

Residential Windows and Window Coverings:

A Detailed View of the Installed Base and User Behavior

SEPTEMBER 2013

Prepared for:

Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy

Prepared by:

D&R International, Ltd.

September 2013

Prepared for: Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy

Prepared By:

D&R International, Ltd. 1300 Spring Street, Suite 500 Silver Spring, MD 20910

Authors:

Stephen Bickel Emily Phan-Gruber Shannon Christie

CONTENTS

List of Tables	v
List of Figures	ix
Executive Summary	1
Acknowledgements	3
Introduction	4
Structure of the Report	5
Methodology	6
Survey Methodology	6
Introduction	6
Survey Design	6
Survey Instrument and Respondent Validation	7
Survey Implementation	9
Survey Data Quality Control	10
Manufacturer Data Collection Methodology	11
Introduction	11
Survey Design and Implementation	11
Survey Interviews	11
Internet Survey: Demographic and Housing Characteristics	12
Demographics	12
House Characteristics	13
Windows	15
Window Position and Orientation	16
Window Characteristics	17
Window Coverings	29
Window Coverings by Household	
Window Covering Type	29

Own or Rent	
Climate Zone	31
Income	32
Covering Characteristics	35
Shade of Covering	35
Mount Type	36
Top-Down/Bottom-Up Adjustment	37
Window Coverings on Windows	
Window Covering Operation	40
Covering Position	40
Position by Climate Zone	41
Window Covering Position by Orientation and Side of House	42
Window Covering Position by Residence Type	42
Window Covering Position by Room	47
Window Covering Position by Covering Type	48
Window Covering Position by Pane Type	51
Window Covering Operation at the Household Level	52
Impact on Energy Use	55
Air Conditioning and Thermostat Use	55
Manufacturer Data Collection	57
Shipments Overview	57
Annual Shipments	57
WCMA Shipments	60
Pricing	64
Interior Product Pricing	64
Exterior Product Prices	66
Domestic Manufacturing	67

	Retail Channels	68
A	Appendices	69
	Appendix A: Additional Housing and Demographic Characteristics	69
	Demographics	69
	House Characteristics	74
	Appendix B: Method for Estimating U.S. Annual Shipments	75
	Appendix C: Method for Categorizing Shipments by Climate Zone	77
	Appendix D: Weighting	79
	Appendix E: Internal Consistency of the Sample	82
	Process	82
	Analysis and Results	82
	Appendix F: Glossary	84
	Appendix G: Window Covering Position by Product Type	96
	Appendix H: Window Covering Position Survey Image	100
	Appendix I: Statistical Significance	101
	Share of Uncovered Windows	102
	Window Covering Position	105
	Window Covering Position by Climate Zone	106

LIST OF TABLES

Table 1: Survey Content	6
Table 2: Pre-Test Issues and Solutions	9
Table 3: Cities Surveyed	10
Table 4: Household Annual Income	12
Table 5: Residence Types	13
Table 6: Size of Home	13
Table 7: Vintage: Owned Residence	14
Table 8: Windows by Room and Side of Home	16
Table 9: Size of Window by Side of Home	17
Table 10: Operator Type by Climate Zone	18
Table 11: Operator Type Comparisons to Ducker	19
Table 12: Pane Type by Climate Zone	20
Table 13: Frame Type by Climate Zone	21
Table 14: Household Distribution by Number of Operator Types	21
Table 15: Households with One Pane Type by Climate Zone	21
Table 16: Households with One Frame Type by Climate Zone	22
Table 17: Operator Type by Pane Type: Overall Distribution	22
Table 18: Operator Type by Pane Type	22
Table 19: Operator Type by Frame Type: Overall Distribution	23
Table 20: Operator Type by Frame Type	23
Table 21: Operator Type by Pane and Frame Type	24
Table 22: Number of Light-Blocking Objects	28
Table 23: Type of Light-Blocking Objects	28
Table 24: Window Coverings Share of the Installed Base	30
Table 25: Installed Base of Coverings by Residence Ownership Status	31
Table 26: Installed Base of Coverings by Climate Zone	32

Table 27: Window Coverings by Income	34
Table 28: Shade of Covering by Product Type	35
Table 29: Mount Type by Product Type	36
Table 30: Top/Bottom Adjustment by Product Type	37
Table 31: Window Covering by Pane Type	38
Table 32: Window Covering by Frame Type	38
Table 33: Window Covering by Pane and Frame Type	39
Table 34: Window Covering Position in the Summer	40
Table 35: Window Covering Position in the Winter	40
Table 36: Window Coverings in the Same Position throughout the Day	41
Table 37: Households with Window Coverings in the Same Position throughout the Day	41
Table 38: Window Coverings Position in the Northern Climate Zone	43
Table 39: Window Coverings Position in the Mid-Tier Climate Zone	43
Table 40: Window Coverings Position in the Southern Climate Zone	43
Table 41: Window Coverings Position by Orientation: Summer Weekday	44
Table 42: Window Coverings Position by Orientation: Summer Weekend	44
Table 43: Window Coverings Position by Orientation: Winter Weekday	44
Table 44: Window Coverings Position by Orientation: Winter Weekend	45
Table 45: Window Coverings Position by Side of Home: Summer Weekday	45
Table 46: Window Coverings Position by Side of Home: Summer Weekend	45
Table 47: Window Coverings Position by Side of Home: Winter Weekday	46
Table 48: Window Coverings Position by Side of Home: Winter Weekend	46
Table 49: Window Coverings Position by Room: Summer Weekday	47
Table 50: Window Coverings Position by Room: Summer Weekend	47
Table 51: Window Coverings Position by Room: Winter Weekday	48
Table 52: Window Coverings Position by Room: Winter Weekend	48
Table 53: Window Coverings Position during Summer Weekday by Product Group	49

Table 54: Window Coverings Position during Summer Weekend by Product Group	49
Table 55: Window Coverings Position during Winter Weekday by Product Group	49
Table 56: Window Coverings Position during Winter Weekend by Product Group	50
Table 57: Window Coverings Position by Pane Type: Summer Weekday	51
Table 58: Window Coverings Position by Pane Type: Summer Weekend	51
Table 59: Window Coverings Position by Pane Type: Winter Weekday	51
Table 60: Window Coverings Position by Pane Type: Winter Weekend	52
Table 61: No Changes Regardless of Weekday/Weekend	52
Table 62: No Changes Regardless of Season	52
Table 63: Percent of Coverings Changed Daily for Homes that Change Position of Their Coverings	52
Table 64: Covering Position by Proportion of Household: Northern Zone	53
Table 65: Covering Position by Proportion of Households: Mid-Tier Zone	53
Table 66: Covering Position by Proportion of Households: Southern Zone	54
Table 67: Homes with Air Conditioning	55
Table 68: Air Conditioning Use in Hot Weather	55
Table 69: Air Conditioning Use at Night in Hot Weather	56
Table 70: Thermostat Use at Night during the Winter	56
Table 71: Average Estimated Lifetime by Product Lifetime	58
Table 72: Interior Product Average Price Points	64
Table 73: Gender	69
Table 74: Age	69
Table 75: Respondent Age by Gender	70
Table 76: Home Ownership	70
Table 77: Household Size	70
Table 78: Marital Status	71
Table 79: Employment Status of Household Members	71
Table 80: Employment Status Comparison to BLS Data	72

Table 81: Educational Attainment for Household Members Age 25 and Older 72
Table 82: Educational Attainment for Household Members Ages 18-24 72
Table 83: Race/Ethnicity
Table 84: Urban/Rural Areas73
Table 85: Census Comparison for Urban/Rural Areas
Table 86: Year Respondent Moved into Home74
Table 87: Households with Air Conditioning74
Table 88: Households with Air Conditioning by Climate Zone 74
Table 89: Pane Type Distribution by Income 79
Table 90: Weighting Factor Calculations 80
Table 91: Unweighted and Weighted Pane Type Overall Distribution 80
Table 92: Unweighted and Weighted Pane Type Distribution by Income 81
Table 93: Unweighted and Weighted Frame Type Overall Distribution 81
Table 94: Unweighted and Weighted Frame Type Distribution by Income 81
Table 95: Window Coverings Position: Summer Weekday Morning 96
Table 96: Window Coverings Position: Summer Weekday Afternoon 96
Table 97: Window Coverings Position: Summer Weekday Evening 96
Table 98: Window Coverings Position: Summer Weekend Morning
Table 99: Window Coverings Position: Summer Weekend Afternoon 97
Table 100: Window Coverings Position: Summer Weekend Evening
Table 101: Window Coverings Position: Winter Weekday Morning 98
Table 102: Window Coverings Position: Winter Weekday Afternoon
Table 103: Window Coverings Position: Winter Weekday Evening
Table 104: Window Coverings Position: Winter Weekend Morning
Table 105: Window Coverings Position: Winter Weekend Afternoon
Table 106: Window Coverings Position: Winter Weekend Evening

LIST OF FIGURES

Figure 1: Survey Design, Testing, and Implementation Process	8
Figure 2: Number of Windows per Household by Residence Type	15
Figure 3: Window Location on Home	16
Figure 4: Window Orientation	17
Figure 5: Installed Base by Operator Type	18
Figure 6: Window Pane Type	19
Figure 7: Window Frame Type	20
Figure 8: Window Replacement by House Vintage	25
Figure 9: Window Replacement by House Vintage: Certain of Replacement	26
Figure 10: Presence of Storm Window by Pane Type	27
Figure 11: Month Storm Windows Installed and Removed	28
Figure 12: Window Coverings by Product Group	29
Figure 13: Select Window Coverings by Income	33
Figure 14: Window Covering Shade	35
Figure 15: Window Covering Mount Type	36
Figure 16: Window Coverings with Top-Down/Bottom-Up Adjustment	37
Figure 17: Estimated Annual U.S. Shipments	58
Figure 18: Estimated Annual U.S. Shipments by Product Category	59
Figure 19: Annual Interior Product Shipments by WCMA Members	60
Figure 20: Annual WCMA Member Shipments by Interior Product Type	61
Figure 21: WCMA Member Interior Product Shipments by Climate Zone	62
Figure 22: WCMA Member Shipments by Interior Product Type by Climate Zone	62
Figure 23: WCMA Member Shipments by Exterior Product Type by Climate Zone	63
Figure 24: Interior Product Pricing	65
Figure 25: Exterior Product Pricing	66

Figure 26: Interior Products Manufactured Domestically	67
Figure 27: Retail Channels	68
Figure 28: ENERGY STAR for Windows, Doors, and Skylights Climate Zone Map	77
Figure 29: Climate Zones for the 2012 IECC	77
Figure 30: Percent Significant Differences Between Climate Zones	83

EXECUTIVE SUMMARY

Initial analyses by the U.S. Department of Energy and the window covering industry suggested that window coverings—blinds, shades, curtains, and awnings— could save significant energy at low cost. This report characterizes the installed base of windows, the installed base of window coverings, and how users operate window coverings in order to enable precise quantification of energy savings. The research is an essential step toward establishing a voluntary energy performance labeling program for window coverings.

Accurate data is needed to estimate savings. To create such a program the federal government must know how much energy window coverings could save U.S. households and the country as a whole, which types will save the most energy in each U.S. climate zone, and whether savings can be achieved given how U.S. households currently use their window coverings. This report, the first of its kind, is the first stage in a joint government and industry effort to answer these questions. It presents detailed characterization of product shipments, the installed base of residential windows and window coverings, and how households use them.

The window coverings industry, DOE, Lawrence Berkeley National Laboratory (LBNL), and the U.S. Environmental Protection Agency (EPA) have been engaged in understanding the market and the installed base of window coverings for the previous three years. The Window Covering Manufacturers Association (WCMA) funded the implementation of the Internet survey to gather data on the installed base of windows, window coverings, and user behavior, and WCMA members provided data on shipments, pricing, retail channels, and manufacturing. DOE, through LBNL, provided funding for analysis of the Internet survey and for preparing this report.

Many assumptions the aforementioned stakeholders had about the installed base of windows have been confirmed. Single and double hung make up 61% of window operator types. Double pane windows represent approximately 60% of the installed base, and the installed base of frames is evenly divided among wood, metal, and vinyl. The Southern climate zone has a higher share of single pane windows than the Mid-Tier and Northern climate zones, while the Northern zone has a higher share of wood and vinyl windows than the Southern zone.

Blinds are the most common window covering product, making up 62% of the installed base. Vinyl and metal horizontal blinds, which dominate shipments in the United States, have a 27% share of the installed base, the largest of any product category. Curtains represent 19%, shades make up 17%, and shutters represent 2% of the installed base. Certain product types, like vinyl and metal horizontal blinds and vertical blinds, are more common in rental housing than in owner-occupied homes, where wood and faux-wood blinds and windows without coverings are more common.

Solar heat gain appears to play a role in window covering choice and operation, leading to notable differences among climate regions. Eighteen percent of the windows in the Northern climate zone did not have a covering, whereas just 12% of windows the Southern zone did not have a covering suggesting that in climates with more intense heat households tend to have more of their windows covered. Households in the Southern climate zone keep their window coverings closed during the summer at much higher rates than in the other climate zones. There is a 20 percentage point difference between the Southern and Northern climate zones in the share of coverings that are closed in the summer. When evaluated at the household level the difference between the share

1

of window coverings that are closed in the summer in these two zones is statistically significant at the α =0.05 level.¹

People rarely move their window coverings. Approximately half of coverings are closed at all times. Between 75% and 84% of coverings remain in the same position throughout the day, depending on the season (summer or winter) and time of week (weekday or weekend). Moreover, between 56% and 71% of households do not adjust any of the covering in their house on a daily basis, depending on the season and time of week.

ACKNOWLEDGEMENTS

D&R would like to thank DOE, WCMA, and LBNL for their financial support of this project and their contributions to the development and feedback on the survey and subsequent analysis.

In particular, the authors would like to thank the following individuals for their feedback and invaluable assistance:

Alexis Abramson, U.S. Department of Energy Doug Anderson, U.S. Environmental Protection Agency Tim Bennett, Window Coverings Manufacturers Association Marci Lavine Bloch, D&R International Brian Booher, D&R International Michael Cienian, Hunter Douglas D. Charlie Curcija, Lawrence Berkeley National Laboratory Mark Dammeyer, Somfy John Gant, Glen Raven Pierre Gaudry, Somfy Dale Hoffmeyer, U.S. Environmental Protection Agency Courtney Hopkins, Kenney Manufacturing Company Katherine Kaplan, U.S. Environmental Protection Agency Christian Kohler, Lawrence Berkeley National Laboratory Marc LaFrance, International Energy Agency Tom Merker, Springs Window Fashions Patrick Phelan, U.S. Department of Energy Stefan Poetsch, Rollac Rolling Shutters Michael Sagan, Springs Window Fashions Karma Sawyer, U.S. Department of Energy Don Smallwood, abc Sun Control LLC Tobias Swope, D&R International Ralph Vasami, Window Coverings Manufacturers Association Daniel Vida, D&R International Subid Wagley, U.S. Department of Energy Teresa Williamson, Newell Rubbermaid

INTRODUCTION

How much energy could be saved by converting sales of the dominant types of window coverings to energyefficient window coverings and for which regions and products would such a conversion pay back the additional cost of the efficient product?

This report represents a key milestone in answering those questions at the level of scientific rigor and analysis required by DOE and EPA.

The window coverings industry, LBNL, and D&R International, Ltd., with support from DOE, have been working together since 2010 to develop a pathway to secure a third-party label that identifies energy-efficient products.

Prerequisites for all such programs are a third-party independent energy performance rating program, data and analysis that demonstrate that a subset of products deliver significantly better energy performance at a reasonable cost, and substantial, aggregate potential energy savings from converting the installed base of inefficient window coverings to energy-efficient ones.

In March 2011, the Windows Attachment Consortium (a group of five of the leading window covering manufacturers) made a preliminary presentation encouraging EPA to consider adding window coverings as an ENERGY STAR® product category. EPA agreed to consider expanding the ENERGY STAR program to include window coverings, provided that additional research demonstrated that user behavior was unlikely to affect energy savings, calculated energy savings were significant, and products were available at price points that made them cost-effective alternatives.

The Window Coverings Manufacturers Association (WCMA) engaged D&R to gather the data needed for more rigorous calculations of energy savings and cost-effectiveness, and to assess the relative impact of behavior on those savings.

In 2012, D&R, with input from LBNL and WCMA, designed and implemented a WCMA-funded Internet survey of a geographically representative and demographically diverse population to characterize the installed base of windows and window coverings and identify patterns in household operation of window coverings. The Internet survey was conducted in collaboration with Russell Research, a survey vendor subcontracted by D&R to program and administer the survey.

D&R also collected shipment, pricing, retail, and manufacturing data from WCMA members to gauge the popularity and price points of particular product categories in the marketplace to identify baseline products for energy savings calculations. D&R was then contracted by LBNL with funding from DOE to analyze the collected data set. D&R developed a research plan in consultation with WCMA, with input from LBNL. The dataset collected and detailed here is the first of its kind. It illuminates previously unknown details about the installed base of windows and window coverings and how households operate those coverings on a daily basis. Key findings include the following:

- On a national scale, single hung windows are the most common operator type, double pane are the most common pane type, and the installed base of frames is evenly split among wood, vinyl, and metal.
- Nationwide, more than 60% of all window coverings are blinds, with metal or vinyl horizontal blinds making up almost half of these (27% of the installed base of window coverings).
- Approximately 75% of window coverings are not adjusted on a daily basis.

4

In the next phase of this project, LBNL will determine the energy savings and cost-effectiveness of energy efficient window coverings and present the findings in a separate report. D&R has provided detailed usage schedules and shipment estimates to LBNL, based on the survey and analysis underlying this report.

STRUCTURE OF THE REPORT

The first section of the report covers the methodologies used to develop the survey and the data collected from manufacturers and presents demographic and house characteristic data. The second section discusses the installed base of windows and presents information on operator type, pane type, and frame type. The third section examines the installed base of window coverings, including differences in the installed base by climate zone and income. The fourth section details findings regarding user operation and presents findings regarding window covering position on a daily basis by climate zone, product type, and room, among others.

The final section covers data on shipment, pricing, retail channels, and domestic manufacturing provided by WCMA members. The Appendix provides additional details about household and demographic characteristics and the methodology for developing shipment estimates and for categorizing shipment estimates by climate zones, along with the glossary included in the Internet survey.

METHODOLOGY

SURVEY METHODOLOGY

INTRODUCTION

With funding from WCMA, from April through July 2012, D&R designed and conducted an online survey to obtain information on the following:

Windows/Glass Doors	Window Coverings	Window Covering Operation	House and Demographic Characteristics
Location by side of residence	Type of covering	By season (summer/winter)	Gender, age, rent/own (screening questions)
Operator type	Shade of covering	By time of week (weekday/weekend)	Vintage, year moved in, residence size and orientation
Pane type	Mount type (inside or outside)	By time of day (morning, afternoon, evening)	Education, income, race/ethnicity
Frame type	Ability to adjust from both the top and the bottom		Number of household members, age and sex of household members
Size			Air conditioning, storm windows

Table 1: Survey Content

SURVEY DESIGN

To draft the initial survey questionnaire, D&R consulted WCMA on window coverings content and LBNL on the input requirements for the window coverings energy savings analysis. LBNL, WCMA, and D&R identified the following information as necessary to conduct the energy savings analysis:

- Window orientation
- Type of window
- Type of window covering
- Positions of window coverings
- Window replacement
- Household and demographic characteristics

The survey was designed to be a self-administered in-home audit of windows and window coverings, where participants could easily remember all of the windows in their home and identify the side of the residence on which each window was located (front, back, left, right). To establish orientation, participants were asked the direction (north, northeast, east, southeast, south, southwest, west, northwest) their front door faced, which was then used to determine the orientation of the rest of the sides of the house along with each window. To ensure that respondents were able to determine which direction their front door faced, a feature was added that allowed

people to select "Orient Me with Google Maps." Selecting this option took respondents to a page where they could enter their home address and view their home using Google Maps so they could determine which direction the front door faced.

The front door was chosen as the reference point for participants because they could identify it easily. The survey guided people through their home room by room and asked them to place their windows on the appropriate wall in each room based on the location of their front door using a "drag and drop" feature with a variety of window types. D&R wanted the front door to serve as the focal point to make it easier for respondents to remember the windows and window coverings in their home, because providing native cues can improve memory recall. Using familiar concepts and structuring the sequence of questions allows the respondent to map the information that they have stored in their memories to the questions being posed.² The side of the house and orientation might affect window covering operation, so it was important to know the position of each window. Once each window was identified, respondents selected from a list the attachment type that best matched the attachment on their window. The list included graphics to help the respondents match the installed window attachments to the options provided.

D&R drafted the initial survey questionnaire, and Russell put it into logic format, which was reviewed by D&R, LBNL, and WCMA. Russell began programming the survey in late April 2012.

SURVEY INSTRUMENT AND RESPONDENT VALIDATION

Self-report surveys are often unreliable, especially with regard to behavior. Therefore, researchers must validate that survey responses are reliable and accurate. For this study, D&R used a three-stage iterative assessment and refinement process (see Figure 1).

Figure 1: Survey Design, Testing, and Implementation Process

After the survey design phase, Russell conducted three rounds of survey pre-testing and validation, along with extensive internal testing by D&R and Russell to ensure the quality and accuracy of responses. Each pre-test round consisted of 10 respondents who took the survey online and agreed to a follow-up in-home interview conducted by a trained interviewer from the Russell team. Interviewers used an interview guide developed by Russell and reviewed by D&R.

The in-home interview included a walk-through of the respondent's home to determine if his/her responses about windows and window coverings matched what was in the home, and if they did not match, to determine how the survey could be improved. The interviewer reviewed survey terminology to make sure the respondent understood all of the terms. Finally, the interviewer and respondent went through the survey together page by page to determine if the respondent understood each question, how questions could be improved, and whether the respondent had any problems when answering.

After each round of pre-testing, D&R and Russell conferred to address issues that had come to light, and Russell made any necessary revisions to the survey instrument. The first round of pre-testing was conducted in East Rutherford, New Jersey in May 2012. For the second round of pre-testing, conducted in the Washington, DC metro area in June 2012, D&R accompanied Russell on two of the in-home audits. After the second round of pre-testing, D&R, LBNL, and Russell reviewed the results of the first two rounds. Russell revised the survey based on LBNL and D&R's feedback and conducted the third pre-test in Phoenix, Arizona in July 2012.

In the first round of testing, five of ten respondents reported results accurately; in the second round, eight of ten reported accurately; in the third round, all respondents reported accurately. The final version of the survey was completed in mid-July 2012. Table 2 outlines the issues encountered and how they were addressed.

