How Do We Retrofit Tough Buildings? Foundation Insulation for Existing Homes

Building America Technical Update April 29 & 30, 2013

Patrick H. Huelman **Cold Climate Housing Coordinator** University of Minnesota Extension

Foundation Insulation for Existing Homes

Context

- Focused on basements and crawlspaces.
- Aimed at cold climates (Climate Zones 6 & 7).
- Generally aimed at liquid active walls.

Approach

- Managing risks
- Current solutions & best practices
- Evaluating new approaches

- Primary focus is to reduce energy use by 30 to 50% with emphasis on existing homes.
- Promote building science solutions using a systems engineering and integrated design approach.
- "Do no harm" => must ensure that safety, health, and durability are maintained or improved.
- Intended to accelerate the adoption of highperformance technologies.

Foundation Insulation for Existing Homes

- Should we insulate basement walls of existing homes?
 - Comfort => certainly
 - Energy => yes
 - Moisture => probably
 - Indoor Air Quality => with caution
- How should we insulate existing basement walls?
 - It's a system.
 - It depends!

ORNI 2011-001299/dox

Figure 2-1: Concrete Masonry Basement Wall with Exterior Insulation

Basement Insulation: Opportunities

- Foundation heat loss can be significant in existing buildings.
- While below grade temperature differences might be smaller,
 - the surface area can be fairly large
 - the above grade portion can be large, especially in older homes.
- There are a lot of uninsulated foundations in cold climates.

Basement Insulation: Obstacles

- Most existing foundations lack
 - waterproofing and/or
 - capillary break.
- In cold climates,
 - the top of the foundation is very cold in the winter,
 - the bottom of the foundation can be below the dewpoint in summer.

- Foundations get wet from all four sides by all four moisture transport mechanisms
 - bulk water, capillarity, diffusion, and air flow,
- The foundation wall must dry inward; interior insulation generally limits this drying potential.

Foundation Insulation for Existing Homes

- Challenges of adding insulation to existing foundation walls, especially on the interior ...
 - We have limited experimental data sets.
 - Existing modeling tools are crude and poorly validated.
 - Existing material properties and boundary conditions are highly variable and unknown, so we must focus on ...
 - developing a liquid water management approach,
 - balancing R-value and vapor diffusion characteristics,
 - evaluating safe moisture storage,
 - identifying risk and risk tolerance.

Perception of Risk

- Which surfaces or layers can be:
 - Saturated?
 - Frozen?
 - Moldy?

Foundation Insulation Solution Sets

- Option 1: Customized Approach
 - Based on a holistic assessment of:
 - site conditions,
 - basement conditions,
 - foundation construction details, and
 - interior conditions.
- Option 2: Universal Approach
 - Do we have one-size fits all designs?

Foundation Insulation Solution Sets

- Universal Approaches
 - Existing wall is likely liquid water active
 - No exterior water proofing or capillary break
 - Signs of water staining and efflorescence
 - Most CMU
 - Existing wall is not liquid water active
 - Good waterproofing and capillary break
 - Very dry soil and site conditions

Foundation Insulation Solutions Walls That Are Liquid Water Active

- Exterior options
 - Most will work very well
 - Rarely will increase risks
 - Can mitigate bulk water issues
- Interior options
 - Generally more risky
 - Will likely require a water separation plane

Foundation Insulation Solutions (water active; exterior)

Figure 2-3: Components of Basement Drainage and Waterproofing System

Source: Oak Ridge National Laboratory

Foundation Insulation Solutions

(water active; interior)

Source: Building

Science Corporation

Foundation Insulation Solutions

(water active; interior)

Source: Building

Science Corporation

Foundation Insulation Solutions Walls That Are Not Liquid Water Active

- Exterior options are pretty much wide open
 - Partial insulation-only options are viable
- Interior options improve
 - Generally requires a semi-impermeable insulation
 - but must be airtight and limit exterior wetting

Foundation Insulation Solutions

(not water active; interior)

Figure 2-15: Basement Wall with Interior Insulation

Foundation Insulation Solutions

(not water active; interior)

Source: Building

Science Corporation

Foundation Insulation Caution

- Basement Renovation Touches It All
 - Combustion safety
 - Foundation moisture
 - Radon (& other soil gases)
 - Biologicals (mold, dust mites, etc.)
 - Garage gases (if attached)
- And front and center are uncontrolled...
 - negative pressures in basements
 - below grade moisture transport

Foundation Insulation Caution

- If a Basement Floods ...
 - Floor coverings must be removed to facilitate clean-up and improve drying.
 - Interior insulation systems must be fully removed because they are contaminated and retard drying.
 - From field experience, exterior foam plastic insulation systems appear to recover with little deterioration in performance.

