources

NREL/Navigant Measure Cost Database

NRFI

TMY3 weather data

Single 24% 49% 27%

Single 24% 49% 27%

- There exists a very large number of possible combinations of building characteristics (across different locations and vintages).
- Therefore, **statistical sampling** is used to automatically generate representative models to be simulated.

- There exists a very large number of possible combinations of building characteristics (across different locations and vintages).
- Therefore, **statistical sampling** is used to automatically generate representative models to be simulated.

Approach – Building Simulations

DOE Energy Modeling Ecosystem

OpenStudio open-source platform supporting applications that use EnergyPlus

EnergyPlus Detailed subhourly simulation engine

Approach – Building Simulations

How many simulations are necessary?

350,000 baseline simulations

Approach – Validation/Calibration

Modeled (y-axis) vs. EIA RECS (x-axis)

Average Source Energy per House: 10⁶ Btu/yr

Electricity

Approach – Validation/Calibration

Modeled (y-axis) vs. EIA/RECS (x-axis)

Average Electricity Consumption per House: 10⁶ Btu/yr source

Aggregated by Region/Vintage Combinations

Before Calibration

After Calibration

350,000baseline simulations20 millionupgrade simulations2.4years of computing time

Example Results

Example Results: 2016 Applications

DOE Office of Energy Policy and Systems Analysis

DOE Building Technologies Office Home Improvement Catalyst (HI-Cat)

Focus: Technical and Economic Potential

Technical Potential

Theoretical potential using available technology
Full turnover of equipment stock

Economic Potential

- Upgrades meeting cost-effectiveness criteria
- •Full turnover of equipment stock

Market Potential

- Policy implementation and impacts
- Market barriers
- Adoption rates

Example Results – Economic Potential (NPV > 0)

Air Sealing

Attic Insulation (R-49)

Replacing Oil Boilers with Ductless Heat Pumps

Basement Wall Insulation (R-10)

Electric Savings – Technical Potential

Electric Savings – Economic Potential w/ Financing (NPV > 0)

Electric Savings – Market Potential Estimate (payback < 5 years)

Package Results – Economic Potential w/ Financing (NPV > 0)

Enclosure Packages

HVAC Packages

Enclosure+HVAC Packages

Enclosure+HVAC+WH Packages

Evaluate incentives – Drill-and-Fill Wall Insulation

With no rebate

Evaluate incentives – Drill-and-Fill Wall Insulation

Evaluate incentives – Drill-and-Fill Wall Insulation

Looking Ahead

Applications

EERE Building Technologies Office EERE Office of Strategic Programs Office of Energy Policy and Systems Analysis

TENDRIL

- Quadrennial Energy Review 1.2
- Home Improvement Catalyst
- Grid load modeling
- Regional Planning Tool
- Low-Income EE Potential

Demand response

City energy strategy

Looking Ahead: State-Specific Results

48 state fact sheets based on QER analysis

- High-level results
- Top priority upgrades

Looking Ahead: ResStock Website

Interactive visualizations of:

- Housing characteristics
- Baseline consumption by end-use, fuel
- Savings and cost-effectiveness for retrofits

Demographic parameters

→ low-income EE potential

What is the potential for energy efficiency in low-income communities?

Which upgrades have the best Savings-to-Investment Ratio in each city, state, or customer segment?

Time-of-Savings + Load Flexibility

When do savings from home performance upgrades occur?

What is the potential for reducing peak demand?

Looking Ahead: New capabilities

Time-of-Savings + Load Flexibility

When do savings from home performance upgrades occur?

What is the potential for reducing peak demand?

Looking Ahead: New capabilities

Time-of-Savings + Load Flexibility

When do savings from home performance upgrades occur?

What is the potential for reducing peak demand?

Time-of-Savings + Load Flexibility

When do savings from home performance upgrades occur?

What is the potential for reducing peak demand?

Quantify the impact that **time-of-use** rates have on utility bills

How do home performance upgrades increase the **demand response potential** of smart thermostats?

What are the characteristics of homes that provide the best bang-for-the-buck in **pay-for-performance** programs?

City-specific data (e.g., assessors' databases)

ResStock workflow and regional characteristics

Market engagement tools & analytics

Thank you!

https://github.com/NREL/OpenStudio-ResStock

Electric End-Use Energy Efficiency Potential in the U.S. Single-Family Housing Stock Southern, Corp Desterant, Solt Resold. Jacob Ratedon, and Jeff Tagvin Maco Present Corp. Constru-

1.1 A contract distance of the LA (spectrum of the upper sector) and the upper sector of the upper sect

Electric End-Use Energy Efficiency Potential in the U.S. Single-Family Housing Stock

www.nrel.gov

eric.wilson@nrel.gov

NREL is a mational laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Building America Newsletter

Visit the Meetings page at:

http://energy.gov/eere/buildings/building-americameetings#current

Subscribe to notices about webinars and other news at:

http://energy.gov/eere/buildings/subscribe-building-america-updates

Thank You!

PDF copies of the presentations in this webinar are available at: <u>http://energy.gov/eere/buildings/building-</u> <u>america-meetings#current</u>

Visit: www.buildingamerica.gov

ERGY Energy Renew