Table 2: Pre-Test Issues and Solutions

Issues	Solution		
First Pre-Test			
Confusion with terminology	Add glossary with visuals		
Problems using "drag and drop" feature	Add additional instructions for "drag and drop" feature		
Unaware that using Google Maps was an option for determining orientation	Replace "Don't Know" with "Orient Me with Google Maps"		
Second Pre-Test			
Forgot glossary was in survey	Have glossary link float on each page		
Unsure how to count transom windows ³	Add additional options for transom windows		
Respondents in apartments did not record windows correctly because of problems remembering to orient to the windows in living room	Have respondents in apartments orient to the front door of their apartment building		

SURVEY IMPLEMENTATION

D&R used pre-screened panels, along with representative screening measures, to try to ensure that the population taking the survey closely mirrored the U.S. population. Quotas were created based on data from the U.S. Census to ensure that the distribution matched the population on a few key metrics– gender, age, home ownership/rental status, male or female head of household, and ZIP code – that were thought to affect the installed base. Potential survey respondents from two companies' pools of pre-screened panels of participants were contacted by e-mail. One of these panels recruits online and by telephone and in addition, permits consumers to go directly to its website and sign up. The other panel is invitation only. If respondents passed quotas for representative screening measures, they were asked to take the survey. After completing the survey, respondents received a nominal payment. There is a potential for bias since this was an online survey, and we have noted a couple of instances where this has affected demographic characteristics.

The survey was administered to a sample of 2,467 households in 13 major U.S cities in the Northern, Mid-Tier, and Southern climate zones over a two-week period beginning in late July 2012. The table below shows the targeted number of respondents in each city. Lake Charles, Louisiana, was originally chosen as one of the cities in the Southern climate zone, but due to problems recruiting an adequate number of people in Lake Charles and a high

probability that respondents in New Orleans were more likely to be female, D&R and Russell expanded the survey to cover both cities, with 50 interviews in Lake Charles and 150 interviews in New Orleans.

Northern (800)	Mid Tier (800)	Southern (800)
Boston (200)	Atlanta (200)	Lake Charles (50)/
2001	, (iunta (200)	New Orleans (150)
Chicago (200)	Fort Worth (200)	Phoenix (200)
Denver (200)	San Francisco (200)	San Antonio (200)
Minneapolis (200)	Washington, DC (200)	Tampa (200)

Table 3: Cities Surveyed

SURVEY DATA QUALITY CONTROL

D&R received the survey data from Russell and reviewed it for inconsistencies and unlikely responses. These included, among others, apartments and attached homes that respondents claimed had windows on all four sides, a window with four or more coverings, large numbers of bay or bow⁴ windows, and homes lacking bathrooms.

Each of the households identified as having at least one inconsistent piece of information was individually reviewed to determine whether it could be used in the analysis. Responses with two or more inconsistencies were removed from the dataset; some responses with a single particularly egregious issue were also removed. Of the 2,467 households surveyed, 367 households were removed from the dataset, leaving 2,100 households for analysis.

MANUFACTURER DATA COLLECTION METHODOLOGY

INTRODUCTION

To capture an accurate view of the window coverings market as a whole, D&R collected information from WCMA members on the following:

- Shipments
- Pricing
- Retail channels
- Domestic manufacturing

This information was supplemented by data from the U.S. Census Bureau and pricing information from major online retailers.

SURVEY DESIGN AND IMPLEMENTATION

For this manufacturer data collection effort, D&R built on its previous data collection effort with the Window Attachment Coalition. In 2011, D&R worked with manufacturers to develop a data collection template, define product categories, and determine the type and granularity of information that all manufacturers could provide.

For the 2012 effort, D&R made two changes to the data collection template. For better precision, shipment data was collected at the state level rather than having manufacturers estimate shipments at the ENERGY STAR[®] climate zone level. Additionally, pricing information was collected for low, medium, and high price points rather than for stock, cut-to-fit, and custom, because manufacturers believe this is a more accurate way to capture price points. After WCMA members agreed to the data collection template changes, D&R e-mailed WCMA manufacturer members to request that they submit data via the data collection form. WCMA members and D&R signed non-disclosure agreements to ensure data confidentiality. In total, eight WCMA members provided data, including Newell Rubbermaid, Springs Window Fashions, and Hunter Douglas, the three largest manufacturers.

SURVEY INTERVIEWS

D&R followed up with some manufacturers via e-mail and telephone to discuss retail channels, size and growth in the market, exterior products, and motorization and automation. When appropriate, this information is attributed to a specific manufacturer; if the information is confidential, the manufacturer is listed as anonymous.

INTERNET SURVEY: DEMOGRAPHIC AND HOUSING CHARACTERISTICS

The goal of the Internet survey was to gain an understanding of the installed base of windows and window coverings and the operation of window coverings across the United States by gathering information from residents of 12 major metropolitan areas, which included urban, suburban and rural areas. In general, the demographic and housing characteristic data show that the survey data are mostly comparable to the nation as a whole.

The tables below present the survey data or compare survey data to U.S. Census data or U.S. Department of Energy Residential Energy Consumption Survey 2009 (RECS) data. Additional demographic and housing characteristics information is provided in Appendix A: Additional Housing and Demographic Characteristics.

DEMOGRAPHICS

The income distribution of survey households, which has the potential to affect house size as well as types and numbers of windows and coverings, is slightly skewed toward higher incomes than the U.S. population, except within the highest income bracket. Additionally, households in the lowest income brackets (less than \$20,000 annually) are underrepresented compared to the U.S. population.

Due to the underrepresentation of the highest and lowest income brackets, a weighting factor was applied to the survey sample to determine if these differences could impact the installed base of windows and window coverings. Appendix D: Weighting details the methodology and findings from weighting certain measures to income.

	Percent		
Income Level	Survey	Census⁵	
Under \$10,000	3.6	7.6	
\$10,000 - \$19,999	6.5	11.6	
\$20,000 - \$29,999	10.0	11.3	
\$30,000 - \$39,999	11.4	10.6	
\$40,000 - \$49,999	10.6	8.9	
\$50,000 - \$59,999	11.3	7.8	
\$60,000 - \$69,999	8.0	6.8	
\$70,000 - \$79,999	8.1	5.8	
\$80,000 - \$89,999	6.0	4.6	
\$90,000 - \$99,999	7.0	4.0	
\$100,000 - \$149,999	12.4	11.9	
\$150,000 or More	5.1	9.1	
Total	100.0	100.0	

Table 4: Household Annual Income

*Survey "Rather Not Answer" responses (8% of responses) were removed to enable better comparison to Census data.

HOUSE CHARACTERISTICS

The share of single-family detached homes, which represent the majority of U.S. residences, is slightly underrepresented when compared to the proportions measured by RECS. The survey overrepresents apartment buildings with 5 or more units, but the share of apartment buildings as a whole is close to that shown in RECS.

Table 5: Residence Types

Residence Type	Survey (%)	RECS ⁶ (%)
Single-Family Detached	62.1	67.4
Single-Family Attached	9.4	6.3
2-4 Unit Apartment Buildings	6.1	8.4
5 or More Unit Apartment Buildings	22.4	17.9

The size of owned residences in the survey aligns closely with owned residences in Census data after removing the "Don't Know" responses for both, with slight underrepresentation of larger homes (3,000 square feet or more). Approximately 10% of survey respondents and 5% of census respondents reported that they did not know the size of their residence.

Table 6: Size of Home

Size of Residence (gross square feet)	Survey (%)	Census ⁷
Less than 1,000 sq. ft.	(%)	(%) 8
1,000-1,999 sq. ft.	50	48
2,000-2,999 sq. ft.	30	29
· · ·	12	16
3,000 or more sq. ft.		
Total	100	100

Overall, 12% of survey respondents were unsure when their residence was constructed. Table 7 presents vintage for residences that are owned to better compare to RECS data. Homes constructed before 1950 are underrepresented in the survey dataset and homes built in 2000 or later are overrepresented, compared to RECS. Some of the overrepresentation may be because the survey includes information for homes constructed between 2009 and 2012, while the RECS data stop at 2009.

Year Constructed	Survey (%)	RECS ⁸ (%)
Before 1950	8	17
1950 to 1959	9	12
1960 to 1969	9	12
1970 to 1979	15	16
1980 to 1989	18	15
1990 to 1999	13	14
2000 to 2012	25	14
Don't Know	1.5	0
Total	100	100

Table 7: Vintage: Owned Residence

WINDOWS

The survey data on windows offer a nuanced picture of the installed base of windows in the United States. The average household has nine windows, with single-family detached homes having the most windows and apartments with five or more units having the fewest. Overall, single hung windows are the most common operator type, followed closely by double hung. Double pane windows are the most common pane type, and frames are evenly divided among wood, vinyl, and metal.

Single pane metal windows are more common in the South, whereas double pane wood and vinyl windows are more common in the North, and the Mid-Tier zone has a mix; nationwide there was a trend toward double hung, double pane vinyl windows. The survey responses are consistent with data from RECS and from Ducker Research Company reports, the primary industry source for aggregate industry sales and distribution data.

Figure 2: Number of Windows per Household by Residence Type

Among survey respondents, the number of windows per household is related to the type of residence. Singlefamily detached homes, the largest proportion of residence types in the sample, have 12 windows on average, while apartment buildings with five or more units have the fewest, averaging four windows per unit. The standard deviations closely match the spread between the 25th and 75th percentile. The averages are skewed toward the 75th percentile which means, in general, that the distributions are slightly skewed to the right by the subset of homes and apartments that have larger number of windows.

WINDOW POSITION AND ORIENTATION

Figure 3: Window Location on Home

Two other variables important to understanding energy usage in connection with user behavior are the position of the window on the house (front, back, left, right) and the orientation of the window. For respondents in houses, the "front" was the side of the house where the front door was located, which we assumed would be on the street-facing side of the house in most instances. For apartments, the "front" was the main windows in the living room or for studio apartments the main windows in the living area. The survey results suggest that most homes are rectangular since a higher share of the windows are on the front and back of the home, while the left and right sides have just 19% each.

Room	Number of Windows	Front (%)	Left (%)	Back (%)	Right (%)
Master Bedroom	3654	20	21	39	19
Child Bedroom	2120	30	20	30	20
Guest Bedroom	1868	30	19	31	21
Kitchen	2233	13	18	49	20
Living Room	3167	39	17	28	16
Dining Room	1591	25	19	37	19
Family Room	1428	21	16	46	18
Bathroom	1984	13	22	43	22
Home Office	754	37	21	24	18
Den	294	26	18	36	20
Other Room	531	20	21	39	19
Living Area	37	22	14	49	16
Total	19661	25	19	37	19

Table 8: Windows by Room and Side of Home

As Table 9 shows, the distribution of sizes of windows among small, medium, and large, as judged by occupants, is not appreciably different between the front and the back.

Window Size	Front (%)	Left (%)	Back (%)	Right (%)	Total (%)
Small	20.5	25.4	22.0	24.6	22.8
Average	58.7	57.6	55.0	59.4	57.2
Large	20.8	17.0	23.0	16.1	20.0

Table 9: Size of Window by Side of Home

Figure 4: Window Orientation

Unlike the differences in window position on the home, window orientation is evenly distributed. Not unexpectedly, home orientation appears to be dictated by factors other than maximizing solar gain. If homes were constructed in that manner, the dataset would show a higher proportion of windows and larger windows on the south and west sides of homes. Window orientation is likely a function of house orientation.

WINDOW CHARACTERISTICS

OPERATOR TYPE

The survey asked respondents to indicate the operator type for each window in the home. Overall, single hung windows are the most common operator type in the installed base, followed by double hung windows (see Figure 5). However, the data show that operator types are unevenly distributed among climate zones (see Table 10).

Single hung windows are more common in the Southern climate zone, where their share of the installed base is 48%, 15 percentage points higher than the average. Single hung windows in the Mid-Tier zone have a 33% share of the installed base, while they are less common in the Northern climate zone, having just a 19% share, 14 percentage points below the average. The reverse is true for double hung windows, which are more common in the Northern and Mid-Tier zones (shares of 36% and 33%, respectively) and less common in the Southern zone

(15% of the installed base). Casements are most prevalent in the Northern climate zone with a 16% share of the installed base (7 percentage points above the national average). These proportions can be largely explained by the relative prevalence in the southern regions of aluminum frame windows that are predominantly single hung, and of wood frame windows which are typically double hung in the northern U.S.

Figure 5: Installed Base by Operator Type

Table 10: Operator Type by Climate Zone

Operator Type	U.S.	Difference from U.S. Average (percentage point)			
Operator Type	(%)	Northern	Mid Tier	Southern	
Single Hung	33	-14	0	+15	
Double Hung	28	+8	+5	-13	
Horizontal Slider	16	+2	-2	0	
Casement	9	+7	-4	-3	
Glass Door	6	-1	0	+1	
Fixed	6	-1	+1	0	
Transom	2	0	0	0	

The composition of the dataset was also compared to biannual shipment data published by Ducker Research Company.⁹ Relative proportions are similar but not identical. Internet survey respondents report a higher proportion of single hung windows and horizontal sliders in homes built or with windows replaced since 2005 than reported by Ducker for the same period. Whether these differences are a function of the broader geographic coverage of the Ducker report or gaps in the survey data capture cannot be determined at this time.

Operator Type	Survey All (%)	Survey Homes Constructed or Windows Replaced 2005 or Later (%)	Ducker 2005 2011 (%)	
Single Hung	35	33	23	
Double Hung	30	35	37	
Horizontal Slider	17	16	11	
Casement	10	8	14	
Fixed	7	5	8	
Other	2	3	6	

Table 11: Operator Type Comparisons to Ducker

*The survey distribution is slightly different from the distribution in Table 3 because some product categories have been removed. Ducker data cover 2005, 2007, 2009, and 2011.

PANE TYPE

Survey results for pane type show that regional differences drive the type of panes most commonly found in homes. Overall, the distribution of pane types in the survey closely matches the distribution of pane types found in RECS 2009. However, single pane windows are slightly underrepresented in the survey compared to RECS.

Figure 6: Window Pane Type

The Northern and Mid-Tier climate zones are dominated by double pane windows. In the Southern zone, 52% of windows are double pane; the South has the most even mix of single and double pane and the highest proportion of single pane windows (46%) of all the climate zones. The North, where better-insulating windows are more important, has the highest proportion of double pane and triple pane windows. These distributions are expected, as double pane windows were initially installed primarily in cold climates to provide insulation from the cold.

Pane Type	Northern (%)	Mid Tier (%)	Southern (%)	All Zones (%)
Single Pane	29	37	46	37
Double Pane	66	60	52	59
Triple Pane or Greater	6	3	3	4

Table 12: Pane Type by Climate Zone

FRAME TYPE

Climate differences also drive the distribution of frame types. Overall, frame types are split evenly among metal, wood, and vinyl, with "Other" making up only 1%. This finding is not surprising, as wood frames were the only option until the 1950s, when aluminum windows grew in popularity. Vinyl windows were introduced in the 1980s, and have become the dominant window type over the past 15-20 years.

Figure 7: Window Frame Type

Looking at frame type by climate zone produces a very different picture. The Northern climate zone, which has an older housing stock than the other climate zones, as well as building codes that have effectively excluded metal frame windows in recent years, is dominated by wood and vinyl windows (47% and 39%, respectively), while only 14% of the windows have metal frames. The distribution in the Mid-Tier zone is much closer to the average results, with a relatively even distribution among the three major frame types. The Southern zone is dominated by metal windows (54%), with the remainder of the frames split between wood and vinyl. There is not a strong correlation between income and frame type, even after accounting for climate zone differences.

Frame Type	Northern (%)	Mid Tier (%)	Southern (%)
Wood	47	31	21
Vinyl	39	36	24
Metal	14	33	54
Other	0.4	0.3	0.9

Table 13: Frame Type by Climate Zone

WINDOW CHARACTERISTICS WITHIN HOUSEHOLDS

In addition to examining the overall distributions of pane, frame, and operator types, the survey provides insight into those characteristics within individual households. Do most households have only one operator type? Do they tend to have just single or double pane or a combination of the two?

Table 14 shows the number of operator types per household, while Table 15 shows the distribution of households with one pane type. Not surprisingly, the North had the greatest share of homes with all double pane windows (49%), and the South had the greatest proportion of homes with only single pane windows (40%). Interestingly, possibly due to the steady increase in home sizes and number of windows per home in recent years, the percentage of homes in the South with only single pane windows is higher than the proportion with only double pane (40% to 36%, respectively), even though the overall proportion of double pane windows is greater than single pane windows in the South overall (52% and 46%, respectively).

Number of	Households
Operator Types	(%)
1	35
2	33
3	19
4	9
5	3
6	1

Table 14: Household Distribution by Number of Operator Types

Table 15: Households with One Pane Type by Climate Zone

Pane Type	Northern (%)	Mid Tier (%)	Southern (%)
Single Pane	23	32	40
Double Pane	49	43	36
Triple Pane or Greater	3	1	2
Multiple Pane Types	25	24	22

The high number of households with just one frame type (75%) was also expected, because uniformity keeps builders' costs low. In the Northern climate zone, 58% of homes have either only wood or only vinyl windows; this declines to 47% of homes in the Mid-Tier zone and 31% of homes in the Southern zone. The Southern zone has the largest proportion of homes with only metal frame windows – 42%.

Table 16: Households with One Frame Type by Climate Zone

Frame Type	Northern (%)	Mid Tier (%)	Southern (%)
Wood	30	21	15
Vinyl	28	26	16
Metal	16	31	42
Other	0	0	1
Multiple Frame Types	26	22	26

FREQUENCIES OF FRAME, OPERATOR, AND GLASS PACKAGE COMBINATIONS

Examining operator type by pane type, the data show that three combinations account for 51% of windows. Double hung, double pane windows are the most common combination, making up 19% of windows overall (Table 17); 70% of double hung windows are double pane (Table 18).

Single hung windows are fairly evenly split between single and double pane (45% and 53%, respectively).

Operator Type	Single Pane (%)	Double Pane (%)	Triple Pane or Greater (%)	Total (%)
Single Hung	15	17	1	33
Double Hung	7	19	1	27
Horizontal Slider	6	9	0	15
Casement	3	5	1	9
Glass Door	2	4	0	6
Fixed	3	3	0	6
Transom	1	1	0	2
Total	37	58	5	100

Table 17: Operator Type by Pane Type: Overall Distribution

Table 18: Operator Type by Pane Type

Operator Type	Single Pane (%)	Double Pane (%)	Triple Pane or Greater (%)	Total (%)
Single Hung	45	53	2	100
Double Hung	25	70	5	100
Horizontal Slider	39	59	3	100
Casement	36	57	7	100
Glass Door	36	59	5	100
Fixed	44	49	8	100
Transom	34	59	7	100

Among operator and frame type combinations, single hung metal frame (14%), double hung wood frame (12%), and double hung vinyl frame (12%) are the most common.

Table 19: Operator Ty	ype by Frame Type:	Overall Distribution
-----------------------	--------------------	-----------------------------

Operator Type	Wood (%)	Vinyl (%)	Metal (%)	Other (%)	Total (%)
Single Hung	9	9	14	0	32
Double Hung	12	12	4	0	28
Horizontal Slider	3	6	7	0	16
Casement	4	2	3	0	9
Glass Door	2	2	3	0	7
Fixed	3	1	2	0	6
Transom	0	1	1	0	2
Total	33	33	34	0	100

Table 20: Operator Type by Frame Type

Operator Type	Wood (%)	Vinyl (%)	Metal (%)	Other (%)	Total (%)
Single Hung	29	27	43	1	100
Double Hung	42	45	13	0	100
Horizontal Slider	20	37	44	0	100
Casement	47	22	30	0	100
Glass Door	27	27	44	2	100
Fixed	41	23	35	1	100
Transom	25	39	35	1	100

Table 21 shows pane type and frame type by operator type. Thirty-nine percent of double hung windows are double pane with a vinyl frame. This is the largest proportion among operator types. The next highest concentration is double pane wood frame windows, which have a 32% share among casements. Single hung metal frame windows are evenly divided between single and double pane (21% each).

	Type by Parle and	Pane Type					
Operator Type	Frame Type	Single Pane (%)	Double Pane (%)	Triple Pane or Greater (%)	Total (%)		
	Wood	16	12	0	28		
	Vinyl	8	19	1	28		
Single Hung	Metal	21	21	1	43		
	Other	1	0	0	1		
	Total	46	52	2	100		
	Wood	19	22	1	42		
	Vinyl	3	39	3	45		
Double Hung	Metal	3	10	0	13		
	Other	0	0	0	0		
	Total	25	71	4	100		
	Wood	10	10	0	20		
	Vinyl	7	28	2	37		
Horizontal Slider	Metal	22	21	1	44		
	Other	0	0	0	0		
	Total	39	59	3	100		
	Wood	13	32	3	48		
	Vinyl	6	14	3	23		
Casement	Metal	18	11	1	30		
	Other	0	0	0	0		
	Total	37	57	7	100		
	Wood	12	14	1	27		
	Vinyl	5	20	2	27		
Glass Doors	Metal	18	25	1	44		
	Other	1	1	0	2		
	Total	36	60	4	100		
	Wood	22	15	3	40		
	Vinyl	6	16	2	24		
Fixed	Metal	16	17	2	35		
	Other	0	0	0	0		
	Total	44	48	7	100		
	Wood	8	15	2	25		
	Vinyl	11	25	3	39		
Transoms	Metal	14	19	2	35		
	Other	0	1	0	1		
	Total	33	60	7	100		

Table 21: Operator Type by Pane and Frame Type

WINDOW REPLACEMENT

Overall, at least 30% of households report having at least one window replaced. Twenty-one percent of respondents indicate that they have replaced some of their windows, while 9% report that at least one window was replaced before they moved into the residence. The 30% figure is framed as a minimum because 32% of households are unsure if the windows were replaced before they moved in.

Single family homes and town houses are more likely than apartments to report having their windows replaced (36% and 15%, respectively), but because of lower ownership levels among apartment dwellers, the "Don't Know" response rate is much higher than for those living in single family homes and town houses (52% to 24%).

Figure 8 and Figure 9 demonstrate that, in general, the older the home, the more likely it is to have replacement windows. Figure 9 shows the replacement rate by house vintage, excluding "Don't Know" responses. The proportion of homes with replacement windows jumps rather dramatically between those homes less than 20 years old and those 20 years old or older.

Figure 8: Window Replacement by House Vintage

Figure 9: Window Replacement by House Vintage: Certain of Replacement

For the subset of respondents who indicate that their windows have been replaced, 55% indicate that all of their windows have been replaced, 36% indicate that some of their windows have been replaced, and 8% do not remember how many windows have been replaced.

Of that same subset, 54% indicate that at least one of the replacement windows is ENERGY STAR[®] qualified, 14% report that none of their replacement windows are ENERGY STAR qualified, and 32% report being unsure, making it difficult to accurately estimate the households with ENERGY STAR windows.

STORM WINDOWS

Another important characteristic for accurately estimating energy savings is the frequency and usage of storm windows. Eighteen percent of the households in the survey report having at least one storm window, although overall only 13.5% of windows have storm windows. Not surprisingly, the Northern climate zone has the highest proportion of windows paired with storm windows (20%), compared to 12% in the Mid-Tier climate zone and 8% in the Southern climate zone.

There appears to be some correlation between storm windows and pane type, but not as strong as expected. Of windows with storms, 43% are single pane, while single pane windows make up just 37% of the installed base, which means that storm windows are on single pane windows at higher levels than single pane windows appear in the installed base. It is possible that a large proportion of the double pane windows with storms are double pane clear windows would benefit from the addition of storm windows.

It is also possible that some people with double pane windows with storm windows mistakenly reported having a triple pane window and also reported having a storm window when asked directly about storm windows. This potential error could have affected responses for no more than 130 windows.

Figure 10: Presence of Storm Window by Pane Type

The average number of storm windows per residence is seven. In comparison, the average number of windows per residence is nine. The 25th percentile has two storm windows and the 75th percentile has 11, which means there is a fairly wide spread in the number of storm windows per household. On average, single-family detached homes report 9 storm windows and 12 windows total. Approximately 55% of households report having their storm windows installed and closed year round.

EXTERIOR OBJECTS BLOCKING LIGHT

The survey also asked respondents about objects near the home that might block light from coming through the windows, including trees, awnings, solar screens, or other houses or buildings. Approximately 52% of households report having at least one window blocked by one of these objects and 17% report having more than one of these objects blocking light. Trees are the most common light blocker.

Number of Objects Blocking Light	Percent of Windows	Percent of Households
None	78	47
1	20.6	35.6
2	1.2	13.1
3	0.1	3.3
4	0.0	0.5
5	0.0	0.3

Table 23:	Type of	Light-B	locking	Objects
-----------	---------	---------	---------	---------

Type of Light Blocking Objects	Percent
Large Deciduous Trees	16
Large Year-Round Green Trees	3
Exterior Awnings	2
Houses or Buildings	2
Solar Screens	1

WINDOW COVERINGS

The survey provided the first view of the installed base of window coverings in the United States and the characteristics of those coverings. The survey shows that blinds, metal and vinyl horizontal blinds in particular, dominate the installed base. There are clear differences in the frequency of covering types by climate zone, income, and home ownership status, and in some cases, by the type of window.

WINDOW COVERINGS BY HOUSEHOLD

Overall, 78% of windows have one covering, 6% have multiple coverings, and 16% have no coverings. The average household reports 8.5 coverings and 2 covering types (e.g., all coverings in a household are either cellular shades or vertical blinds).

WINDOW COVERING TYPE

More than 60% of all window coverings in U.S. homes are blinds. The remaining windows are nearly all covered by shades and curtains in relatively even proportions, with shutters making up just 2% and awnings less than 0.7%.

Figure 12: Window Coverings by Product Group

Despite their sizable aggregate share of the base, no individual type of shade represents more than 5% of the installed base.

Table 24: Window Coverings Share of the Installed Base

Product Type	Percent
Metal or vinyl horizontal blinds	27
Wood or faux wood horizontal blinds	16
Curtains/drapery	15
Vertical blinds	13
Cellular shades	5
Pleated shades	5
Roller shades	4
Sheer drapery	4
Soft sheer blinds (non-transparent)	4
Interior shutters	2
Roman shades	2
Soft sheer blinds (transparent)	1

OWN OR RENT

Owned and rented homes have distinct distributions of window covering products. Metal or vinyl horizontal blinds are substantially more common among renters, accounting for about a third of all rental property coverings, compared to just a fifth of coverings in owner-occupied homes. In contrast, wood and faux wood blinds are much more common in owner-occupied residences, accounting for about 15% of coverings among these homes, double the proportion of these products in rentals. The relative price points of metal and vinyl blinds (low) compared to wood and faux wood (higher) may be the primary factor driving these differences.

There are also differences in the categories of vertical blinds and windows without coverings; vertical blinds represent a larger portion of the base in rental properties and uncovered windows represent a larger portion of the base in owner-occupied homes. The former may simply reflect the fact that sliding glass doors and horizontal sliding windows represent a larger portion of the installed window base in rental properties (30% in rentals, compared to 18% in owned residences). Owner-occupied homes have an average of 14 windows, whereas rental units have 8 windows on average. It may be that in units with fewer windows (rental or owner-occupied), windows are more likely to serve multiple functions (view, light, etc), whereas in larger homes with more windows, those functions can be separated; accordingly, larger homes tend to have more windows uncovered.

Dreduct Ture	Per	cent
Product Type	Own	Rent
Metal or vinyl horizontal blinds	20.5	31.7
Wood or faux wood horizontal blinds	15.4	7.3
Curtains/drapery	13.4	10.6
Vertical blinds	9.5	16.4
Cellular shades	5.1	2.7
Pleated shades	3.6	7.8
Roller shades	4.0	2.4
Sheer drapery	3.2	2.7
Soft sheer blinds	2.5	4.6
Interior shutters	2.4	0.6
Roman shades	1.7	0.8
Soft sheer blinds	1.1	0.6
Awnings	0.3	0.1
Frosted glass	1.9	1.8
No covering	15.6	9.8

Table 25: Installed Base of Coverings by Residence Ownership Status

CLIMATE ZONE

Examining data through a regional lens suggests that control of solar heat gain is currently a stronger driver of window covering installation than insulation. Windows in colder climates tend to have fewer coverings. In the Northern climate zone, 17.6% of windows do not have a covering. In the Mid-Tier zone that proportion is 13%, and in the Southern zone it drops to 12.1%. The average percentage of uncovered windows per household in the Northern climate zone is 13.5%, 10.8% in the Mid-Tier zone, and 10.4% in the Southern climate zone. The differences in the share of uncovered windows by household between the Northern and Southern climate zones is statistically significant (p=0.007). The difference between the Northern and Mid-Tier zones is statistically significant at the α =0.05 level (p=0.018) and the difference between the Mid-Tier and Southern zone falls short of the α =0.05 level of significance (p=0.733). The full results of this statistical analysis can be found in Appendix J.

The other distinct difference among the climate zones is that wood and faux wood blinds are more prevalent in the Southern (18.7%) and Mid-Tier (15.2%) climate zones than in the Northern zone (7.6%). This trend is also evident in shipments of these product types (see Shipments Section). Whether this preference is climate, culture, or fashion driven is unclear.

	Climate Zone				
Product Type	Northern	Mid Tier	Southern		
	(%)	(%)	(%)		
Metal or vinyl horizontal blinds	20.1	25.2	23.5		
Wood or faux wood horizontal blinds	7.6	15.2	18.7		
Curtains/drapery	14.9	11.7	11.5		
Vertical blinds	10.5	9.2	13.3		
Cellular shades	6.5	4.4	2.7		
Pleated shades	3.9	6.1	3.7		
Roller shades	6.4	2.5	1.8		
Sheer drapery	3.5	3.5	2.2		
Soft sheer blinds (non-transparent)	3.5	2.7	2.7		
Interior shutters	0.8	2.3	3.0		
Roman shades	1.7	1.4	1.4		
Soft sheer blinds (transparent)	1.6	0.7	0.6		
Awnings	0.3	0.3	0.2		
Frosted glass	1.2	2.0	2.6		
No covering	17.6	13.0	12.1		

Table 26: Installed Base of Coverings by Climate Zone

INCOME

Most product categories do not show discernible trends based on income, particularly among the middle income groups where the sample sizes are the largest. Figure 13 shows the few categories in which there are notable trends associated with income.

Most noteworthy are the curvilinear trend in the in the dominant metal and vinyl horizontal blind category, the strong positive correlation of wood and faux wood blinds with income through the \$90,000-\$99,000 income group and a sharp decline thereafter, and the compensating increase in both cellular shade and uncovered windows among higher income households.

The high proportion of cellular shades in the \$10,000 or lower income group is likely an anomaly due to the small sample size of this subpopulation in the dataset.

Figure 13: Select Window Coverings by Income

Table 27: Window Coverings by Income

	Income Range (%)											
Covering Type	Under	\$10	\$20	\$30	\$40	\$50	\$60	\$70	\$80	\$90	\$100	\$150K
	\$10K	19K	29K	39K	49K	59K	69K	79K	89K	99K	149K	+
Metal or vinyl horizontal blinds	20.2	23.7	26.9	28.6	27.6	28.5	21.0	21.9	18.0	16.2	17.5	20.9
Wood or faux wood horizontal blinds	5.5	4.2	8.6	7.4	10.1	12.9	15.7	15.9	18.2	23.6	17.2	12.1
Curtains/drapery	16.3	17.1	17.6	13.5	14.4	10.3	13.5	11.3	15.8	8.8	11.3	8.8
Vertical blinds	11.5	12.6	12.8	12.8	15.3	12.4	12	10.10	10.8	11.8	7.9	5.1
Cellular shades	9.6	3.7	2.3	2.7	2.4	2.7	2.4	5.6	3.4	4.1	7.5	10.7
Pleated shades	5.5	8.7	5.7	7.9	1.6	4.0	5.6	3.0	4.8	3.3	3.3	2.2
Roller shades	6.7	3.1	4.2	2.9	3.6	3.2	1.9	2.5	3.8	5.3	3.7	4.9
Sheer drapery	3.0	6.0	3	2.0	4.0	2.0	4	2	4	2	3.0	3
Soft sheer blinds (non-transparent)	2.5	1.5	3.6	2.8	2.7	5.7	2.5	3.2	0.8	4.4	2.9	2.1
Interior shutters	1.0	0.0	0.0	1.0	1.0	3	2.0	3	2	1.0	3.0	5
Roman shades	0.9	2.6	0.3	1.2	0.9	0.9	2.5	1.4	2.6	1.0	1.7	2.2
Soft sheer blinds (transparent)	0.2	0.1	0.8	1.0	0.9	1.4	0.4	1.5	0.7	1.8	0.9	1.6
Awning	1.6	0.2	0.5	0.2	0.3	0.1	0.6	0.1	0.1	0.1	0.1	0.2
Frosted Glass	2.5	2.8	2.0	2.2	1.8	1.4	1.9	1.6	2.1	2.5	1.8	1.0
No covering	12.8	13.5	11.5	13.8	12.9	12.1	14.3	17.1	13.8	13.7	18.1	19.9
Total	100	100	100	100	100	100	100	100	100	100	100	100

COVERING CHARACTERISTICS

SHADE OF COVERING

Respondents were also asked about the shade of the outward-facing side of each of their coverings. Approximately 73% of coverings have a light shade on their outward-facing side, 19% have a medium shade, and just 8% are dark. At least 49% of each covering type is light shaded. Metal and vinyl horizontal blinds have the highest share of light-shaded coverings (83%). Curtains and drapery have the lowest share of light-shaded coverings (49%) and the highest share that are dark (22.5%).

Figure 14: Window Covering Shade

Table 28	: Shade	of Cove	ring by	Product	Туре
----------	---------	---------	---------	---------	------

	Shade of Covering (%)				
Covering Type	Light	Medium	Dark		
Metal or vinyl horizontal blinds	82.7	13.9	3.4		
Wood or faux wood horizontal blinds	70.6	21.6	7.7		
Curtains/drapery	48.7	28.8	22.5		
Vertical blinds	77.7	18.3	4.0		
Cellular shades	78.7	17.7	3.7		
Pleated shades	71.9	22.2	5.9		
Roller shades	76.8	16.6	6.6		
Sheer drapery	72.4	17.5	10.1		
Soft sheer blinds (non-transparent)	64.2	30.7	5.1		
Interior shutters	76.4	15.0	8.6		
Roman shades	54.9	30.7	14.3		
Soft sheer blinds (transparent)	71.5	20.7	7.8		

MOUNT TYPE

Interior window coverings can be mounted either inside or outside the window frame (see Appendix F: Glossary for image). Although overall about a third of coverings are mounted outside, there is a strong divergence between curtains and blinds/shades, with 67%-75% of the former being mounted outside, compared to 20%-40% of the latter.

Table 29: Mount Type by Product Type

Coursing Turns	Mount	Гуре (%)
Covering Type	Inside	Outside
Metal or vinyl horizontal blinds	79.0	21.0
Wood or faux wood horizontal blinds	81.6	18.4
Curtains/drapery	25.6	74.4
Vertical blinds	59.6	40.4
Cellular shades	74.7	25.3
Pleated shades	79.2	20.8
Roller shades	73.6	26.4
Sheer drapery	32.1	67.9
Soft sheer blinds (non-transparent)	73.6	26.4
Interior shutters	60.2	39.8
Roman shades	67.9	32.1
Soft sheer blinds (transparent)	70.5	29.5

TOP-DOWN/BOTTOM-UP ADJUSTMENT

A relatively new feature for shades and blinds is the ability to adjust the product height both by lowering the top and raising the bottom. Not surprisingly, the penetration of this feature in the installed base remains quite small overall, but is as high as 23% within cellular shades.

Figure 16: Window Coverings with Top-Down/Bottom-Up Adjustment

Table 30: Top/Bottom Adjustment by Product Type

Covering Type	Top/Bottom Adjustment (%)			
	Yes	No		
Metal or vinyl horizontal blinds	8.6	91.4		
Wood or faux wood horizontal blinds	8.3	91.7		
Curtains/drapery	4.5	95.5		
Vertical blinds	13.3	86.7		
Cellular shades	23.1	76.9		
Pleated shades	18.3	81.7		
Roller shades	9.4	90.6		
Sheer drapery	5.6	94.4		
Soft sheer blinds (non-transparent)	20.0	80.0		
Interior shutters	13.2	86.8		
Roman shades	12.3	87.7		
Soft sheer blinds (transparent)	19.7	80.3		

WINDOW COVERINGS ON WINDOWS

In general, covering types appear fairly randomly distributed across window types, with the exception of cellular shades and to a lesser extent, wood and faux wood horizontal blinds, roman shades, metal or vinyl horizontal blinds, and vertical blinds. Cellular shades, wood and faux wood blinds, pleated shades, and roman shades are disproportionately associated with double pane windows. Metal or vinyl horizontal blinds, vertical blinds, and pleated shades are disproportionately associated with single pane windows. These deviations could reflect differences in income, with less expensive coverings being more likely associated with older housing stock and single pane windows and more expensive coverings associated with newer and renovated housing stock that has a higher prevalence of double pane windows.

Product Type	Single (%)	Double (%)	Triple Pane or Greater (%)
Window	37	59	4
Metal or vinyl horizontal blinds	44	54	2
Wood or faux wood horizontal blinds	26	70	5
Curtains/drapery	39	58	3
Vertical blinds	44	54	2
Cellular shades	21	71	8
Pleated shades	43	53	3
Roller shades	35	63	2
Sheer drapery	31	62	6
Soft sheer blinds (non-transparent)	36	59	5
Interior shutters	31	66	2
Roman shades	28	63	9
Soft sheer blinds (transparent)	39	55	5
No covering on this window	40	54	6

Table 31: Window Covering by Pane Type

Table 32: Window Covering by Frame Type

Product Type	Wood (%)	Vinyl (%)	Metal (%)	Other (%)
Metal or vinyl horizontal blinds	30	33	37	0
Wood or faux wood horizontal blinds	25	36	39	0
Curtains/drapery	38	27	35	0
Vertical blinds	23	33	42	1
Cellular shades	34	41	25	0
Pleated shades	39	37	23	1
Roller shades	43	41	16	0
Sheer drapery	37	34	28	0
Soft sheer blinds (non-transparent)	34	42	25	0
Interior shutters	41	23	35	1
Roman shades	34	38	26	2
Soft sheer blinds (transparent)	46	35	20	0
No covering on this window	42	30	27	1

In general, coverings seem randomly distributed by pane and frame type, with the exception of a few product types. Cellular and roller shades are installed on double pane wood and double pane vinyl windows at higher rates

than average (see Table 33). Metal or vinyl horizontal blinds and vertical blinds appear on single pane metal windows with greater frequency than average.

		Wood			Vinyl			Metal			
Product Type	Single Pane (%)	Double Pane (%)	Triple Pane + (%)	Single Pane (%)	Double Pane (%)	Triple Pane + (%)	Single Pane (%)	Double Pane (%)	Triple Pane + (%)	Other (%)	Total (%)
Metal or vinyl horizontal blinds	16	13	1	7	25	1	20	16	0	0	100
Wood or faux wood horizontal blinds	8	16	1	5	28	2	12	25	2	0	100
Curtains/drapery	20	17	1	2	23	2	17	17	1	0	100
Vertical blinds	9	14	0	9	23	1	20	22	0	1	100
Cellular shades	8	24	1	2	35	3	10	11	3	0	100
Pleated shades	18	20	1	13	21	2	12	12	0	1	100
Roller shades	22	20	1	4	36	1	9	7	1	0	100
Sheer drapery	13	21	2	3	28	3	15	13	0	0	100
Soft sheer blinds (non- transparent)	16	16	2	10	29	2	10	14	1	0	100
Interior shutters	20	22	0	2	21	1	9	24	1	1	100
Roman shades	17	14	2	2	33	3	9	15	3	2	100
Soft sheer blinds (transparent)	18	26	2	15	18	3	7	12	1	0	100
No covering on this window	21	19	3	5	23	2	13	13	1	0	100
Total	15	17	1	6	26	2	15	17	1	0	100

 Table 33: Window Covering by Pane and Frame Type

WINDOW COVERING OPERATION

Analysis of households' operation of their window coverings reveals that at least 75% of window coverings remain in the same position on a daily basis, depending on the season and time of the week. Almost no coverings are adjusted between the morning and afternoon (1-2 percentage point difference in covering position), regardless of season or time of the week. Climate zone appears to have an impact on covering position, with a 10-20 percentage point difference among coverings in a closed position between the Northern and Southern climate zones, depending on the season.

Because the substantial majority of products do not move, the default state of coverings that are not adjusted is likely to be the principal determinant of household and aggregate energy savings. An image from the survey which defined covering position for respondents can be found in Appendix H: Window Covering Position Survey Image.

COVERING POSITION

Knowledge of the position of window coverings throughout the day is an essential input for accurate estimates of window covering impact on energy use and potential energy savings. Table 34 and Table 35 show that the proportion of coverings that are open, half open, and closed is largely constant. Slightly less than half of coverings are closed in the morning and afternoon, and slightly more than half are closed in the evening. In general, slightly more coverings are open in the winter than in the summer during the morning and afternoon (3-6 percentage point difference). The difference between the share of open coverings by household in the summer and winter is statistically significant (all p-values ≤0.001; see Appendix I: Statistical Significance for full results).

One possible explanation for this difference is that at least some households choose to open their coverings in the winter in the morning and afternoon, possibly for natural light and heating. Based on known impacts of solar heat gain in summer and winter, the opening and closing behavior with an energy-efficient covering would be expected to improve the aggregate energy performance of U.S. homes.

Covering	Su	mmer Weekday ((%)	Summer Weekend (%)					
Position	Morning	Afternoon	Evening	Morning	Afternoon	Evening			
Open	22	20	18	22	21	19			
Half Open	31	30	28	32	31	29			
Closed	47	49	54	46	48	52			
Total	100	100	100	100	100	100			

Table 34: Window Covering Position in the Summer

Table 35: Window Covering Position in the Winter

Covering	Ŵ	/inter Weekday (%)	Winter Weekend (%)					
Position	Morning	Afternoon	Evening	Morning	Afternoon	Evening			
Open	25	26	19	25	26	19			
Half Open	29	30	26	30	30	26			
Closed	46	44	55	45	44	54			
Total	100	100	100	100	100	100			

The great majority of window coverings (75%-84%) are not adjusted on a given day even when segregated into summer and winter weekday and weekend (Table 36). This phenomenon occurs not just at the window level, but also at the household level. Approximately, 56% to 71% of households do not adjust any of their window coverings on a daily basis (Table 37). In both cases, coverings and homes are most likely to see adjustment on summer weekdays and least likely on winter weekends.

One possible explanation is that because in the winter it is dark when people wake up and dark when they return home from work there is no reason to adjust coverings, whereas in the summer, when it is hot and already light when people wake up and still light when they return home from work, the need to provide light or block heat may stimulate adjustment.

Table 36: Window Coverings in the Same Position throughout the Day

Time Week and Season	Percent Unchanged
Summer Weekday	75
Summer Weekend	81
Winter Weekday	82
Winter Weekend	84

Table 37: Households with Window Coverings in the Same Position throughout the Day

Time Week and Season	Percent Unchanged
Summer Weekday	56
Summer Weekend	66
Winter Weekday	69
Winter Weekend	71

POSITION BY CLIMATE ZONE

Meaningful differences emerge when covering position and operation are segregated by climate zone (see Tables 38-40). Most notable is the difference in the share of coverings that are closed. There is, on average, a 20 percentage point difference between the Northern and Southern climates' shares of coverings closed during the summer. A possible explanation for this difference is that the more extreme heat in the South leads people to have more of their window coverings closed at all times of day than in the more temperate Mid-Tier and Northern zones. These differences extend through the winter, but are not as extreme, with a 10-12 percentage point difference during that season.

The differences between the proportion of windows closed by household in the Northern and Southern climate zones between summer morning, afternoon and evening and winter morning, afternoon, and evening both on weekdays and weekends are statistically significant at the α =0.05 level (see Appendix J for full results). The differences between the Northern and Mid-Tier climate zones are also statistically significant at the α =0.05 level. The differences between the Mid-Tier and Southern climate zones are statistically significant at the α =0.05 level with the exception of the differences for the winter weekend morning, afternoon, and evening which were not found to be statistically significant between the climate zones. Appendix E: Internal Consistency of the Sample details the methodology and findings from examining the consistency of cities within climate regions.

WINDOW COVERING POSITION BY ORIENTATION AND SIDE OF HOUSE

The orientation of the window appears to have no impact on window covering position or user behavior (see Tables 41-44). The distribution of window covering position is almost completely uniform by orientation within each time period.

The side of the home, on the other hand, appears to have at least a minimal effect on window covering position (see Tables 45-48). The left and right of the homes consistently have more window coverings closed throughout the day than the front and back of the homes (3-7 percentage point difference). The higher levels of closed coverings on the right and left may have to do with maintaining privacy from neighbors; conversely, the greater proportion of open window coverings in front and back may reflect a desire to access pleasant views or admit light into more frequently occupied living spaces.

WINDOW COVERING POSITION BY RESIDENCE TYPE

There are no clear trends in window covering position by residence type.

WINDOW COVERING POSITION BY CLIMATE ZONE

Covering	Summer Weekday			Summer Weekend			Winter Weekday			Winter Weekend		
Position	Morning	Afternoon	Evening									
Open	26	24	23	26	25	23	29	30	23	28	29	22
Half Open	35	34	32	36	36	33	32	33	28	32	33	29
Closed	39	41	45	38	39	44	39	38	49	40	38	49
Total	100	100	100	100	100	100	100	100	100	100	100	100

Table 38: Window Coverings Position in the Northern Climate Zone

Table 39: Window Coverings Position in the Mid-Tier Climate Zone

Covering	Sur	Summer Weekday			Summer Weekend			Winter Weekday			Winter Weekend		
Position	Morning	Afternoon	Evening										
Open	23	21	20	23	22	20	25	25	19	24	24	18	
Half Open	31	32	29	33	32	30	30	30	28	30	30	27	
Closed	46	47	52	45	46	50	45	45	53	46	45	54	
Total	100	100	100	100	100	100	100	100	100	100	100	100	

Table 40: Window Coverings Position in the Southern Climate Zone

Covering	Summer Weekday			Summer Weekend			Winter Weekday			Winter Weekend		
Position	Morning	Afternoon	Evening									
Open	17	15	13	18	17	14	23	23	17	23	23	17
Half Open	26	25	23	26	25	24	25	26	22	27	27	23
Closed	57	60	65	56	58	62	52	51	61	51	50	59
Total	100	100	100	100	100	100	100	100	100	100	100	100

WINDOW COVERING POSITION BY ORIENTATION

6		Summer Weekday (%)												
Covering Position		Mor	ning			After	noon		Evening					
FOSICION	North	East	South	West	North	East	South	West	North	East	South	West		
Open	23	22	22	21	22	22	20	18	19	20	18	16		
Half Open	30	30	31	31	30	30	31	30	28	27	28	28		
Closed	46	48	47	49	48	48	49	52	53	53	54	55		
Total	100	100	100	100	100	100	100	100	100	100	100	100		

Table 41: Window Coverings Position by Orientation: Summer Weekday

Table 42: Window Coverings Position by Orientation: Summer Weekend

Covering		Summer Weekend (%)													
Position		Mor	ning		Afternoon				Evening						
FOSICION	North	East	South	West	North	East	South	West	North	East	South	West			
Open	23	23	22	21	22	23	21	19	19	20	19	18			
Half Open	32	30	32	32	31	30	32	31	29	28	29	30			
Closed	45	47	46	47	46	47	48	50	52	52	52	53			
Total	100	100	100	100	100	100	100	100	100	100	100	100			

Table 43: Window Coverings Position by Orientation: Winter Weekday

Courseine						Winter Wo	eekday (%)					
Covering Position		Mor	ning			After	noon			Eve	ning	
POSICION	North	East	South	West	North	East	South	West	North	East	South	West
Open	25	26	24	26	26	27	25	26	19	21	19	19
Half Open	29	29	30	29	29	29	30	30	26	26	26	26
Closed	46	45	46	45	45	44	45	44	55	54	55	55
Total	100	100	100	100	100	100	100	100	100	100	100	100

6						Winter We	ekend (%)						
Covering Position		Mor	ning			After	noon		Evening				
POSITION	North	East	South	West	North	East	South	West	North	East	South	West	
Open	25	26	24	25	25	27	24	25	18	21	18	19	
Half Open	29	29	30	30	30	30	30	31	27	26	26	27	
Closed	46	44	46	45	45	43	45	44	55	53	56	54	
Total	100	100	100	100	100	100	100	100	100	100	100	100	

Table 44: Window Coverings Position by Orientation: Winter Weekend

WINDOW COVERING POSITION BY SIDE OF HOME

Table 45: Window Coverings Position by Side of Home: Summer Weekday

Courseine						Summer W	eekday (%)						
Covering Position		Mor	ning			After	noon		Evening				
POSICION	Front	Left	Back	Right	Front	Left	Back	Right	Front	Left	Back	Right	
Open	23	20	24	19	22	18	22	17	19	17	20	16	
Half Open	30	30	30	32	30	29	30	33	28	27	27	29	
Closed	47	51	46	48	48	52	48	50	53	56	53	55	
Total	100	100	100	100	100	100	100	100	100	100	100	100	

Table 46: Window Coverings Position by Side of Home: Summer Weekend

						Summer W	eekend (%)						
Covering Position		Mor	ning			After	noon		Evening				
rosition	Front	Left	Back	Right	Front	Left	Back	Right	Front	Left	Back	Right	
Open	23	19	25	19	23	19	23	18	20	17	21	16	
Half Open	31	32	31	33	30	31	31	33	28	29	29	30	
Closed	46	49	44	48	47	50	46	49	52	55	50	54	
Total	100	100	100	100	100	100	100	100	100	100	100	100	

6						Winter We	eekday (%)						
Covering Position		Mor	ning			After	noon		Evening				
POSICION	Front	Left	Back	Right	Front	Left	Back	Right	Front	Left	Back	Right	
Open	26	23	28	22	27	24	29	23	19	18	22	17	
Half Open	29	28	29	30	30	28	29	31	26	25	26	26	
Closed	45	49	42	48	44	48	42	47	54	57	52	57	
Total	100	100	100	100	100	100	100	100	100	100	100	100	

Table 47: Window Coverings Position by Side of Home: Winter Weekday

Table 48: Window Coverings Position by Side of Home: Winter Weekend

6						Winter We	eekend (%)					
Covering Position		Mor	ning			After	noon			Eve	ning	
POSICION	Front	Left	Back	Right	Front	Left	Back	Right	Front	Left	Back	Right
Open	26	23	28	21	27	24	28	22	19	18	21	17
Half Open	30	29	29	31	30	29	30	32	26	25	26	28
Closed	45	49	43	48	43	47	42	47	54	57	52	56
Total	100	100	100	100	100	100	100	100	100	100	100	100

WINDOW COVERING POSITION BY ROOM

Common rooms in the house (kitchen, living room, dining room, and family room) tend to have higher proportions of coverings open or half open than bedrooms and bathrooms. Among the major room types, coverings in bathrooms and bedrooms are most frequently closed throughout the day. This result is expected, since common rooms are where families are most likely to be occupied during the day and daylight is generally beneficial, while privacy tends to be more important in bedrooms and bathrooms.

Of the common rooms, kitchens have the highest share of coverings open throughout the day and living rooms tend to have coverings closed at slightly higher rates in the evening (3-6 percentage points) than coverings in other common rooms. This could be related to the fact that certain rooms tend to have more windows on certain sides of the house. For example, 39% of windows in living rooms are on the front of homes. Den, home office, and other rooms are excluded from these tables because they had sample sizes of fewer than 200 coverings.

	Γ	Morning (%)	A	fternoon (୨	%)		Evening (%)
Rooms	Open	Half Open	Closed	Open	Half Open	Closed	Open	Half Open	Closed
Bedroom	17	28	55	16	27	57	14	25	61
Kitchen	32	36	32	30	36	34	27	33	40
Living Room	25	34	41	23	33	44	20	29	52
Dining Room	27	35	38	25	33	42	24	32	45
Family Room	26	32	42	22	33	44	21	32	47
Bathroom	19	25	55	18	26	56	17	25	58
Living Area	11	54	34	9	49	43	17	20	63

Table 49: Window Coverings Position by Room: Summer Weekday

	7	Morning (%)	A	fternoon (%	%)	I	Evening (%))
Rooms	Open	Half Open	Closed	Open	Half Open	Closed	Open	Half Open	Closed
Bedroom	17	28	55	17	28	55	15	27	59
Kitchen	31	37	32	30	36	34	26	33	40
Living Room	26	34	40	24	34	42	20	30	49
Dining Room	27	36	36	27	35	38	25	33	42
Family Room	24	37	39	23	36	41	21	33	46
Bathroom	20	28	52	18	27	54	18	26	55
Living Area	23	43	34	17	51	31	14	31	54

RESIDENTIAL WINDOWS AND WINDOW COVERINGS: A DETAILED VIEW

	Π	Morning (%)	A	fternoon (୨	%)		Evening (%)
Rooms	Open	Half Open	Closed	Open	Half Open	Closed	Open	Half Open	Closed
Bedroom	20	28	55	16	27	57	14	25	61
Kitchen	32	35	33	33	36	31	25	31	44
Living Room	29	31	39	30	32	38	21	26	53
Dining Room	31	34	35	32	34	34	25	30	45
Family Room	28	34	38	29	34	37	21	32	47
Bathroom	23	26	51	23	27	51	20	24	55
Living Area	40	23	37	31	37	31	23	11	66

Table 51: Window Coverings Position by Room: Winter Weekday

Table 52: Window Coverings Position by Room: Winter Weekend

	7	Morning (%)	A	fternoon (%	%)	l	Evening (%)
Rooms	Open	Half Open	Closed	Open	Half Open	Closed	Open	Half Open	Closed
Bedroom	20	27	54	21	27	52	15	24	61
Kitchen	32	35	33	33	36	32	25	31	44
Living Room	30	31	39	31	32	38	22	26	52
Dining Room	31	34	35	32	34	34	24	31	45
Family Room	28	33	38	29	34	37	22	31	48
Bathroom	22	27	52	21	27	52	19	25	56
Living Area	40	29	31	29	43	29	29	17	54

WINDOW COVERING POSITION BY COVERING TYPE

There are differences in covering position based on covering type. On average, regardless of season or time of the week, a larger proportion of horizontal blinds are closed throughout the day than any other product category. The differences are more apparent in the summer, particularly in the evening, when horizontal blinds are closed at approximately 7-10 percentage points more than other product groups. The reason for this difference is unclear. Perhaps because they admit more light during the day even with slats in the closed position, occupants are less motivated to open them. Vertical blinds, shades, and curtains and drapery are, on average open, half open, and closed at similar frequencies. Appendix G: Window Covering Position by Product Type presents a breakdown of covering position by product type.

WINDOW COVERING POSITION BY PRODUCT GROUP

Table 53: Window Coverings Position during Summer Weekday by Product Group

Covering		N	1orning (%)				А	fternoon (%)		Evening (%)				
Position	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters
Open	26	19	23	25	23	24	18	22	26	15	21	15	21	22	18
Half Open	32	30	32	29	41	31	29	32	29	44	29	26	30	27	40
Closed	43	51	45	46	36	45	54	47	47	41	50	59	49	52	42
Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Table 54: Window Coverings Position during Summer Weekend by Product Group

•		Morning (%)					Afternoon (%)					Evening (%)				
Covering Position	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	
Open	26	19	24	24	38	26	18	20	24	18	23	16	21	22	15	
Half Open	32	29	35	31	23	31	29	32	31	48	28	26	32	30	48	
Closed	41	52	42	45	38	43	53	48	45	34	49	58	48	48	37	
Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	

Table 55: Window Coverings Position during Winter Weekday by Product Group

•		N	1orning (%)			Afternoon (%)					Evening (%)				
Covering Position	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters
Open	32	23	26	28	36	31	23	23	29	20	25	17	20	21	14
Half Open	31	28	29	28	17	32	28	30	29	50	28	25	26	26	46
Closed	37	50	45	44	47	36	49	47	42	30	47	58	55	53	40
Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

RESIDENTIAL WINDOWS AND WINDOW COVERINGS: A DETAILED VIEW

		N	1orning (%)			Afternoon (%)						Evening (%)				
Covering Position	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	Vertical Blinds	Horizontal Blinds	Shades	Curtains/ Drapery	Interior Shutters	
Open	29	23	25	28	36	29	23	22	29	20	23	17	19	23	16	
Half Open	30	28	31	28	26	31	29	32	29	49	26	25	27	26	45	
Closed	42	49	44	44	38	40	48	46	42	31	51	58	54	51	39	
Total	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	

Table 56: Window Coverings Position during Winter Weekend by Product Group

WINDOW COVERING POSITION BY PANE TYPE

Window covering operation patterns suggest that the insulating capability of the window influences how people operate the associated window covering- consciously or unconsciously. Single pane windows have the greatest proportion of closed coverings, double pane the second largest proportion, and triple pain the smallest proportion of closed coverings, regardless of time of day, week, or season. This behavior is consistent with a comfort/stimulus-driven model of user behavior in which coverings are opened or closed when occupants feel too warm or too cold.

		Summer Weekday (%)													
Covering		Morning			Afternoon		Evening								
Position	Single	Double	Triple+	Single	Double	Triple+	Single	Double	Triple+						
	Pane	Pane	Pane	Pane	Pane	Pane	Pane	Pane	Pane						
Open	20.4	22.9	24.7	19.6	20.7	24.3	17.5	19.0	19.5						
Half Open	28.7	31.3	38.2	28.8	30.8	35.7	25.8	28.5	35.2						
Closed	51.0	45.9	37.1	51.6	48.5	40.0	56.7	52.5	45.3						
Total	100	100	100	100	100	100	100	100	100						

Table 57: Window Coverings Position by Pane Type: Summer Weekday

Table 58: Window Coverings Position by Pane Type: Summer Weekend

		Summer Weekend (%)												
Covering		Morning			Afternoon		Evening							
Position	Single	Double	Triple+	Single	Double	Triple+	Single	Double	Triple+					
	Pane	Pane	Pane	Pane	Pane	Pane	Pane	Pane	Pane					
Open	20.7	22.9	23.6	19.9	22.0	24.5	17.8	19.6	19.5					
Half Open	28.9	32.4	44.2	29.1	31.5	41.4	27.0	29.6	40.7					
Closed	50.4	44.7	32.1	50.9	46.5	34.1	55.2	50.8	39.8					
Total	100	100	100	100	100	100	100	100	100					

Table 59: Window Coverings Position by Pane Type: Winter Weekday

		Winter Weekday (%)												
Covering Position		Morning			Afternoon		Evening							
Position	Triple+ Pane	Single Pane	Double Pane	Triple+ Pane	Single Pane	Double Pane	Triple+ Pane	Double Pane	Triple+ Pane					
Open	23.4	26.7	24.0	23.6	27.6	24.5	17.2	20.7	19.5					
Half Open	27.7	29.3	39.6	28.6	29.5	39.8	25.4	25.9	33.2					
Closed	48.9	44.1	36.4	47.9	42.9	35.7	57.4	53.4	47.2					
Total	100	100	100	100	100	100	100	100	100					

		Winter Weekend (%)												
Covering		Morning			Afternoon		Evening							
Position	Single	Double	Triple+	Single	Double	Triple+	Single	Double	Triple+					
	Pane	Pane	Pane	Pane	Pane	Pane	Pane	Pane	Pane					
Open	22.6	26.5	24.7	23.0	27.1	25.4	16.6	20.8	20.4					
Half Open	28.5	29.7	39.4	29.3	30.3	39.4	25.9	26.5	33.4					
Closed	48.8	43.8	35.9	47.6	42.5	35.2	57.5	52.8	46.2					
Total	100	100	100	100	100	100	100	100	100					

Table 60: Window Coverings Position by Pane Type: Winter Weekend

WINDOW COVERING OPERATION AT THE HOUSEHOLD LEVEL

A majority of households do not alter the position of their coverings throughout the day, and a majority of households do not alter the position of any of their coverings between weekday and weekend (Table 61). Slightly less than half of households do not alter the position of their coverings between summer and winter (Table 62).

Table 61: No Changes Regardless of Weekday/Weekend

Season	Percent of Homes
Summer	51%
Winter	64%

Table 62: No Changes Regardless of Season

Season	Percent of Homes
Weekday	48%
Weekend	59%

The majority of homes do not alter the position of any of their coverings on a daily basis. A subset of households alters at least one covering in their home daily. The survey reveals that even among this subset, half alter no more than one-third of their coverings; even the households that change their coverings most frequently adjust only about two-thirds of their coverings. The population can be divided into three general categories: no changers (56%), low changers (30%), and high changers (14%). In addition, a majority of households have all of their coverings in the same position; while approximately 35% have coverings in multiple positions (see Tables 64-66). These categories should help in calculating energy savings and targeting and measuring communication strategies and messages.

Table 63: Percent of Coverings Changed Daily for Homes that Change Position of Their Coverings

Time	50 th Percentile (Median) Households	90 th Percentile Households
Summer Weekday	27%	66%
Summer Weekend	29%	67%
Winter Weekday	33%	67%
Winter Weekend	33%	67%

RESIDENTIAL WINDOWS AND WINDOW COVERINGS: A DETAILED VIEW

Covering	Sumr	ner Weekday	(%)	Sum	mer Weekend	d (%)	Wint	ter Weekday	(%)	Winter Weekend (%)			
Position	Morning	Afternoon	Evening	Morning	Afternoon	Evening	Morning	Afternoon	Evening	Morning	Afternoon	Evening	
All Open	17	14	13	18	15	12	22	24	12	20	23	12	
All Half Open	23	21	16	19	19	15	17	19	12	18	20	12	
All Closed	23	26	34	20	23	32	24	20	43	23	19	42	
Open and Half Open	10	8	7	9	8	7	9	10	6	10	10	6	
Half Open and Closed	12	14	14	16	16	17	13	12	13	14	13	14	
Open and Closed	7	7	6	7	7	6	5	5	5	6	6	5	
Open, Half Open, and Closed	9	9	9	11	11	11	10	10	8	9	8	8	
Total Households	100	100	100	100	100	100	100	100	100	100	100	100	

Table 64: Covering Position by Proportion of Household: Northern Zone

Table 65: Covering Position by Proportion of Households: Mid-Tier Zone

Covering	Sumr	ner Weekday	(%)	Sum	mer Weekend	d (%)	Win	ter Weekday	(%)	Win	ter Weekend	(%)
Position	Morning	Afternoon	Evening									
All Open	16	13	11	16	14	10	19	21	9	19	21	10
All Half Open	21	23	16	21	22	17	19	20	14	18	19	14
All Closed	28	29	40	26	27	38	29	29	45	29	26	45
Open and Half Open	6	6	5	8	7	6	7	7	5	6	6	3
Half Open and Closed	14	14	15	14	14	15	13	12	14	14	13	14
Open and Closed	5	6	5	6	6	5	5	5	4	5	5	5
Open, Half Open, and Closed	10	10	8	10	9	8	8	8	8	9	9	9
Total Households	100	100	100	100	100	100	100	100	100	100	100	100

RESIDENTIAL WINDOWS AND WINDOW COVERINGS: A DETAILED VIEW

Covering	Summer Weekday (%)		Summer Weekend (%)		Winter Weekday (%)		Winter Weekend (%)					
Position	Morning	Afternoon	Evening	Morning	Afternoon	Evening	Morning	Afternoon	Evening	Morning	Afternoon	Evening
All Open	14	11	6	13	11	6	17	18	9	17	17	9
All Half Open	21	18	14	16	16	13	17	18	12	16	17	10
All Closed	32	36	50	33	35	47	30	27	49	29	27	46
Open and Half Open	7	5	3	6	6	3	6	7	3	7	8	5
Half Open and Closed	13	16	15	16	17	16	15	14	15	16	16	17
Open and Closed	7	7	6	7	8	8	7	8	7	8	8	7
Open, Half Open, and Closed	6	6	5	8	8	7	7	7	6	8	7	6
Total Households	100	100	100	100	100	100	100	100	100	100	100	100

 Table 66: Covering Position by Proportion of Households: Southern Zone

IMPACT ON ENERGY USE

As noted throughout this section, a minimum of 75% of coverings remain in the same position each day and at least 56% of households do not alter any of their coverings on a daily basis. As a result, the impact of window coverings on energy performance will be much easier to model and estimate and savings will not be dependent on changing operating behaviors.

AIR CONDITIONING AND THERMOSTAT USE

Respondents were asked to provide information about how they operate central or room air conditioning and thermostats during particular seasons and times of day. As expected, the Southern Climate zone has the highest share of homes with air conditioning, nearly 97%. The Northern and Mid-Tier climate zones have almost identical proportions of homes with air conditioning, about 84%.

Table 67: Homes with Air Conditioning

Air Conditioning in Llows	Climate Zones					
Air Conditioning in Home	Northern (%)	Mid Tier (%)	Southern (%)	All (%)		
Number of Households	690	702	708	2100		
Have Air Conditioning	84.6	83.9	96.6	88.4		
Do Not Have Air Conditioning	15.4	16.1	3.4	11.6		

Table 68: Air Conditioning Use in Hot Weather

Lice of Air Conditioning in Hot Weather	Climate Zone				
Use of Air Conditioning in Hot Weather	Northern (%)	Mid Tier (%)	Southern (%)		
Number of Households	584	589	685		
Once I turn it/them on, they stay on all the time until the weather cools down	24.1	41.8	54.6		
Leave the air conditioning on most of the time	36.0	36.2	34.6		
Only use air conditioning at night	4.6	3.6	3.8		
Only use air conditioning during the day	6.5	3.9	2.3		
Only use it once in a while when it gets really hot	28.8	14.6	4.7		
Total	100.0	100.0	100.0		

There is some variation in air conditioning use in hot weather across the climate zones. As expected, more than half of Southern zone respondents report that they have their air conditioning on all the time, while in the North, where the temperature is not as hot on average, only one-quarter of respondents report this behavior.

A much higher proportion of Northern Zone respondents (nearly 30%) selected the option, "Only use it once in a while when it gets really hot".

Use of Air Conditioning in Hot Weather at Night	Climate Zone			
Ose of Air Conditioning in Hot weather at Night	Northern (%)	Mid Tier (%)	Southern (%)	
Number of Households	584	589	685	
At a cooler temperature than during the day	25.7	26.1	38.1	
At a warmer temperature than during the day	16.3	18.7	13.0	
No change, keep the house at the same temperature all the time	58.0	55.2	48.9	
Total	100.0	100.0	100.0	

Table 69: Air Conditioning Use at Night in Hot Weather

Across all climate zones, about half of respondents keep their home at the same temperature all day, although the Southern zone has a higher proportion of respondents who keep their homes cooler at night. This suggests that AC energy use may increase at night in the South; the overall impact on the grid is not likely to be significant, as this use likely occurs during non-peak hours.

Table 70: Thermostat Use at Night during the Winter

Thermostat Use at Night During the Winter	Climate Zone				
merniostat ose at Night During the Winter	Northern (%)	Mid Tier (%)	Southern (%)		
At a cooler temperature than during the day	43.0	29.8	29.9		
At a warmer temperature than during the day	12.9	20.1	23.3		
No change, keep the house at the same temperature all the time	44.1	50.1	46.8		
Total	100.0	100.0	100.0		

The Mid-Tier and Southern climate zones have nearly identical distributions for thermostat use during the winter at night. A smaller number of Northern households indicate that they keep their home warmer during the day than in the other two zones. It is possible that Northern households set their thermostats back at night because they may have their homes set at a warmer temperature than other regions of the country during the day.

MANUFACTURER DATA COLLECTION

SHIPMENTS OVERVIEW

Blinds, metal and vinyl horizontal blinds in particular, dominate annual shipments of residential window coverings, with an estimated 104-116 million units shipped annually. However, these products are the only class for which available U.S. Census Bureau data are sufficient to allow for a relatively precise estimate. For other product types, only calculations of low, medium, and high estimates of market share and shipments are possible. Among WCMA member shipments, cellular shades were shipped most frequently to the Northern climate zone and faux-wood blinds were shipped most frequently to the Southern climate zone, which is consistent with the differences in the installed base described in Section 3.

ANNUAL SHIPMENTS

Shipment estimates are based on three datasets: U.S. Census Bureau reports of vinyl blind imports, shipment data supplied by WCMA members, and the installed base of coverings from the survey. These data are sufficient to enable reasonably precise estimates of shipments for blinds and WCMA member shipments, but not of the total number of window covering shipments in the United States or for other product categories, because data on imports of other product types and shipments of non-WCMA members were not available. However, D&R was able to combine available shipment data, data collected on the installed base, and estimates of product lifetimes to develop low, medium, and high estimates of the total number of products shipped annually and in each product category. The methodology for these estimates is described briefly below and is explained in more detail in the Appendix.

D&R used information on the average number of window coverings per household to estimate the total installed base of window coverings in the United States and used the data on each product's proportion of the installed base to estimate the total installed base of each product category. D&R then developed three shipment scenarios by estimating short, medium, and long lifetimes for each of the product categories (see Table 71) with the exception of vinyl blinds, because official data were available for this product category. The total installed base for each product category was divided by the product's lifetime to determine the annual shipments for that product category. D&R also compared the shipment estimates to WCMA shipment data to determine if the estimates appeared to be in the right order of magnitude.

D&R estimates that between 154 million and 235 million window coverings are shipped in the United States each year, with the majority or plurality of those shipments (85 million units) being vinyl or metal horizontal blinds. The medium shipments estimate is 175 million units. As a simplifying assumption, the estimates assume that the relative proportion of each window covering type is static over time, which the data suggest is reasonable for horizontal vinyl blinds. As Figure 17 shows, the estimates are quite sensitive to changes in product lifetime. WCMA shipment data established a ceiling for each product lifetime estimate such that the lifetime value cannot result in calculating a shipment volume that is lower than the aggregate WCMA shipments for that product category. To generate more precise annual shipment estimates, additional data on non-WCMA shipments or product lifetime will be needed.

Table 71: Average Estimated Lifetime by Product Lifetime

Dreduct Turne	Average Estimated Lifetime (years)				
Product Type	High Shipments	Medium Shipments	Low Shipments		
Metal or vinyl horizontal blinds	4.25	4.25	4.25		
Vertical blinds	4	7	10		
Curtains/Drapery	12	15	18		
Wood or faux wood horizontal blinds	10	13	16		
Cellular shades	4	7	10		
Pleated shades	4	7	8.5		
Roller shades	4	7	9		
Soft sheer blinds (non-transparent)	5	7	8		
Soft sheer blinds (transparent)	5	7	9.5		
Roman Shades	10	13	16		
Sheer Drapery	12	15	18		
Interior Shutters	20	23	26		

RESIDENTIAL WINDOWS AND WINDOW COVERINGS: A DETAILED VIEW

Figure 18: Estimated Annual U.S. Shipments by Product Category

WCMA SHIPMENTS

Figures 19 and 20 show shipments by WCMA members. Shipments by WCMA members were not as heavily dominated by horizontal blinds as the national estimates. Among WCMA members, shades represented 36% of shipments in 2011, while in the scenarios above the market share of shades in the entire market does not exceed 21%. Unlike the national estimates, cellular shades are the most commonly shipped product among WCMA members, followed by metal horizontal blinds.

Figure 20: Annual WCMA Member Shipments by Interior Product Type

When looking at WCMA member shipments by climate zone, it is clear that shipments are roughly proportional to the population (Figure 21). Across climate zones, the proportion of products is fairly consistent, with a few exceptions. Faux-wood blinds are more popular in the South Central and Southern climate zones, a trend that was present in the installed base data. Cellular shades represent a higher proportion of products sold in the Northern climate zone, a development also seen in the survey dataset.

Figure 21: WCMA Member Interior Product Shipments by Climate Zone

Figure 22: WCMA Member Shipments by Interior Product Type by Climate Zone

Exterior products represent a very small proportion of the window covering market. The exterior product market is also highly segmented making it difficult to accurately capture product shipments. Figure 23 represents shipment information provided by WCMA members, although similar to interior products the total number of shipments is known to be larger than what is represented here, but at this time we do not know by how much.

PRICING

Pricing data collected from WCMA members and major retailers show that interior products are available at low, medium, and high price points.

INTERIOR PRODUCT PRICING

Table 72 shows the average opening, medium and high price points of all interior window covering product types.

Product Category	Low/Opening Price Point (\$)	Medium Price Point (\$)	High Price Point (\$)
Vinyl Blinds	11	29	41
Metal Blinds	42	53	97
Faux-Wood Blinds	82	95	163
Vertical Blinds	69	120	360
Wood Blinds	66	99	206
Soft Sheer Blinds	448	562	700
Cellular Shades	54	100	167
Roller Shades	49	97	142
Roman Shades	201	233	434
Pleated Shades	47	92	116
Interior Shutters	184	339	426

Table 72: Interior Product Average Price Points

Vinyl blinds and metal blinds, which have the lowest average opening, medium and high price points across all interior products, together represent 26% of all installed coverings. Blinds typically have lower price points than shades, but if roman shades and soft sheer blinds are excluded, the average prices of blinds and shades are nearly equal. Data collected from the installed base and behavioral research survey show that products with lower price points have smaller shares of the installed base.

On average, soft sheer blinds and interior shutters are among the most expensive window covering categories. Interior shutters are very labor intensive and soft sheer blinds are patent protected in both the design and manufacturing process.¹⁰

Interior shutters and soft sheer blinds are typically custom-made products and are generally not sold in big box chain stores, which also helps explain their higher price points. Together they represent just 6% of the installed base of window coverings.

Figure 24 shows the total range of prices for interior products, as well as the mean and median price point for each product category.

Figure 24: Interior Product Pricing

EXTERIOR PRODUCT PRICES

Figure 25 shows the range of prices for all interior products, as well as the mean and median prices for each product type.

One manufacturer estimates that when homeowners purchase exterior roller shutters, approximately 50% will purchase shutters for all of their windows at once, while the other half will purchase two or three shutters, often for bedrooms or south-facing windows, and then will gradually add shutters to all of their windows.¹¹

Manufacturers estimate that 60% of residential roller shutters are motorized, which adds, on average, an additional cost of \$250 per shutter.¹²

Figure 25: Exterior Product Pricing

DOMESTIC MANUFACTURING

Manufacturers were asked to provide information on the share of their products manufactured in the United States. This has given insight into product pricing and the potential growth of U.S. jobs in this sector. Data collected from WCMA members show clear differences in the share of domestically manufactured products across interior product types. In general, blind products are manufactured outside the United States at higher rates than shades. Nearly all exterior products sold by WCMA members are manufactured domestically.

Products manufactured at higher rates outside the U.S. have lower average price points and make up a greater proportion of the installed base. Vinyl blinds, 97% of which are manufactured outside the United States, represent 26% of the installed base when coupled with metal blinds, and have the lowest average price points among all interior products. For interior blind products, no more than 25% of products are manufactured domestically. Conversely, at least 25% of shades are manufactured domestically. Cellular shades, which represent 5% of the installed base of window coverings, have the second highest share of products manufactured in the United States, with an average of 80%.

Nearly all exterior window coverings are manufactured domestically. Exterior roller shutters and awnings are manufactured exclusively in the United States, as are 95% of exterior roller shades. These product types are less common, representing less than 1% of the installed base.

Figure 26: Interior Products Manufactured Domestically

RETAIL CHANNELS

Approximately 60% of coverings are distributed through retail channels, while the remaining 40% are sold through wholesale or distributors. Big box stores were the second largest channel, making up 35% of shipments, while window treatment, mass merchant, and home furnishing stores received 21% of all shipments.

Big box chains, which tend to carry stock and lower priced products, are likely to be the primary retail location for most types of interior blinds, including metal and vinyl horizontal blinds, wood and faux-wood horizontal blinds, and vertical blinds, which collectively represent 54% of the installed base.

Figure 27: Retail Channels

There is a growing trend in the industry to sell directly to customers.¹³ Some manufactures have shifted to selling only to certified dealers and product installers.¹⁴ Consumer education has also affected the window coverings market. Manufacturers see consumers becoming more educated about features and options for window treatments through the Internet and social media, leading some manufacturers to sell more products online.¹⁵

It is important to note that retail channels differ greatly within the industry. Some manufacturers view selling directly to customers as a more stable sales channel, as retail chains are subject to changes that can affect which product lines are sold in stores.¹⁶ Other manufacturers have consistently sold the majority of their products through big box stores, mass merchant, and home furnishing stores, because this can provide an opportunity for high sales volumes. Sales channels also differ by product type. Draperies, roman shades, and interior shutters tend to sell through specialized stores and interior designer channels, whereas stock and cut-to-fit products like vinyl blinds and vertical blinds are more popular in larger retail chains.¹⁷

APPENDICES

APPENDIX A: ADDITIONAL HOUSING AND DEMOGRAPHIC CHARACTERISTICS

This section describes demographic and housing characteristics not covered in Methodology section.

DEMOGRAPHICS

Because respondents were screened to meet gender and age quotas, the distributions for age and gender closely mirror Census data on those two variables. However, when examining the distribution of age by gender, males 55 and older and females age 35 to 54 are overrepresented (5 percentage point difference and 7-percentage point difference, respectively); females 55 and older and males 18 to 34 are slightly underrepresented (10-percentage point difference and 6-percentage point difference, respectively). We do not believe this over- and underrepresentation affects the survey results in any significant way, as we looked at the installed base of products, which people of either gender could report, and the overall behavior of households — not individuals — with regard to window coverings.

Table	73:	Gen	der
-------	-----	-----	-----

Gender	Survey (%)	Census ¹⁸ (%)
Male	49	49
Female	51	51
Total	100	100

Table 74: Age

	Survey Total		
Age	Survey	Census ¹⁹	
	(%)	(%)	
18-34	29	31	
35-54	40	37	
55 or Older	31	33	
Total	100	100	

A.c.o	Survey (%)		Census ²⁰ (%)	
Age	Male	Female	Male	Female
18-34	26	33	32	29
35-54	37	43	37	36
55 or Older	37	25	31	35
Total	100	100	100	100

Table 75: Respondent Age by Gender

Home ownership was a screening question, so the survey results match the national population exactly.

Table 76: Home Ownership

Ownership Status	Percent		
of Home	Survey	Census ²¹	
Own	65	65	
Rent	35	35	

Overall, survey data matches Census data on household size, though 2-person households are slightly overrepresented and larger households (5 or more persons) are slightly underrepresented. No correlation emerged between household size and window covering operation, making the slight deviations even less of a concern.

Table 77: Household Size

Household Size	Survey (%)	Census ²² (%)
1-person household	24.5	26.7
2-person household	37.3	32.8
3-person household	17.9	16.1
4-person household	13.1	13.4
5-person household	4.8	6.5
6-person household	1.5	2.6
7-or-more-person household	.8	1.9
Average household size	2.45	2.58

Although the survey did not screen for marital status, the distribution of respondents' marital status matches Census data almost exactly, deviating by only 1-2 percentage points in any category.

Table 78: Marital Status

Marital Status	Survey (%)	Census ²³ (%)
Married	52	51
Never Married	31	31
Divorced	12	10
Separated	1	2
Widowed	4	6
Rather Not Answer	0.4	N/A
Total	100	100

EMPLOYMENT STATUS, EDUCATION, INCOME, AND RACE

The employment status of survey respondents was compared to data from the Bureau of Labor Statistics (BLS) for August 2012. The share of people unemployed was 6.7 percentage points more than the figure reported by BLS; note that 2% of survey respondents declined to answer.²⁴ The higher unemployment rate is likely due to the fact that unemployed persons may have more time than employed persons and may be looking for alternative ways of making money (like participating in online survey panels).

Employment Status	Frequency	Percent
Work full-time (more than 30 hours per week)	1321	45
Work part-time (30 hours or less per week)	324	11
Homemaker	211	7
Student	299	10
Retired	448	15
Unemployed	286	10
Rather Not Answer	67	2
Total	2956	100

Table 79: Employment Status of Household Members

RESIDENTIAL WINDOWS AND WINDOW COVERINGS: A DETAILED VIEW

Employment Status	Number of People (Survey)	Survey (%)	BLS August 2012 ²⁵ (%)	Percentage Point Difference
In Labor Force	1,931	66.8	63.5	3.3
Employed	1,645	56.9	58	-1.5
Unemployed	286	14	8	6.7
Not in Labor Force	958	33.2	36.5	-3.4
Rather Not Answer	67	2	-	2

Table 80: Employment Status Comparison to BLS Data

*Household members identified as Homemaker, Student, and Retired included in the "Not in the Labor Force" category, because it is unlikely that they are actively seeking work.

Educational attainment is one dimension where the survey population diverges from the U.S. population as a whole. The survey sample contains an overrepresentation of people with college and graduate degrees and an underrepresentation of people with high school diplomas or less education. These deviations are unlikely to affect survey results, as operating window coverings is not a skill that requires education.

Educational Attainment	Survey (%)	Census ²⁶ (%)
Less Than High School	1	6%
Some High School	2	8%
High School Graduate/GED	19	29%
Some College	21	21%
2-Year College (Associate's Degree)	10	8%
4-Year College (Bachelor's Degree)	29	18
Post-Graduate	16	10
Rather Not Answer	2	0
Total	100	100

Table 81: Educational Attainment for Household Members Age 25 and Older

Table 82: Educational Attainment for Household Members Ages 18-24

Educational Attainment	Survey (%)	Census ²⁷ (%)
Less than High School Graduate	4	17
High School Graduate	27	29
Some College or Associate's Degree	47	45
Bachelor's Degree or Higher	20	9
Rather Not Answer	3	0
Total	100	100

In terms of race/ethnicity, whites are overrepresented and African-Americans/Black and Hispanics are underrepresented in the survey in comparison to the national population. Some of these differences may be because Blacks and Hispanics report lower rates of Internet access than white, non-Hispanics (56.1% at home for whites, compared to 41.7% for blacks and 35.4% for Hispanics).²⁸ However, race and ethnicity are not expected to drive differences in preferences for window, window coverings, or covering operation.

Table 83: Race/Ethnicity

Tak aisia.	Percent		
Ethnicity	Survey	Census ²⁹	
African-American/Black	6.7	13.1	
American Indian	1.1	1.2	
Asian/Native Hawaiian or Pacific Islander	4.1	5.2	
Mixed Ethnic	1.7	2.3	
Hispanic	6.5	16.7	
White, non-Hispanic	76.6 63.4		

The rural population is somewhat underrepresented, though since the population area terms are not formally defined in the survey and are not congruent with Census terms, it difficult to assess the extent to which this impacts the survey results, particularly as the survey respondents are concentrated in 13 metro regions.

Table 84: Urban/Rural Areas

Population Area	Survey (%)
City	30
Town	10
Suburbs	50
Rural	11

Table 85: Census Comparison for Urban/Rural Areas

Population Area	Survey (%)	Census ³⁰ (%)
Urban	89	79
Inside urbanized areas	79	69
Inside urban clusters	10	10
Rural	11	21

* City and Suburbs are grouped into urbanized areas and Town is identified as an urban cluster.

HOUSE CHARACTERISTICS

The distribution of the year respondents moved into their homes in the survey closely matches the RECS 2009 distribution, particularly for renters. For homeowners, slightly more people in the survey moved into their homes since 2000 compared to the nation as a whole. Some of this overrepresentation may be due to the fact that the RECS data stop at 2009, while the survey records information for homes constructed through 2012.

v II I II	Owr	n (%)	Rent (%)		
Year Householder Moved Into Unit	Survey	RECS	Survey	RECS	
1969 or earlier	2	5	0	1	
1970-1979	4	7	0	1	
1980-1989	12	11	1	2	
1990-1999	20	25	5	7	
2000-present	61	53	92	89	
Don't Know	0	0	1	0	
Total	100	100	100	100	

 Table 86: Year Respondent Moved into Home

Overall, 88% of homes surveyed have air conditioning, which tracks closely to Census data on air conditioning, though more residents report having central air conditioning and fewer reported having room air conditioners in the survey than in the Census.

Table 87: Households with Air Conditioning

Type of AC	Survey (%)	Census (%) ³¹	
Air Conditioning	88	92	
Central Air Conditioning	82	70	
Room Air Conditioners	15	22	
Both	3	N/A	

Table 88: Households with Air Conditioning by Climate Zone

	Climate Zones			
Air Conditioning In Home	Northern (%)	Mid Tier (%)	Southern (%)	All (%)
Count	690	702	709	2101
Yes	84.6	83.9	96.6	88.4

APPENDIX B: METHOD FOR ESTIMATING U.S. ANNUAL SHIPMENTS

The following steps were used to estimate window coverings shipments in the U.S.:

- 1. Calculate total installed base of window coverings.
 - a. Multiply average number of coverings per house by total number of houses in the U.S.³²
 - b. Multiply the average number of coverings per apartment by total number of apartment in the U.S.³³
 - c. Add total number of window coverings by houses and apartments together.
- 2. Calculate the installed base of vinyl blinds.
 - a. Use U.S. Department of Commerce data for vinyl blind.³⁴
 - b. Assume that 65% of shipments go to the residential market.³⁵
- 3. Subtract the installed base of vinyl blinds from the total installed base of coverings.
- 4. Multiply the share of each product category by the remaining installed base of coverings other than horizontal vinyl blinds to calculate the installed base for each product category.
 - a. Share of each product category:

Product Type	Percent
Wood or faux wood horizontal blinds	16
Curtains/drapery	15
Vertical blinds	13
Cellular shades	5
Pleated shades	5
Roller shades	4
Sheer drapery	4
Soft sheer blinds	4
Interior shutters	2
Roman shades	2
Soft sheer blinds	1

5. Estimate lifetime for each product category:

Due du et Ture	Average Estimated Lifetime (years)				
Product Type	High Shipments	Medium Shipments	Low Shipments		
Metal or vinyl horizontal blinds	4.25	4.25	4.25		
Vertical blinds	4	7	10		
Curtains/Drapery	12	15	18		
Wood or faux wood horizontal blinds	10	13	16		
Cellular shades	4	7	10		
Pleated shades	4	7	8.5		
Roller shades	4	7	9		
Soft sheer blinds (non-transparent)	5	7	8		
Soft sheer blinds (transparent)	5	7	9.5		
Roman Shades	10	13	16		
Sheer Drapery	12	15	18		
Interior Shutters	20	23	26		

Products that were made of more durable materials or that did not have cords or other mechanisms that could fail, such as shutters or drapes were estimated to have longer lifetimes. A number of manufacturers estimated that the average product lifetime was seven years and that products were commonly replaced not when products broke, but when people redecorated or moved into a new residence.³⁶

6. Divide the installed base for each product by the lifetime estimate for that category to determine annual shipments.

	Shipment Scenarios (millions)				
Product Type	High Shipments	Medium Shipments	Low Shipments		
Metal or vinyl horizontal blinds	86.0	86.0	86.0		
Vertical blinds	38.6	22.1	15.4		
Curtains/Drapery	14.9	11.9	10.0		
Wood or faux wood horizontal blinds	19,.1	14.6	12.0		
Cellular shades	16.0	9.2	6.4		
Pleated shades	15.8 9.7		7.4		
Roller shades	12.8	7.3	5.7		
Soft sheer blinds (non-transparent)	8.3	6.0	5.2		
Soft sheer blinds (transparent)	2.8	2.0	1.5		
Roman Shades	2.1	1.6	1.3		
Sheer Drapery	3.6	2.9	1.4		
Interior Shutters	1.4	1.2	1.1		
Total	202.3	174.5	153.4		

APPENDIX C: METHOD FOR CATEGORIZING SHIPMENTS BY CLIMATE ZONE

Manufacturers provided D&R with shipment data at the state level. To generate analysis consistent with the ENERGY STAR Windows, Doors, and Skylights program, D&R divided the shipments into climate zones (Northern, North Central, South Central, Southern) based on the population in each state. The ENERGY STAR Climate Zones are based on a simplified version of the International Energy Conservation Code climate zones.

Figure 28: ENERGY STAR for Windows, Doors, and Skylights Climate Zone Map³⁷

Figure 29: Climate Zones for the 2012 IECC³⁸

D&R used the following methodology to classify WCMA member shipments into climate zones:

- 1. Collected shipments by state for each product category from WCMA members.
- 2. Used the ENERGY STAR <u>Climate Zone Spreadsheet</u> to determine which states had counties in more than one climate zone. The spreadsheet lists the climate zone associated with each county in the U.S.
- 3. For state with counties in more than one ENERGY STAR Climate zone:
 - a. Used US Census population data to find the population of each county in each state.
 - b. Aligned the population data by county with the climate zone for each county.
 - c. Aggregated the population in each climate zone for each state.
 - d. Determined the percentage of the population that fell within each climate zone in each state.
 - e. Multiplied the shipments for each product category for each state by the percentage of the population in that state that fell within a particular climate zone.
 - i. Repeated Step e. for each climate zone in that state.
- 4. Aggregated all shipments for each climate zone including shipments for states that fell within only one climate zone.

D&R also used U.S. Census data on foreign trade to account for imports of vinyl blinds.

APPENDIX D: WEIGHTING

Income questions are typically challenging because of social desirability bias and concerns about privacy.³⁹ Likely because this was an online survey using an online panel, undercoverage was an issue for households with annual incomes of less than \$20,000 and \$150,000 or more. Among adults with household incomes under \$30,000 per year, only 62% use the Internet, compared to 83% of adults in the \$30,000-\$49,999 income bracket.⁴⁰

Due to undercoverage of populations at both ends of the income spectrum, D&R wanted to see if there were differences among these populations in terms of the distribution of pane types or frame types, which would require applying sample weights to ensure the overall distributions more accurately reflected the U.S. population. D&R examined a variety of metrics, including pane type by income level, and based on those analyses determined that income was an appropriate weighting factor (see Table 89). Because the Current Population Survey, which was the data source D&R used for benchmarking to income, did not include a "Rather Not Answer" category, D&R excluded the "Rather Not Answer" category from weighting. Before D&R decided to exclude this category, it verified that the pane type distribution of the "Rather Not Answer" subset closely mirrored the overall distribution, implying that the "Rather Not Answer" category was not biased toward any particular income level.

	Unweighted Distribution				
Income Level	% Single Pane	% Double Pane	% Triple Pane	Total	
Under \$10,000	50	50	1	100	
\$10,000-\$19,999	66	32	2	100	
\$20,000-\$29,999	46	32	3	100	
\$30,000-\$39,999	45	52	4	100	
\$40,000-\$49,999	43	55	2	100	
\$50,000-\$59,999	38	58	4	100	
\$60,000-\$69,999	32	66	3	100	
\$70,000-\$79,999	34	66	1	100	
\$80,000-\$89,999	30	66	4	100	
\$90,000-\$99,999	35	57	8	100	
\$100,000-\$149,999	29	66	6	100	
\$150,000 or More	24	59	7	100	
Rather Not Answer	36	60	3	100	

Table 89: Pane Type Distribution by Income

Weighting Formula:

Weight factor for each income level = Average number of windows per household by income class* ((% income class Current Population Survey (CPS))-(% income class survey))*total households

The "(% income class CPS)-(% income class survey)" segment of the formula determine how significantly each income level was over- or undersampled. The "(% income class census)-(% income class survey)*total households" factor ensured that the appropriate number of households were added to or subtracted from each income class, while the "average number of windows per household" was meant to ensure that the appropriate number of windows were added to or removed from each income class. Table 90 outlines the information and the calculations used to develop the weighting factor for each income level.

Income Level	CPS ⁴¹ (%)	Survey (%)	%Census % Survey	Total Households	Average Number of Windows	Weighting Factor
Under \$10,000	8	4	4	77.56	6.23	483.10
\$10,000-\$19,999	12	7	5	97.87	6.48	634.61
\$20,000-\$29,999	11	10	1	24.71	7.25	179.25
\$30,000-\$39,999	11	11	-1	-16.39	8.0	-131.14
\$40,000-\$49,999	9	11	-2	-33.37	8.36	-278.88
\$50,000-\$59,999	8	11	-3	-67.46	9.28	-625.73
\$60,000-\$69,999	7	8	-1	-21.88	9.16	-200.33
\$70,000-\$79,999	6	8	-2	-44.21	10.10	-446.35
\$80,000-\$89,999	5	6	-1	-27.49	10.25	-281.71
\$90,000-\$99,999	4	7	-3	-57.57	10.85	-624.78
\$100,000-\$149,999	12	12	0	-9.24	12.43	-114.78
\$150,000 or More	9	5	4	77.47	13.81	1069.63
Total	100	100				

Table 90: Weighting Factor Calculations

A review of the weighting factor values reveals that even with weighting, changes to the overall distributions were likely to be small because of two factors. The survey most significantly undersampled at both ends of the income spectrum, where differences in the installed base were the greatest. The survey undersampled by a combined nine percentage points compared to the CPS for households making less \$20,000 annually and undersampled by four percentage points for households making \$150,000 or more, which implies that the lower income groups are likely to have a larger weighting factor (see Table 90).

Because D&R looked at metrics at the window level, not just the household level, there also needed to be an adjustment for the number of windows. The highest income group had 13.81 windows per household on average, compared to 6.23 and 6.48 windows per household among the lowest two income groups, which means that the weighting factor for the highest income group needed to be larger than originally anticipated because of the higher average number of windows. When all of those factors were combined, the weighting values for the highest income group and the lowest two income groups were almost equal (1069.63 compared to 1117.71 for the lowest two levels). The evenness of the weighting factors means that the proportions at the highest and lowest levels, where differences are the greatest, are shifting almost proportionally, leading to very small changes in the overall distributions.

Tables 91 and 92 demonstrate this phenomenon. D&R calculated new weighted distributions for pane type, frame type, operator type, and window coverings and, as expected, found little to no change in the overall distributions. The distribution across income classes by pane type shifted substantially whereas the overall distribution of pane type had only a one percentage point shift from double to single pane (see Table 91).

Pane Type	Unweighted Distribution	Weighted Distribution
Single Pane (%)	37	38
Double Pane (%)	59	58
Triple Pane (%)	4	4

	Unweighted Distribution			We	ighted Distribut	tion
Income Level	% Single	% Double	% Triple	% Single	% Double	% Triple
	Pane	Pane	Pane	Pane	Pane	Pane
Under \$10,000	3	2	0	7	4	1
\$10,000-\$19,999	8	2	3	14	5	5
\$20,000-\$29,999	10	7	6	11	8	6
\$30,000-\$39,999	12	8	9	11	8	9
\$40,000-\$49,999	11	9	4	9	8	4
\$50,000-\$59,999	11	11	12	8	8	8
\$60,000-\$69,999	7	9	6	6	8	5
\$70,000-\$79,999	8	10	1	6	7	1
\$80,000-\$89,999	5	7	7	4	6	6
\$90,000-\$99,999	8	8	17	4	5	10
\$100,000-\$149,999	13	18	23	12	18	23
\$150,000 or More	5	9	13	9	16	23
Total	100	100	100	100	100	100

Table 92: Unweighted and Weighted Pane Type Distribution by Income

Similarly, the overall frame type distribution shifted very slightly (less than one percentage point across categories), while the distribution across income levels shifted more considerably (see Table 93 and Table 94). Based on these results, D&R concluded that weighting was unlikely to change distributions at the window level in meaningful ways.

Table 93: Unweighted and Weighted Frame Type Overall Distribution

Pane Type	Unweighted Distribution	Weighted Distribution
Wood (%)	33.1	33.1
Vinyl (%)	33.2	32.6
Metal (%)	33.2	33.7
Other (%)	0.5	0.6

Table 94: Unweighted and Weighted Frame Type Distribution by Income

		Unweighted	l Distributio	n		Weighted D	Distribution	
Income Level	%	%	%	%	%	%	%	%
	Wood	Vinyl	Metal	Other	Wood	Vinyl	Metal	Other
Under \$10,000	2	2	3	2	5	3	6	4
\$10,000-\$19,999	4	3	7	11	6	5	12	18
\$20,000-\$29,999	7	5	11	4	7	6	12	4
\$30,000-\$39,999	11	8	9	6	10	7	8	5
\$40,000-\$49,999	7	9	12	28	5	7	9	22
\$50,000-\$59,999	8	14	11	5	5	9	7	3
\$60,000-\$69,999	8	8	7	5	7	6	6	4
\$70,000-\$79,999	11	8	8	1	7	6	5	1
\$80,000-\$89,999	7	7	6	2	5	5	4	1
\$90,000-\$99,999	9	9	7	2	5	5	4	1
\$100,000-\$149,999	18	17	14	27	16	16	12	24
\$150,000 or More	8	10	4	6	14	16	7	10
Total	100	100	100	100	100	100	100	100

APPENDIX E: INTERNAL CONSISTENCY OF THE SAMPLE

The sample for this survey was not drawn randomly; it was based on pre-screened panels of participants. Because the sample was not random, D&R wanted to evaluate the internal consistency of the sample results relating to behavior. D&R assessed the similarity in window covering operation by comparing window covering positions among the city subsamples that make up the total survey population.

Window covering position among cities in the same climate zone should be more similar to one another than to position in cities in different climate zones. Specifically, D&R examined the proportion of cases in which the position of window coverings at a given time of day, time of the week, and season scored as significantly different from a statistical standpoint in each pair-wise comparison of cities.

If the dataset is internally consistent, there would be fewer significant differences among cities in the same climate zone than among cities in different climate zones. For example, analysis showed that the difference between the share of window coverings that are closed in the summer in the Northern and Southern climate zones was statistically significant. If there was consistency among cities in the same climate zones, then the differences between pairs of cities in the Southern climate zone would be smaller than the differences between pairs of cities in the Northern and Southern climate zones.

PROCESS

D&R used the following process to assess the internal consistency of the sample:

- 1. Calculated the percent of coverings in each household that were open, half-open, and closed at a particular time of day (morning, afternoon, evening), season (summer or winter), and time of the week (weekday or weekend).
- 2. Ran the Mann-Whitney U test to see if the difference in the share of window coverings in a particular position (e.g., % open) between two cities was significant. For example, was the percent of coverings closed among households in Atlanta on a summer weekday evening significantly different from the percent of closed coverings among households in Boston on a summer weekday evening?
- 3. Ran the Mann-Whitney U test for each city combination (12 total cities) and for each time, season, time of the week combination (36 combinations).
- 4. For each city combination (e.g., Atlanta and Boston), summed the total number of instances (of the 36 combinations) where the differences were significant at the α =0.1 level and then calculated what percent of scenarios were significantly different. For example, there were 21 scenarios that were significantly different between Boston and Atlanta, so 21/36=58% of scenarios were significantly different.
- 5. Assigned each city to its respective climate zone.
- Calculated the percent of scenarios that were significantly different for each regional combination (e.g., Northern-Northern, Northern, Northern-Mid-Tier, Northern-Southern, etc.) at the 25th percentile, the average, the 50th percentile, and the 75th percentile.

ANALYSIS AND RESULTS

As noted earlier, if there is consistency between cities in the same climate zones, then the differences between cities in the Southern climate zone would be smaller than the differences between cities in the Northern and Southern climate zones, and in general, cities in the same climate zone would have a smaller number of significant differences than cities from different climate zones. Cities in the same climate zone should have tighter distributions and thus smaller ranges between quartiles, meaning the variation in percent differences is smaller than the variation in cities across two climate zones.

As expected, the analysis showed that the largest differences were between the Northern and Southern climate zones (see Figure 30). Cities in the same climate zones (Northern-Northern, Mid-Tier-Mid-Tier, Southern-Southern) had the narrowest spreads between the 25th and 75th percentiles. The differences among cities in the Mid-Tier-Southern climate zones were somewhat anomalous, but not strikingly so; these cities showed fewer instances of significant differences than the Mid-Tier-Mid-Tier comparison and the Southern-Southern comparison, but had a greater degree of internal variance. This is possibly related to the fact that the Mid-Tier climate zone is made up of the ENERGY STAR Windows, Doors, and Skylights North-Central and the South-Central climate zones, which cover a wide range of climatic areas.

Figure 30: Percent Significant Differences Between Climate Zones

APPENDIX F: GLOSSARY

This section contains the glossary that was designed to help respondents understand the terminology used in the internet survey.

Term	Definition	Image
Awning	Roof-like shelters installed on a home's exterior to shade windows from the sun's heat and glare. Awnings can also shade outdoor living spaces.	
Bay Window	An arrangement of three or more individual window units that project from the building at various angles. In a three- unit bay, the center section is normally fixed and the end windows are able to open.	
Bow Window	A rounded bay window that projects from the wall in an arc shape, generally consisting of windows of the same type (all casement for example).	
Casement	A window that swings open in or out on side hinges.	

Cellular Shade	Shades made of pleated materials that are designed to fold up, accordion-like, usually at the top of the window, but sometimes at either the top or the bottom. Insulated shades contain one or more air layers in a honeycomb cross-section.	
Closed Blind	Slats of blinds are fully closed, allowing little or no light to penetrate through.	

	T	
Closed Covering	Window covering is completely pulled down to cover the entire window.	
Double Hung Window	A window in which both the lower and upper halves can be slid up or down to open.	
Double Pane	Two sheets of glass separated within one window frame.	
Drapery	Sheer fabric interior attachments that are either sized to fit the window (curtains) or to reach all the way to the floor (drapes).	

Fixed Window	A window that does not open.	
Frame	The fixed frame of a window that holds the panes of glass in place.	Frame
French Door	Hinged glass doors usually decorated with mullions.	
Frosted Glass	Non-transparent or non-translucent glass.	Non -Transparent

	I	
Half Open Blind	Individual blinds are set in a half open position (approximately 45 degrees).	
Half Open Covering	Window covering covers approximately half of the window.	
Horizontal Slider	A window with movable panels, which slide horizontally.	
Inside Mount	Blinds that are mounted inside of the window frame.	Inside Mount Shade fits within window opening.
Interior Shutters	Interior hinged shutters typically made of either wood or vinyl.	

Metal Blinds	Product consisting of metal horizontal slats, which can be tilted.	
Mullions	Small bars that divide the glass into separate panes within a window that are often used decoratively.	Mullions
Open Blind	Individual blinds are completely open (horizontal), allowing maximum light to penetrate or blinds are pulled up do not cover the window.	
Open Covering	Window covering is completely pulled up on the window, allowing maximum light to penetrate.	

Outside Mount	Blinds that are mounted outside of the window frame.	Outside Mount Shade mounts outside window opening.
Pane of Glass	A sheet of glass in a window or door frame.	Frame Frame Pane Sill →
Pleated Shade	Product consisted of pleated material, which can be retracted by folding.	
Roller Shade	Product consisting of a sheet of material, which can be retracted by rolling.	

Roman Shade	A fabric window shade that is drawn up into a series of evenly stacked folds when raised or lowered.	
Sheer Drapery	Sheer fabric interior attachments that are either sized to fit the window (curtains) or to reach all the way to the floor (drapes).	
Side By Side Window	Individual windows that are positioned side by side to each other.	
Single Hung Window	A window in which the only the lower half can be slid up and down.	

Single Pane	A single sheet of glass in a window or door.	
Sliding Glass Door	A door fitted with one or more panels that move horizontally on a track and/or in grooves.	Frame
Soft Sheer Blinds (Non Transparent)	Product consisting of non-transparent horizontal slats, which can be tilted.	
Soft Sheer Blinds (Transparent)	Product consisting of transparent material and horizontal slats, which can be tilted.	Transparent

Storm Windows	A second set of removable windows installed on the outside or inside of the primary windows to provide additional insulation and wind protection.	
Top-Down Shade/Bottom-Up Shade	Shades that can be adjusted from the top and/or the bottom.	
Triple Pane	Three sheets of glass inside a frame with two air spaces between the panes.	
Vertical Blind	Product consisting of vertical slats, which can be pivoted. The slats may be retracted by drawing the blinds to one side, either side, or the center.	

Vinyl Horizontal Blind	Product consisting of vinyl horizontal slats, which can be tilted.	
Window	An opening in an external wall of a building; an entire unit consisting of a frame, panes of glass, and any operable elements.	Frame Pane Sill →
Window Covering	Product installed either internally or externally to provide additional protection or privacy.	
Windowsill	The bottom of the window frame.	Frame Pane Sill →

Wood or Faux Wood Horizontal Blind	Product consisting of wood or faux-wood horizontal slats, which can be tilted.	

APPENDIX G: WINDOW COVERING POSITION BY PRODUCT TYPE

		Morning (%)											
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters	
Open	26	18	20	11	23	28	24	25	29	25	26	23	
Half Open	32	28	33	35	41	31	32	29	34	29	29	41	
Closed	43	54	47	54	35	42	44	46	37	47	45	36	
Total	100	100	100	100	100	100	100	100	100	100	100	100	

Table 95: Window Coverings Position: Summer Weekday Morning

Table 96: Window Coverings Position: Summer Weekday Afternoon

		Afternoon (%)												
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters		
Open	24	17	18	10	24	27	20	24	28	23	25	15		
Half Open	31	27	32	35	40	32	29	30	33	29	31	44		
Closed	45	55	50	56	36	42	51	45	39	48	45	41		
Total	100	100	100	100	100	100	100	100	100	100	100	100		

Table 97: Window Coverings Position: Summer Weekday Evening

		Evening (%)												
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters		
Open	21	15	16	11	23	26	20	21	26	21	23	18		
Half Open	29	24	29	35	40	28	29	29	26	26	29	40		
Closed	50	61	55	54	37	45	51	50	48	53	48	42		
Total	100	100	100	100	100	100	100	100	100	100	100	100		

		Morning (%)											
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters	
Open	26	19	21	13	23	26	24	26	30	23	26	19	
Half Open	32	27	32	35	40	34	35	33	34	31	33	50	
Closed	41	54	47	51	37	40	41	41	35	46	41	31	
Total	100	100	100	100	100	100	100	100	100	100	100	100	

Table 98: Window Coverings Position: Summer Weekend Morning

Table 99: Window Coverings Position: Summer Weekend Afternoon

		Afternoon (%)												
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters		
Open	26	18	19	12	20	26	21	26	28	23	26	18		
Half Open	31	27	31	35	41	33	34	31	34	30	34	48		
Closed	43	55	50	53	39	40	45	43	38	47	40	34		
Total	100	100	100	100	100	100	100	100	100	100	100	100		

Table 100: Window Coverings Position: Summer Weekend Evening

		Evening (%)													
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters			
Open	23	15	17	13	19	27	19	22	23	22	23	15			
Half Open	28	25	29	34	42	30	32	30	28	29	33	48			
Closed	49	60	54	53	39	43	49	48	48	49	44	37			
Total	100	100	100	100	100	100	100	100	100	100	100	100			
		Morning (%)													
----------------------	--------------------	---	-----------------------------------	---	---------------------------------------	-----------------	-------------------	------------------	----------------	----------------------	------------------	----------------------	--	--	--
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters			
Open	32	22	24	14	24	32	27	25	31	27	32	18			
Half Open	31	26	31	37	28	26	30	30	28	28	51	17			
Closed	37	52	45	54	39	40	47	46	39	45	40	30			
Total	100	100	100	100	100	100	100	100	100	100	100	100			

Table 101: Window Coverings Position: Winter Weekday Morning

Table 102: Window Coverings Position: Winter Weekday Afternoon

		Afternoon (%)													
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters			
Open	31	23	25	14	24	33	29	24	33	28	32	20			
Half Open	32	26	31	32	38	29	27	31	28	29	29	50			
Closed	36	51	44	53	38	38	44	45	38	43	39	30			
Total	100	100	100	100	100	100	100	100	100	100	100	100			

Table 103: Window Coverings Position: Winter Weekday Evening

		Evening (%)													
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters			
Open	25	16	18	13	12	26	20	19	26	21	25	14			
Half Open	28	23	27	30	38	25	22	26	19	25	28	46			
Closed	47	60	55	58	49	49	58	55	55	54	48	40			
Total	100	100	100	100	100	100	100	100	100	100	100	100			

		Morning (%)													
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters			
Open	29	22	24	14	24	29	27	25	32	27	32	20			
Half Open	30	26	32	32	38	31	28	32	32	29	26	47			
Closed	42	51	44	54	38	40	45	43	37	44	42	34			
Total	100	100	100	100	100	100	100	100	100	100	100	100			

Table 104: Window Coverings Position: Winter Weekend Morning

Table 105: Window Coverings Position: Winter Weekend Afternoon

		Afternoon (%)													
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters			
Open	29	23	24	14	22	29	29	24	32	28	32	20			
Half Open	31	27	32	34	42	32	28	34	31	30	27	49			
Closed	40	50	44	52	36	39	43	42	37	42	41	31			
Total	100	100	100	100	100	100	100	100	100	100	100	100			

Table 106: Window Coverings Position: Winter Weekend Evening

		Evening (%)													
Covering Position	Vertical Blinds	Metal or Vinyl Horizontal Blinds	Wood or Faux Wood Blinds	Soft Sheer Blinds (non transparent)	Soft Sheer Blinds (transparent)	Roller Shade	Cellular Shade	Pleated Shade	Roman Shade	Curtains /Drapery	Sheer Drapery	Interior Shutters			
Open	23	17	17	13	11	23	21	18	26	21	27	16			
Half Open	26	24	28	29	35	27	24	29	23	26	25	45			
Closed	51	59	55	58	53	51	54	53	52	52	48	39			
Total	100	100	100	100	100	100	100	100	100	100	100	100			

APPENDIX H: WINDOW COVERING POSITION SURVEY IMAGE

Please indicate the position of the covering you open and close most often on each of these windows in your <u>Master Bedroom</u> at this moment?

Please note: these pictures are only meant to represent the position of your window coverings. Your actual window coverings may look different from the ones shown here. *Please select one answer below.*

APPENDIX I: STATISTICAL SIGNIFICANCE

The headings in the tables below signify the following:

Abbreviated Heading	Signifies
Ν	Number of samples
Mean	Average of the samples
Std. Deviation (Standard deviation)	Square root of the variance
Std. Error Mean	Standard deviation divided by the square root of N
t	Student's t-test
df	Degrees of freedom
Sig (2-tailed)	Significance (probability value) for two-tailed t-test
Mean Difference	Mean difference from the test value
Confidence Interval	Lower and upper bounds of the difference from the test value

SHARE OF UNCOVERED WINDOWS

The tables below show the results of the comparison between climate zones of the share of uncovered windows by household. The hypothesis was that there was no difference in the share of uncovered windows between climate zones, but the tables below show that this hypothesis for the Northern and Southern zones and the Northern and Mid-Tier zones is highly unlikely and that in fact the differences between the climate zones are statistically significant.

Northern and Mid-Tier Climate Zone Comparison

	Group Statistics											
Climate Zor	ne	Ν	Mean	Std. Deviation	Std. Error Mean							
Share of windows	Northern Zone	691	.1349	.22081	.00840							
without coverings	Mid Tier Zone	702	.1079	.20293	.00766							

				Indepe	endent Samp	les Test						
		Levene's Equality of		t-test for Equality of Means								
						Sig (2	Mean	Std. Error	95% Cor Interva Diffe			
		F	Sig.	t	df	Sig. (2- tailed)	Difference	Difference	Lower	Upper		
Share of windows without	Equal variances assumed	8.939	.003	2.373	1391	.018	.02696	.01136	.00467	.04924		
coverings	Equal variances not assumed			2.371	1377.226	.018	.02696	.01137	.00466	.04926		

Northern and Southern Climate Zone Comparison

	Group Statistics											
Climate Zor	ne	Ν	Mean	Std. Deviation	Std. Error Mean							
Share of windows	Northern Zone	691	.1349	.22081	.00840							
without coverings	Southern Zone	708	.1042	.20603	.00774							

				Indepe	endent Samp	les Test							
		Levene's Equality of	Test for Variances	t-test for Equality of Means									
						Sig. (2-	Mean	Std. Error	95% Cor Interva Differ	l of the			
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper			
Share of windows without	Equal variances assumed	9.516	.002	2.687	1397	.007	.03067	.01141	.00828	.05306			
coverings	Equal variances not assumed			2.685	1384.904	.007	.03067	.01142	.00826	.05308			

Mid-Tier and Southern Climate Zone Comparison

	Group Statistics											
Climate Zor	ne	N	Mean	Std. Deviation	Std. Error Mean							
Share of windows	Mid Tier Zone	702	.1079	.20293	.00766							
without coverings	Southern Zone	708	.1042	.20603	.00774							

	Independent Samples Test												
			Test for Variances	t-test for Equality of Means									
						Sig. (2-	g. (2- Mean	Std. Error	95% Cor Interva Differ	l of the			
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper			
Share of windows without	Equal variances assumed	.021	.886	.341	1408	.733	.00371	.01089	01765	.02508			
coverings	Equal variances not assumed			.341	1407.938	.733	.00371	.01089	01765	.02508			

WINDOW COVERING POSITION

The tables below show the results of the hypothesis that the share of coverings open in the afternoon was 23%. Each was statistically different from the test value. Additionally, the confidence intervals for the summer overlap with one another and the confidence intervals for the winter overlap with one another, but there is not overlap between the summer and winter, which means that the differences between summer and winter are statistically significant.

	One-Sample Statistics											
	Ν	Mean	Std. Deviation	Std. Error Mean								
Summer Weekday Afternoon Open	2064	.1965	.30495	.00671								
Winter Weekday Afternoon Open	2064	.2671	.36762	.00809								
Winter Weekend Afternoon Open	2064	.2642	.36624	.00806								
Summer Weekend Afternoon Open	2064	.2085	.31911	.00702								

One-Sample Test											
	Test Value = 0.23										
			Siz (2	Maar	95% Cor Interva Differ	l of the					
	t	df	Sig. (2- tailed)	Mean Difference	Lower	Upper					
Summer Weekday Afternoon Open	-4.996	2063	.000	03354	0467	0204					
Summer Weekend Afternoon Open	-3.064	2063	.002	02152	0353	0077					
Winter Weekday Afternoon Open	4.586	2063	.000	.03711	.0212	.0530					
Winter Weekend Afternoon Open	4.247	2063	.000	.03424	.0184	.0500					

WINDOW COVERING POSITION BY CLIMATE ZONE

The tables below compare the differences between climate zones in coverings position at the household level. The results of this analysis are discussed on page 36.

Northern and Mid-Tier Climate Zone Comparison

	Group S	Statistics			
Climate Zone		N	Mean	Std. Deviation	Std. Error Mean
Summer Weekday Afternoon Open	Northern Tier	682	.2394	.32880	0.0126
	Mid-Tier	687	.2014	.31036	0.0118
Summer Weekday Afternoon Half	Northern Tier	682	.3359	.35218	0.0135
Open	Mid-Tier	687	.3209	.35466	0.0135
Summer Weekday Afternoon Closed	Northern Tier	682	.4247	.37757	0.0145
	Mid-Tier	687	.4779	.39079	0.0149
Summer Weekend Afternoon Open	Northern Tier	682	.2473	.34087	0.0131
	Mid-Tier	687	.2134	.32440	0.0124
Summer Weekend Afternoon Half	Northern Tier	682	.3437	.35669	0.0137
Open	Mid-Tier	687	.3277	.37010	0.0141
Summer Weekend After Closed	Northern Tier	682	.4091	.37549	0.0144
	Mid-Tier	687	.4593	.39831	0.0152
Winter Weekday Afternoon Open	Northern Tier	682	.3087	.38486	0.0147
	Mid-Tier	687	.2555	.36795	0.0140
Winter Weekday Afternoon Half Open	Northern Tier	682	.3161	.36621	0.0140
	Mid-Tier	687	.2825	.36033	0.0137
Winter Weekday Afternoon Closed	Northern Tier	682	.3752	.39271	0.0150
	Mid-Tier	687	.4624	.41171	0.0157
Winter Weekend Afternoon Open	Northern Tier	682	.3016	.38136	0.0146
	Mid-Tier	687	.2574	.36873	0.0141
Winter Weekend Afternoon Half Open	Northern Tier	682	.3256	.37470	0.0143
	Mid-Tier	687	.2853	.36155	0.0138
Winter Weekend Afternoon Closed	Northern Tier	682	.3728	.39360	0.0151
	Mid-Tier	687	.4578	.40593	0.0155
Summer Weekday Evening Open	Northern Tier	682	.2266	.31793	0.0122
	Mid-Tier	687	.1869	.30158	0.0115
Summer Weekday Evening Half Open	Northern Tier	682	.3074	.33816	0.0129
	Mid-Tier	687	.2861	.33423	0.0128
Summer Weekday Evening Closed	Northern Tier	682	.4662	.37636	0.0144
	Mid-Tier	687	.5275	.38644	0.0147
Summer Weekend Evening Open	Northern Tier	682	.2240	.32493	0.0124
	Mid-Tier	687	.1916	.31311	0.0119

Northern Tier				0.0134
Mid-Tier	682 687	.3189	.34880	0.0134
				0.0134
		-		0.0140
				0.0133
				0.0119
				0.0133
				0.0132
				0.0156
				0.0155
	682		.34367	0.0132
Mid-Tier	687	.1812	.32125	0.0123
Northern Tier	682	.2705	.35161	0.0135
Mid-Tier	687	.2564	.34958	0.0133
Northern Tier	682	.5048	.41024	0.0157
Mid-Tier	687	.5628	.40862	0.0156
Northern Tier	682	.2582	.33432	0.0128
Mid-Tier	687	.2163	.32230	0.0123
Northern Tier	682	.3443	.35467	0.0136
Mid-Tier	687	.3137	.34571	0.0132
Northern Tier	682	.3975	.37092	0.0142
Mid-Tier	687	.4701	.38765	0.0148
Northern Tier	682	.2565	.34182	0.0131
Mid-Tier	687	.2254	.33633	0.0128
Northern Tier	682	.3527	.35756	0.0137
Mid-Tier	687	.3193	.36352	0.0139
Northern Tier	682	.3908	.37032	0.0142
Mid-Tier	687	.4558	.39855	0.0152
Northern Tier	682	.3003	.38115	0.0146
Mid-Tier	687	.2508	.36652	0.0140
Northern Tier	682	.3064	.36213	0.0139
Mid-Tier	687	.2809	.35552	0.0136
Northern Tier	682	.3933	.39445	0.0151
Mid-Tier	687	.4688	.40964	0.0156
				0.0144
	687			0.0140
				0.0140
				0.0137
				0.0151
				0.0151
	Northern TierMid-TierMorthern TierMid-TierNorthern TierMid-TierNorthern TierMid-TierNorthern TierMid-TierNorthern TierMid-TierNorthern TierMid-TierNorthern TierMid-TierNorthern TierMid-TierNorthern TierMid-Tier	Mid-Tier 687 Northern Tier 682 Mid-Tier 687 Northern Tier 682 Mid-Tier 687 Northern Tier 687 Northern Tier 682 Mid-Tier 687 Northern Tier 682 Mid-Tier 682 Mid-Tier	Mid-Tier 687 .5145 Northern Tier 682 .2261 Mid-Tier 687 .1787 Northern Tier 682 .2662 Mid-Tier 687 .2618 Northern Tier 682 .5078 Mid-Tier 687 .5599 Northern Tier 682 .2248 Mid-Tier 687 .1812 Northern Tier 682 .2705 Mid-Tier 687 .2564 Northern Tier 682 .5048 Mid-Tier 687 .2564 Northern Tier 682 .2582 Mid-Tier 687 .2563 Northern Tier 682 .2582 Mid-Tier 687 .2163 Northern Tier 682 .3975 Mid-Tier 687 .4701 Northern Tier 682 .3975 Mid-Tier 687 .4254 Northern Tier 682 .3903 Mid-Tier </td <td>Mid-Tier 687 .5145 .39784 Northern Tier 682 .2261 .34678 Mid-Tier 687 .1787 .31251 Northern Tier 682 .2662 .34709 Mid-Tier 687 .2618 .34603 Northern Tier 682 .5078 .40759 Mid-Tier 687 .5599 .40511 Northern Tier 682 .2248 .34367 Mid-Tier 687 .1812 .32125 Northern Tier 682 .2705 .35161 Mid-Tier 687 .2564 .34958 Northern Tier 682 .5048 .41024 Mid-Tier 687 .5128 .40862 Northern Tier 682 .3433 .35467 Mid-Tier 687 .2163 .32230 Northern Tier 682 .3975 .37092 Mid-Tier 687 .4701 .38755 Northern Tier 682 .3923</td>	Mid-Tier 687 .5145 .39784 Northern Tier 682 .2261 .34678 Mid-Tier 687 .1787 .31251 Northern Tier 682 .2662 .34709 Mid-Tier 687 .2618 .34603 Northern Tier 682 .5078 .40759 Mid-Tier 687 .5599 .40511 Northern Tier 682 .2248 .34367 Mid-Tier 687 .1812 .32125 Northern Tier 682 .2705 .35161 Mid-Tier 687 .2564 .34958 Northern Tier 682 .5048 .41024 Mid-Tier 687 .5128 .40862 Northern Tier 682 .3433 .35467 Mid-Tier 687 .2163 .32230 Northern Tier 682 .3975 .37092 Mid-Tier 687 .4701 .38755 Northern Tier 682 .3923

				Independent	Samples Test					
		Levene's Test of Varia				t-	test for Equality	y of Means		
						Sig. (2- Mean		Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Summer Weekday Afternoon Open	Equal variances assumed	5.055	.025	2.197	1367	.028	.03796	.01728	.00406	.07186
	Equal variances not assumed			2.196	1361	.028	.03796	.01728	.00405	.07186
Summer Weekday Afternoon Half Open	Equal variances assumed	.185	.667	.783	1367	.434	.01496	.01910	02251	.05244
	Equal variances not assumed			.783	1367	.434	.01496	.01910	02251	.05244
Summer Weekday Afternoon Closed	Equal variances assumed	3.314	.069	-2.562	1367	.011	05321	.02077	09396	01247
	Equal variances not assumed			-2.562	1366	.011	05321	.02077	09395	01247
Summer Weekend Afternoon Open	Equal variances assumed	3.927	.048	1.882	1367	.060	.03384	.01798	00144	.06912
	Equal variances not assumed			1.881	1363	.060	.03384	.01799	00145	.06912
Summer Weekend Afternoon Half Open	Equal variances assumed	1.133	.287	.815	1367	.415	.01601	.01965	02253	.05455
	Equal variances not assumed			.815	1366	.415	.01601	.01964	02253	.05455

Summer Weekend After Closed	Equal variances assumed	9.918	.002	-2.399	1367	.017	05020	.02092	09124	00915
	Equal variances not assumed			-2.399	1363	.017	05020	.02092	09124	00916
Winter Weekday Afternoon Open	Equal variances assumed	5.449	.020	2.615	1367	.009	.05322	.02035	.01330	.09314
	Equal variances not assumed			2.615	1363	.009	.05322	.02035	.01330	.09315
Winter Weekday Afternoon Half Open	Equal variances assumed	1.310	.253	1.710	1367	.087	.03358	.01964	00494	.07210
	Equal variances not assumed			1.710	1366	.087	.03358	.01964	00494	.07210
Winter Weekday Afternoon Closed	Equal variances assumed	7.392	.007	-4.008	1367	.000	08717	.02175	12983	04450
	Equal variances not assumed			-4.009	1365	.000	08717	.02175	12982	04451
Winter Weekend Afternoon Open	Equal variances assumed	3.367	.067	2.182	1367	.029	.04423	.02027	.00446	.08401
	Equal variances not assumed			2.181	1365	.029	.04423	.02028	.00446	.08401
Winter Weekend Afternoon Half Open	Equal variances assumed	3.114	.078	2.027	1367	.043	.04033	.01990	.00129	.07937
	Equal variances not assumed			2.026	1364	.043	.04033	.01990	.00129	.07938

Winter Weekend Afternoon Closed	Equal variances assumed	2.735	.098	-3.930	1367	.000	08494	.02161	12734	04254
	Equal variances not assumed			-3.931	1366	.000	08494	.02161	12734	04255
Summer Weekday Evening Open	Equal variances assumed	5.283	.022	2.370	1367	.018	.03970	.01675	.00684	.07255
	Equal variances not assumed			2.370	1362	.018	.03970	.01675	.00684	.07256
Summer Weekday Evening Half Open	Equal variances assumed	.082	.774	1.173	1367	.241	.02132	.01817	01433	.05697
	Equal variances not assumed			1.173	1367	.241	.02132	.01817	01433	.05697
Summer Weekday Evening Closed	Equal variances assumed	1.736	.188	-2.971	1367	.003	06126	.02062	10171	02082
	Equal variances not assumed			-2.972	1367	.003	06126	.02062	10171	02082
Summer Weekend Evening Open	Equal variances assumed	2.823	.093	1.876	1367	.061	.03236	.01725	00147	.06619
	Equal variances not assumed			1.876	1364	.061	.03236	.01725	00148	.06619
Summer Weekend Evening Half Open	Equal variances assumed	.010	.920	1.303	1367	.193	.02465	.01892	01246	.06176
	Equal variances not assumed			1.303	1367	.193	.02465	.01892	01246	.06176

Summer Weekend Evening Closed	Equal variances assumed	4.501	.034	-2.723	1367	.007	05736	.02106	09867	01604
	Equal variances not assumed			-2.724	1365	.007	05736	.02106	09866	01605
Winter Weekday Evening Open	Equal variances assumed	14.531	.000	2.657	1367	.008	.04740	.01784	.01240	.08239
	Equal variances not assumed			2.656	1350	.008	.04740	.01785	.01239	.08240
Winter Weekday Evening Half Open	Equal variances assumed	.072	.789	.236	1367	.813	.00443	.01873	03232	.04118
	Equal variances not assumed			.236	1367	.813	.00443	.01873	03232	.04118
Winter Weekday Evening Closed	Equal variances assumed	.060	.807	-2.371	1367	.018	05208	.02196	09517	00899
	Equal variances not assumed			-2.371	1367	.018	05208	.02197	09517	00899
Winter Weekend Evening Open	Equal variances assumed	8.383	.004	2.423	1367	.016	.04356	.01798	.00829	.07883
	Equal variances not assumed			2.422	1359	.016	.04356	.01798	.00828	.07884
Winter Weekend Evening Half Open	Equal variances assumed	.328	.567	.743	1367	.458	.01408	.01895	02310	.05126
	Equal variances not assumed			.743	1367	.458	.01408	.01895	02310	.05126

Winter Weekend Evening Closed	Equal variances assumed	.016	.900	-2.621	1367	.009	05801	.02213	10143	01460
	Equal variances not assumed			-2.621	1367	.009	05801	.02213	10143	01460
Summer Weekday Morning Open	Equal variances assumed	2.727	.099	2.357	1367	.019	.04184	.01775	.00702	.07665
	Equal variances not assumed			2.357	1364	.019	.04184	.01775	.00701	.07666
Summer Weekday Morning Half Open	Equal variances assumed	.691	.406	1.620	1367	.106	.03066	.01893	00648	.06779
	Equal variances not assumed			1.619	1366	.106	.03066	.01893	00648	.06780
Summer Weekday Morning Closed	Equal variances assumed	5.364	.021	-3.542	1367	.000	07264	.02051	11287	03241
	Equal variances not assumed			-3.542	1365	.000	07264	.02051	11286	03241
Summer Weekend Morning Open	Equal variances assumed	.866	.352	1.701	1367	.089	.03117	.01833	00479	.06712
	Equal variances not assumed			1.700	1366	.089	.03117	.01833	00479	.06713
Summer Weekend Morning Half Open	Equal variances assumed	.091	.763	1.717	1367	.086	.03346	.01949	00478	.07169
	Equal variances not assumed			1.717	1367	.086	.03346	.01949	00478	.07169

Summer Weekend Morning Closed	Equal variances assumed	14.560	.000	-3.125	1367	.002	06499	.02080	10578	02419
	Equal variances not assumed			-3.126	1361	.002	06499	.02079	10577	02420
Winter Weekday Morning Open	Equal variances assumed	5.163	.023	2.450	1367	.014	.04951	.02021	.00986	.08915
	Equal variances not assumed			2.449	1364	.014	.04951	.02021	.00986	.08916
Winter Weekday Morning Half Open	Equal variances assumed	1.146	.285	1.316	1367	.188	.02552	.01940	01253	.06357
	Equal variances not assumed			1.316	1366	.189	.02552	.01940	01253	.06357
Winter Weekday Morning Closed	Equal variances assumed	5.071	.024	-3.471	1367	.001	07545	.02174	11809	03281
	Equal variances not assumed			-3.471	1366	.001	07545	.02173	11809	03281
Winter Weekend Morning Open	Equal variances assumed	2.896	.089	2.109	1367	.035	.04236	.02009	.00296	.08177
	Equal variances not assumed			2.109	1365	.035	.04236	.02009	.00295	.08177
Winter Weekend Morning Half Open	Equal variances assumed	1.325	.250	1.630	1367	.103	.03190	.01958	00650	.07031
	Equal variances not assumed			1.630	1366	.103	.03190	.01958	00650	.07031

Winter Weekend Morning Closed	Equal variances assumed	3.421	.065	-3.448	1367	.001	07469	.02166	11719	03219
	Equal variances not assumed			-3.448	1366	.001	07469	.02166	11718	03219

Northern and Southern Zone Comparison

	Group S	tatistics			
				Std.	Std. Error
Climate Zone		Ν	Mean	Deviation	Mean
Summer Weekday Afternoon Open	Northern Tier	682	.2394	.32880	0.0126
	Southern Tier	694	.1497	.26677	0.0101
Summer Weekday Afternoon Half	Northern Tier	682	.3359	.35218	0.0135
Open	Southern Tier	694	.2520	.31796	0.0121
Summer Weekday Afternoon Closed	Northern Tier	682	.4247	.37757	0.0145
	Southern Tier	694	.5986	.37009	0.0140
Summer Weekend Afternoon Open	Northern Tier	682	.2473	.34087	0.0131
	Southern Tier	694	.1658	.28532	0.0108
Summer Weekend Afternoon Half	Northern Tier	682	.3437	.35669	0.0137
Open	Southern Tier	694	.2486	.31824	0.0121
Summer Weekend After Closed	Northern Tier	682	.4091	.37549	0.0144
	Southern Tier	694	.5859	.37912	0.0144
Winter Weekday Afternoon Open	Northern Tier	682	.3087	.38486	0.0147
	Southern Tier	694	.2382	.34635	0.0131
Winter Weekday Afternoon Half Open	Northern Tier	682	.3161	.36621	0.0140
	Southern Tier	694	.2563	.33432	0.0127
Winter Weekday Afternoon Closed	Northern Tier	682	.3752	.39271	0.0150
	Southern Tier	694	.5058	.39533	0.0150
Winter Weekend Afternoon Open	Northern Tier	682	.3016	.38136	0.0146
	Southern Tier	694	.2347	.34554	0.0131
Winter Weekend Afternoon Half Open	Northern Tier	682	.3256	.37470	0.0143
	Southern Tier	694	.2720	.34689	0.0132
Winter Weekend Afternoon Closed	Northern Tier	682	.3728	.39360	0.0151
	Southern Tier	694	.4936	.39880	0.0151
Summer Weekday Evening Open	Northern Tier	682	.2266	.31793	0.0122
	Southern Tier	694	.1240	.24104	0.0091
Summer Weekday Evening Half Open	Northern Tier	682	.3074	.33816	0.0129
	Southern Tier	694	.2254	.30510	0.0116
Summer Weekday Evening Closed	Northern Tier	682	.4662	.37636	0.0144
	Southern Tier	694	.6508	.36058	0.0137
Summer Weekend Evening Open	Northern Tier	682	.2240	.32493	0.0124
	Southern Tier	694	.1319	.25396	0.0096
Summer Weekend Evening Half Open	Northern Tier	682	.3189	.34880	0.0134
	Southern Tier	694	.2359	.32121	0.0122
Summer Weekend Evening Closed	Northern Tier	682	.4572	.38114	0.0146
	Southern Tier	694	.6324	.37201	0.0141

Winter Weekday Evening Open	Northern Tier	682	.2261	.34678	0.0133
, - 0 - 1 -	Southern Tier	694	.1651	.29721	0.0113
Winter Weekday Evening Half Open	Northern Tier	682	.2662	.34709	0.0133
	Southern Tier	694	.2166	.32177	0.0122
Winter Weekday Evening Closed	Northern Tier	682	.5078	.40759	0.0156
	Southern Tier	694	.6186	.38781	0.0147
Winter Weekend Evening Open	Northern Tier	682	.2248	.34367	0.0132
	Southern Tier	694	.1694	.30588	0.0116
Winter Weekend Evening Half Open	Northern Tier	682	.2705	.35161	0.0135
	Southern Tier	694	.2324	.33049	0.0125
Winter Weekend Evening Closed	Northern Tier	682	.5048	.41024	0.0157
	Southern Tier	694	.5985	.39558	0.0150
Summer Weekday Morning Open	Northern Tier	682	.2582	.33432	0.0128
	Southern Tier	694	.1674	.27839	0.0106
Summer Weekday Morning Half Open	Northern Tier	682	.3443	.35467	0.0136
	Southern Tier	694	.2640	.32550	0.0124
Summer Weekday Morning Closed	Northern Tier	682	.3975	.37092	0.0142
	Southern Tier	694	.5688	.37828	0.0144
Summer Weekend Morning Open	Northern Tier	682	.2565	.34182	0.0131
	Southern Tier	694	.1730	.28750	0.0109
Summer Weekend Morning Half Open	Northern Tier	682	.3527	.35756	0.0137
	Southern Tier	694	.2532	.32064	0.0122
Summer Weekend Morning Closed	Northern Tier	682	.3908	.37032	0.0142
	Southern Tier	694	.5740	.38133	0.0145
Winter Weekday Morning Open	Northern Tier	682	.3003	.38115	0.0146
	Southern Tier	694	.2294	.34702	0.0132
Winter Weekday Morning Half Open	Northern Tier	682	.3064	.36213	0.0139
	Southern Tier	694	.2495	.33288	0.0126
Winter Weekday Morning Closed	Northern Tier	682	.3933	.39445	0.0151
	Southern Tier	694	.5214	.39799	0.0151
Winter Weekend Morning Open	Northern Tier	682	.2904	.37732	0.0144
	Southern Tier	694	.2278	.34356	0.0130
Winter Weekend Morning Half Open	Northern Tier	682	.3116	.36584	0.0140
	Southern Tier	694	.2657	.34208	0.0130
Winter Weekend Morning Closed	Northern Tier	682	.3979	.39411	0.0151
	Southern Tier	694	.5069	.39736	0.0151

				Independen	t Samples Test					
		Levene's Tes of Var	t for Equality iances			t-test	for Equality of N	leans		
						Sig. (2-	Mean	Std. Error	95% Confidence Int of the Differenc	
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper
Summer Weekday Afternoon Open	Equal variances assumed	53.085	.000	5.563	1374	.000	.08973	.01613	.05809	.12137
	Equal variances not assumed			5.553	1309	.000	.08973	.01616	.05803	.12143
Afternoon Half Open	Equal variances assumed	15.537	.000	4.642	1374	.000	.08394	.01808	.04846	.11941
	Equal variances not assumed			4.638	1355	.000	.08394	.01810	.04843	.11944
Summer Weekday Afternoon Closed	Equal variances assumed	.573	.449	-8.626	1374	.000	17385	.02016	21339	13431
	Equal variances not assumed			-8.624	1372	.000	17385	.02016	21340	13431
Summer Weekend Afternoon Open	Equal variances assumed	43.911	.000	4.811	1374	.000	.08148	.01693	.04826	.11470
	Equal variances not assumed			4.804	1325	.000	.08148	.01696	.04821	.11475
Afternoon Half a Open	Equal variances assumed	20.628	.000	5.220	1374	.000	.09508	.01822	.05934	.13081
	Equal variances not assumed			5.214	1351	.000	.09508	.01823	.05931	.13085

Summer Weekend After Closed	Equal variances assumed	.324	.569	-8.690	1374	.000	17680	.02034	21671	13689
	Equal variances not assumed			-8.691	1374	.000	17680	.02034	21671	13690
Winter Weekday Afternoon Open	Equal variances assumed	22.570	.000	3.574	1374	.000	.07051	.01973	.03180	.10922
	Equal variances not assumed			3.570	1354	.000	.07051	.01975	.03177	.10925
Afternoon Half Open	Equal variances assumed	15.522	.000	3.163	1374	.002	.05977	.01890	.02270	.09685
	Equal variances not assumed			3.161	1358	.002	.05977	.01891	.02267	.09688
Winter Weekday Afternoon Closed	Equal variances assumed	.223	.637	-6.144	1374	.000	13053	.02125	17221	08885
	Equal variances not assumed			-6.144	1374	.000	13053	.02124	17220	08885
Winter Weekend Afternoon Open	Equal variances assumed	18.419	.000	3.408	1374	.001	.06684	.01961	.02837	.10532
	Equal variances not assumed			3.405	1356	.001	.06684	.01963	.02834	.10535
Winter Weekend Afternoon Half Open	Equal variances assumed	10.651	.001	2.755	1374	.006	.05361	.01946	.01544	.09179
	Equal variances not assumed			2.753	1362	.006	.05361	.01947	.01541	.09182

Winter Weekend Afternoon Closed	Equal variances assumed	.618	.432	-5.653	1374	.000	12077	.02136	16268	07886
	Equal variances not assumed			-5.654	1374	.000	12077	.02136	16268	07887
Summer Weekday Evening Open	Equal variances assumed	80.900	.000	6.749	1374	.000	.10253	.01519	.07273	.13234
-	Equal variances not assumed			6.733	1270	.000	.10253	.01523	.07266	.13241
Summer Weekday Evening Half Open	Equal variances assumed	15.907	.000	4.726	1374	.000	.08203	.01736	.04798	.11608
	Equal variances not assumed			4.722	1355	.000	.08203	.01737	.04795	.11611
Summer Weekday Evening Closed	Equal variances assumed	4.286	.039	-9.291	1374	.000	18459	.01987	22357	14561
	Equal variances not assumed			-9.287	1369	.000	18459	.01988	22358	14560
Summer Weekend Evening Open	Equal variances assumed	66.937	.000	5.865	1374	.000	.09212	.01571	.06130	.12293
	Equal variances not assumed			5.852	1288	.000	.09212	.01574	.06124	.12299
Summer Weekend Evening Half Open	Equal variances assumed	12.343	.000	4.592	1374	.000	.08299	.01807	.04754	.11844
	Equal variances not assumed			4.589	1361	.000	.08299	.01808	.04752	.11847

Summer Weekend Evening Closed	Equal variances assumed	1.400	.237	-8.631	1374	.000	17524	.02030	21507	13541
	Equal variances not assumed			-8.629	1372	.000	17524	.02031	21507	13540
Winter Weekday Evening Open	Equal variances assumed	27.534	.000	3.506	1374	.000	.06101	.01740	.02688	.09515
	Equal variances not assumed			3.502	1335	.000	.06101	.01742	.02683	.09520
Winter Weekday Evening Half Open	Equal variances assumed	8.897	.003	2.754	1374	.006	.04968	.01804	.01429	.08506
	Equal variances not assumed			2.752	1362	.006	.04968	.01805	.01427	.08509
Winter Weekday Evening Closed	Equal variances assumed	6.075	.014	-5.165	1374	.000	11077	.02145	15284	06870
	Equal variances not assumed			-5.163	1368	.000	11077	.02145	15286	06869
Winter Weekend Evening Open	Equal variances assumed	18.602	.000	3.157	1374	.002	.05534	.01753	.02095	.08973
	Equal variances not assumed			3.153	1350	.002	.05534	.01755	.02091	.08977
Winter Weekend Evening Half Open	Equal variances assumed	4.869	.028	2.071	1374	.039	.03809	.01839	.00201	.07417
	Equal variances not assumed			2.070	1365	.039	.03809	.01840	.00199	.07419

Winter Weekend Evening Closed	Equal variances assumed	2.816	.094	-4.314	1374	.000	09372	.02172	13634	05110
	Equal variances not assumed			-4.313	1370	.000	09372	.02173	13635	05109
Summer Weekday Morning Open	Equal variances assumed	40.855	.000	5.478	1374	.000	.09079	.01657	.05828	.12330
	Equal variances not assumed			5.469	1322	.000	.09079	.01660	.05822	.12335
Summer Weekday Morning Half Open	Equal variances assumed	10.306	.001	4.379	1374	.000	.08035	.01835	.04436	.11634
	Equal variances not assumed			4.376	1360	.000	.08035	.01836	.04433	.11637
Summer Weekday Morning Closed	Equal variances assumed	1.408	.236	-8.483	1374	.000	17136	.02020	21098	13173
	Equal variances not assumed			-8.484	1374	.000	17136	.02020	21098	13173
Summer Weekend Morning Open	Equal variances assumed	40.063	.000	4.907	1374	.000	.08350	.01702	.05012	.11688
	Equal variances not assumed			4.900	1327	.000	.08350	.01704	.05007	.11693
Summer Weekend Morning Half Open	Equal variances assumed	19.151	.000	5.437	1374	.000	.09951	.01830	.06361	.13542
	Equal variances not assumed			5.432	1353	.000	.09951	.01832	.06358	.13545

Summer Weekend Morning Closed	Equal variances assumed	1.941	.164	-9.039	1374	.000	18321	.02027	22297	14345
	Equal variances not assumed			-9.042	1374	.000	18321	.02026	22296	14346
Winter Weekday Morning Open	Equal variances assumed	20.146	.000	3.605	1374	.000	.07083	.01964	.03229	.10936
	Equal variances not assumed			3.602	1357	.000	.07083	.01966	.03226	.10939
Winter Weekday Morning Half Open	Equal variances assumed	13.087	.000	3.035	1374	.002	.05690	.01875	.02012	.09367
	Equal variances not assumed			3.033	1360	.002	.05690	.01876	.02010	.09370
Winter Weekday Morning Closed	Equal variances assumed	.542	.462	-5.992	1374	.000	12801	.02136	16992	08610
	Equal variances not assumed			-5.992	1374	.000	12801	.02136	16992	08610
Winter Weekend Morning Open	Equal variances assumed	16.180	.000	3.222	1374	.001	.06266	.01945	.02451	.10081
	Equal variances not assumed			3.219	1357	.001	.06266	.01946	.02448	.10084
Winter Weekend Morning Half Open	Equal variances assumed	8.359	.004	2.404	1374	.016	.04589	.01909	.00844	.08334
	Equal variances not assumed			2.403	1364	.016	.04589	.01910	.00842	.08336

Winter Weekend Morning Closed	Equal variances assumed	.530	.467	-5.108	1374	.000	10900	.02134	15086	06714
	Equal variances not assumed			-5.108	1374	.000	10900	.02134	15086	06714

Mid-Tier and Southern Climate Zone Comparison

Group Statistics										
Climate Zone		N	Mean	Std. Deviation	Std. Error Mean					
Summer Weekday Afternoon Open	Mid-Tier	687	.2014	.31036	0.0118					
	Southern Tier	694	.1497	.26677	0.0101					
Summer Weekday Afternoon Half	Mid-Tier	687	.3209	.35466	0.0135					
Open	Southern Tier	694	.2520	.31796	0.0121					
Summer Weekday Afternoon Closed	Mid-Tier	687	.4779	.39079	0.0149					
	Southern Tier	694	.5986	.37009	0.0140					
Summer Weekend Afternoon Open	Mid-Tier	687	.2134	.32440	0.0124					
	Southern Tier	694	.1658	.28532	0.0108					
Summer Weekend Afternoon Half	Mid-Tier	687	.3277	.37010	0.0141					
Open	Southern Tier	694	.2486	.31824	0.0121					
Summer Weekend After Closed	Mid-Tier	687	.4593	.39831	0.0152					
	Southern Tier	694	.5859	.37912	0.0144					
Winter Weekday Afternoon Open	Mid-Tier	687	.2555	.36795	0.0140					
	Southern Tier	694	.2382	.34635	0.0131					
Winter Weekday Afternoon Half Open	Mid-Tier	687	.2825	.36033	0.0137					
	Southern Tier	694	.2563	.33432	0.0127					
Winter Weekday Afternoon Closed	Mid-Tier	687	.4624	.41171	0.0157					
	Southern Tier	694	.5058	.39533	0.0150					
Winter Weekend Afternoon Open	Mid-Tier	687	.2574	.36873	0.0141					
	Southern Tier	694	.2347	.34554	0.0131					
Winter Weekend Afternoon Half Open	Mid-Tier	687	.2853	.36155	0.0138					
	Southern Tier	694	.2720	.34689	0.0132					
Winter Weekend Afternoon Closed	Mid-Tier	687	.4578	.40593	0.0155					
	Southern Tier	694	.4936	.39880	0.0151					
Summer Weekday Evening Open	Mid-Tier	687	.1869	.30158	0.0115					
	Southern Tier	694	.1240	.24104	0.0091					
Summer Weekday Evening Half Open	Mid-Tier	687	.2861	.33423	0.0128					
	Southern Tier	694	.2254	.30510	0.0116					
Summer Weekday Evening Closed	Mid-Tier	687	.5275	.38644	0.0147					
	Southern Tier	694	.6508	.36058	0.0137					
Summer Weekend Evening Open	Mid-Tier	687	.1916	.31311	0.0119					
	Southern Tier	694	.1319	.25396	0.0096					
Summer Weekend Evening Half Open	Mid-Tier	687	.2943	.35112	0.0134					
	Southern Tier	694	.2359	.32121	0.0122					
Summer Weekend Evening Closed	Mid-Tier	687	.5145	.39784	0.0152					
	Southern Tier	694	.6324	.37201	0.0141					

				0.00-1	
Winter Weekday Evening Open	Mid-Tier	687	.1787	.31251	0.0119
	Southern Tier	694	.1651	.29721	0.0113
Winter Weekday Evening Half Open	Mid-Tier	687	.2618	.34603	0.0132
	Southern Tier	694	.2166	.32177	0.0122
Winter Weekday Evening Closed	Mid-Tier	687	.5599	.40511	0.0155
	Southern Tier	694	.6186	.38781	0.0147
Winter Weekend Evening Open	Mid-Tier	687	.1812	.32125	0.0123
	Southern Tier	694	.1694	.30588	0.0116
Winter Weekend Evening Half Open	Mid-Tier	687	.2564	.34958	0.0133
	Southern Tier	694	.2324	.33049	0.0125
Winter Weekend Evening Closed	Mid-Tier	687	.5628	.40862	0.0156
	Southern Tier	694	.5985	.39558	0.0150
Summer Weekday Morning Open	Mid-Tier	687	.2163	.32230	0.0123
	Southern Tier	694	.1674	.27839	0.0106
Summer Weekday Morning Half Open	Mid-Tier	687	.3137	.34571	0.0132
	Southern Tier	694	.2640	.32550	0.0124
Summer Weekday Morning Closed	Mid-Tier	687	.4701	.38765	0.0148
	Southern Tier	694	.5688	.37828	0.0144
Summer Weekend Morning Open	Mid-Tier	687	.2254	.33633	0.0128
	Southern Tier	694	.1730	.28750	0.0109
Summer Weekend Morning Half Open	Mid-Tier	687	.3193	.36352	0.0139
	Southern Tier	694	.2532	.32064	0.0122
Summer Weekend Morning Closed	Mid-Tier	687	.4558	.39855	0.0152
	Southern Tier	694	.5740	.38133	0.0145
Winter Weekday Morning Open	Mid-Tier	687	.2508	.36652	0.0140
	Southern Tier	694	.2294	.34702	0.0132
Winter Weekday Morning Half Open	Mid-Tier	687	.2809	.35552	0.0136
	Southern Tier	694	.2495	.33288	0.0126
Winter Weekday Morning Closed	Mid-Tier	687	.4688	.40964	0.0156
	Southern Tier	694	.5214	.39799	0.0151
Winter Weekend Morning Open	Mid-Tier	687	.2481	.36585	0.0140
	Southern Tier	694	.2278	.34356	0.0130
Winter Weekend Morning Half Open	Mid-Tier	687	.2797	.35844	0.0137
	Southern Tier	694	.2657	.34208	0.0130
Winter Weekend Morning Closed	Mid-Tier	687	.4726	.40729	0.0155
2	Southern Tier	694	.5069	.39736	0.0151

				Indep	endent Sampl	es Test				
			s Test for f Variances			t-te	st for Equality of	Means		
		. ,					Mean	Std. Error	95% Confidence Interval of the Difference	
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper
Summer Weekday Afternoon Open	Equal variances assumed	24.852	.000	3.325	1379	.001	.05177	.01557	.02123	.08231
	Equal variances not assumed			3.323	1344	.001	.05177	.01558	.02121	.08234
Weekday a Afternoon Half Open E	Equal variances assumed	19.442	.000	3.806	1379	.000	.06897	.01812	.03342	.10452
	Equal variances not assumed			3.804	1360	.000	.06897	.01813	.03340	.10454
Summer Weekday Afternoon	Equal variances assumed	6.811	.009	-5.891	1379	.000	12064	.02048	16081	08047
Closed	Equal variances not assumed			-5.889	1373	.000	12064	.02049	16083	08045
Summer Weekend Afternoon Open	Equal variances assumed	21.377	.000	2.899	1379	.004	.04764	.01644	.01540	.07988
	Equal variances not assumed			2.897	1353	.004	.04764	.01645	.01538	.07991
Summer Weekend Afternoon Half	Equal variances assumed	30.502	.000	4.258	1379	.000	.07907	.01857	.04264	.11549
Open	Equal variances not assumed			4.255	1345	.000	.07907	.01858	.04262	.11552

Summer Weekend After Closed	ekend After assumed ed Equal variances	6.772	.009	-6.051	1379	.000	12661	.02092	16765	08556
	Equal variances not assumed			-6.049	1374	.000	12661	.02093	16766	08555
Winter Weekday Afternoon Open	tr assumed	02043	.05501							
				.899	1372	.369	.01729	.01923	02044	.05502
Winter Weekday Afternoon Half Open		7.427	.007	1.400	1379	.162	.02619	.01870	01050	.06288
				1.400	1369	.162	.02619	.01871	01051	.06290
Winter Weekday Afternoon Closed		5.152	.023	-1.996	1379	.046	04336	.02172	08597	00075
				-1.996	1375	.046	04336	.02172	08598	00075
Winter Weekend Afternoon Open		5.715	.017	1.176	1379	.240	.02261	.01923	01511	.06033
				1.176	1371	.240	.02261	.01923	01512	.06034
Winter Weekend Afternoon Half		2.132	.145	.697	1379	.486	.01328	.01907	02412	.05068
Open	Equal variances not assumed			.696	1375	.486	.01328	.01907	02413	.05069

Winter Weekend Afternoon	Equal variances assumed	.776	.379	-1.655	1379	.098	03583	.02165	07831	.00665
Closed	Equal variances not assumed			-1.654	1378	.098	03583	.02166	07831	.00665
Summer Weekday Evening Open	Equal variances assumed	42.218	.000	4.279	1379	.000	.06284	.01468	.03403	.09164
	Equal variances not assumed			4.274	1310	.000	.06284	.01470	.03400	.09167
Summer Weekday Evening Half	Equal variances assumed	13.977	.000	3.526	1379	.000	.06071	.01722	.02693	.09449
Open	Equal variances not assumed			3.524	1365	.000	.06071	.01723	.02692	.09450
Summer Weekday Evening Closed	Equal variances assumed	11.542	.001	-6.132	1379	.000	12333	.02011	16278	08387
	Equal variances not assumed			-6.130	1370	.000	12333	.02012	16279	08386
Summer Weekend Evening Open	Equal variances assumed	40.514	.000	3.897	1379	.000	.05976	.01533	.02968	.08984
	Equal variances not assumed			3.893	1317	.000	.05976	.01535	.02964	.08987
Summer Weekend Evening Half	Equal variances assumed	12.911	.000	3.222	1379	.001	.05834	.01811	.02282	.09386
Open	Equal variances not assumed			3.221	1366	.001	.05834	.01811	.02281	.09388

Summer Weekend Evening Closed	Equal variances assumed	10.982	.001	-5.688	1379	.000	11788	.02072	15853	07722
	Equal variances not assumed			-5.686	1371	.000	11788	.02073	15855	07721
Winter Weekday Evening Open	Equal variances assumed	1.886	.170	.830	1379	.407	.01362	.01641	01857	.04581
	Equal variances not assumed			.830	1374	.407	.01362	.01641	01858	.04582
Winter Weekday Evening Half Open	Equal variances assumed	7.295	.007	2.517	1379	.012	.04525	.01798	.00998	.08052
	Equal variances not assumed			2.516	1370	.012	.04525	.01799	.00997	.08053
Winter Weekday Evening Closed	Equal variances assumed	4.982	.026	-2.750	1379	.006	05869	.02134	10055	01683
	Equal variances not assumed			-2.750	1375	.006	05869	.02134	10056	01682
Winter Weekend Evening Open	Equal variances assumed	1.820	.178	.698	1379	.485	.01178	.01688	02133	.04490
	Equal variances not assumed			.698	1374	.485	.01178	.01688	02134	.04490
Winter Weekend Evening Half	Equal variances assumed	2.548	.111	1.312	1379	.190	.02401	.01831	01190	.05992
Open	Equal variances not assumed			1.311	1373	.190	.02401	.01831	01191	.05993

Winter Weekend Evening Closed	Equal variances assumed	2.435	.119	-1.650	1379	.099	03571	.02164	07816	.00675
	Equal variances not assumed			-1.650	1377	.099	03571	.02165	07817	.00675
Weekend Evening Closed Summer Weekday Morning Open Summer Weekday Morning Half Open Summer Weekday Morning Closed Summer Weekend Morning Open	Equal variances assumed	21.601	.000	3.022	1379	.003	.04895	.01620	.01717	.08074
	Equal variances not assumed			3.019	1346	.003	.04895	.01621	.01715	.08076
Summer Weekday Morning Half	Equal variances assumed	5.776	.016	2.750	1379	.006	.04969	.01807	.01425	.08513
Open	Equal variances not assumed			2.749	1372	.006	.04969	.01807	.01424	.08515
Summer Weekday Morning Closed	Equal variances assumed	1.332	.249	-4.789	1379	.000	09872	.02061	13915	05828
	Equal variances not assumed			-4.789	1377	.000	09872	.02061	13915	05828
Summer Weekend Morning Open	Equal variances assumed	28.264	.000	3.109	1379	.002	.05233	.01683	.01931	.08535
	Equal variances not assumed			3.107	1342	.002	.05233	.01685	.01929	.08538
Summer Weekend Morning Half	Equal variances assumed	21.247	.000	3.582	1379	.000	.06606	.01844	.02988	.10223
Open	Equal variances not assumed			3.580	1354	.000	.06606	.01845	.02986	.10226

Equal variances assumed	5.859	.016	-5.633	1379	.000	11823	.02099	15940	07705
Equal variances not assumed			-5.631	1375	.000	11823	.02099	15941	07704
Equal variances assumed	4.621	.032	1.110	1379	.267	.02132	.01921	01636	.05899
Equal variances not assumed			1.110	1373	.267	.02132	.01921	01637	.05900
Equal variances assumed	6.293	.012	1.693	1379	.091	.03138	.01853	00498	.06773
Equal variances not assumed			1.693	1371	.091	.03138	.01854	00499	.06774
Equal variances assumed	2.391	.122	-2.418	1379	.016	05256	.02173	09520	00993
Equal variances not assumed			-2.418	1377	.016	05256	.02174	09520	00992
Equal variances assumed	5.100	.024	1.063	1379	.288	.02030	.01910	01716	.05776
Equal variances not assumed			1.063	1372	.288	.02030	.01910	01718	.05777
Equal variances assumed	2.912	.088	.742	1379	.458	.01399	.01885	02300	.05097
Equal variances not assumed			.742	1375	.458	.01399	.01886	02300	.05098
	assumed Equal variances not assumed Equal variances assumed Equal variances not assumed Equal variances not assumed Equal variances assumed Equal variances assumed Equal variances not assumed Equal variances assumed Equal variances assumed Equal variances assumed Equal variances assumed Equal variances assumed Equal variances assumed Equal variances assumed Equal variances assumed	assumedImage: second secon	assumedImage: second secon	assumedImage: second secon	assumedImage: set of the set o	assumedImage: source sourc	assumed Image: bit image:	assumed Image: Constraint of the symmet of the	assumed Image Image <thimage< th=""> Image Image <t< td=""></t<></thimage<>

Winter	Equal variances	1.326	.250	-1.585	1379	.113	03431	.02165	07679	.00817
Weekend	assumed									
Morning Closed										
	Equal variances			-1.584	1377	.113	03431	.02166	07679	.00817
	not assumed									

Endnotes

¹ The α value represents the behavioral error rate. In other words, should we repeat the survey in at least 95% of the cases we would observe a difference between the Northern and Southern climate zones in the share of window coverings in a closed position per household.

² Schaeffer, N.C., and S. Presser. 2003. "The Science of Asking Questions." *Annual Review of Sociology* 29:65-88.

⁴ A bow window is a rounded set of windows that project from the wall in an arc shape, consisting of windows of the same type (all double hung, for example).

- ⁵ U.S. Census Bureau, Current Population Survey, 2012 Annual Social and Economic Supplement.
- ⁶ U.S. Energy Information Administration, Residential Energy Consumption Survey, March 28, 2011.
- ⁷ U.S. Census Bureau, American Housing Survey 2009.
- ⁸ U.S. Energy Information Administration, Residential Energy Consumption Survey, March 28, 2011.
- ⁹ Ducker Research Company, Inc., *Study of the U.S. Market For Windows, Doors and Skylights,* Published on behalf of the American Architectural Manufacturers Association and the Window and Door Manufacturers Association, May 2010.

¹⁰ Information Provided to D&R International by WCMA

- ¹¹ Poetsch, S., & Gaudry, P. (2012, May 31). [E-mail interview by E. Phan-Gruber].
- ¹² Poetsch, S., & Gaudry, P. (2012, May 31). [E-mail interview by E. Phan-Gruber].
- ¹³ Barrett, Deb. *Blind and Shade Industry Snapshot*. Rept. N.p.: IBIS World, 2012. Print.
- ¹⁴ Information provided to D&R International by WCMA members.
- ¹⁵ Information provided to D&R International by WCMA members.
- ¹⁶ Information provided to D&R International by WCMA members.
- ¹⁷ Information provided to D&R International by WCMA members.
- ¹⁸ U.S. Census Bureau, 2010 Census, American FactFinder.
- ¹⁹ U.S. Census Bureau, 2010 American Community Survey, American FactFinder.

²⁰ Ibid.

- ²¹ U.S. Census Bureau, 2007-2011 American Community Survey, American FactFinder.
- ²² U.S. Census Bureau, 2010 Census, American FactFinder.
- ²³ U.S. Census Bureau, Housing and Household Economic Statistics Division, Fertility & Family Statistics Branch, 2010.
- ²⁴ Bureau of Labor Statistics, "The Employment Situation-August 2012", U.S. Department of Labor, September 2012.
 ²⁵ Ibid.
- ²⁶ U.S. Census Bureau, 2010 American Community Survey, American FactFinder.

²⁷ Ibid.

²⁸ U.S. Census Bureau, Current Population Survey, Computer and Internet Use in the United States: 2010.

- ²⁹ U.S. Census Bureau: State and County QuickFacts. Accessed August 2012.
- ³⁰ U.S. Census Bureau, Census 2010 Census Summary File 1, American FactFinder.
- ³¹ U.S. Census Bureau, American Housing Survey, 2009.
- ³² Figure from the U.S. Census Bureau, American Community Survey, 2010.

³³ Ibid.

- ³⁴ Figure compiled from U.S. Census Bureau, Foreign Trade Division. Accessed August 2012.
- ³⁵ Estimate based on consultation with WCMA members.
- ³⁶ Estimates based on consultation with WCMA members.
- ³⁷ Environmental Protection Agency. ENERGY STAR website.

http://www.energystar.gov/ia/products/windows_doors/Promotional_Map.pdf?a700-e9aa. Accessed 31 July 2012.

³⁸ U.S. Department of Energy, "Residential Provisions of the 2012 International Energy Conservation Code." July 2011.

http://www.energycodes.gov/becu/documents/2012iecc_residential_BECU.pdf. Accessed 31 July 2012.

³⁹ Bradburn, N., S. Sudman, and B.Wansink. 2004. *Asking Questions: The Definitive Guide to Questionnaire Design.* San Francisco: Jossey-Bass.

⁴⁰ Zickuhr, K., and A. Smith. 2012. *Digital Divide*. Internet & American Life Project. Washington, D.C.: Pew Research Center.

⁴¹ U.S. Census Bureau. Current Population Survey. 2012 Annual Social and Economic Supplement.

³ A transom window is an operable or fixed window on the upper portion of a wall or above other windows or doors on an upper part of a wall.

DOE/EE-0965 September 2013

Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post-consumer waste.