Building America: 2011-12 Project Innovative Exterior Retrofit Options

- Exploration of methods to insulate the exterior of existing homes.
 - Identify novel approaches that could be used
 - Investigate means and methods
 - Determine how many homes would be conducive to each approach

The Ins and Outs of the Outside Approach

- Exterior foundation insulation confers multiple hygrothermal benefits
- Missing moisture control can be added,
 - or importance is diminished, because the wall is warm and can dry readily to interior.
- Typical exterior approaches are costly, destructive, and disruptive.
- A cost-competitive, minimally-invasive technique is needed!

Technical Approach

- To find an "excavationless" exterior foundation insulation upgrade that is ...
 - cost-competitive with current methods and
 - has minimal impact to existing site/landscape features.
- Identify potential technologies, costs, and savings
 - Identify promising means and materials.
 - Interviews with industry representatives to establish suitability, along with cost estimates.
 - Analysis of base costs for traditional insulation upgrades.
 - BEOpt analysis to establish energy savings potential.

Recommended Guidance

- Cut a narrow slot trench using air/hydro-vac
- Backfill with one of three potential materials:
 - 4" pourable polyurethane (R-26)
 - 6" cellular concrete (R-9 to R-11)
 - 6" perlite aggregate concrete (R-9 to R-11)
- Above-grade foundation and insulation
 - application of rigid insulation is one possibility
- Potential for moisture mitigation
 - add waterproofing membranes prior to installation
 - using "hygrophobic" admixtures for cementitious or foam materials.

Cost Comparison Table *

Product	Insulation Type	Total R- value (h ft ² °F/Btu)	Material cost	Labor cost	Excavation technology	Excavation cost	Total cost
Rigid mineral wool	Rigid board	10 (2.38" thick)	\$689	\$3198	Traditional power shovel	\$2920	\$6807
Extruded polystyrene	Rigid board	10 (2" thick)	\$630	\$3198	Traditional power shovel	\$2920	\$6748
Expanded polystyrene	Rigid board	8 (2" thick)	\$336	\$3198	Traditional power shovel	\$2920	\$6454
Cellular concrete	Cast in place	9 (6" thick)	\$3000	included	Hydro-vac	\$2600	\$5600
Perlite Concrete	Cast in place	11 (6" thick)	\$3529	included	Hydro-vac	\$2600	\$6129
Polyurethane foam	Cast in place	26 (4" thick)	\$3360	included	Hydro- <u>vac</u>	\$2000	\$5360

^{*} Cost does not include landscaping remediation, which will likely be higher for "traditional" methods

"Excavationless" Pros

- Exterior insulation can be forgiving of existing defects.
- Vacuum excavation methods reduce landscape impact.
- Many landscape features (walks, stoops, decks, etc.) can remain in place with vacuum excavation.
- Process can be quick (2 to 3 days for a simple home).
- Pourable insulation materials can be made relatively waterproof, potentially reducing bulk water intrusion.
- Cost competitive with, and likely cheaper than, current methods of exterior insulation upgrades.

"Excavationless" Cons

- Method does not address moisture loading from sources such as capillarity from the footing or through the slab.
- More expensive than typical interior insulation methods
 - though most of these increase risk of moisture problems.
- Long-term thermal properties of materials are unknown
 - potential for moisture accumulation within pore spaces may cause thermal degradation.
- Large obstructions (patio slabs, sidewalks) may need to be sawcut to the trench width or removed and replaced.
- Extent of waterproofing ability, and durability of that solution are not well-characterized.

Market Potential

- Survey selected neighborhoods to evaluate constructability issues
 - House constraints
 - steps, stoops & porches
 - attached garage
 - sidewalks & landscaping
 - cantilevers
 - Access issues
 - equipment limitations

Market Potential

Market Potential

"Excavationless" Summary

- Foundation insulation has a significant energy impact
 - and perhaps more importantly large comfort benefits.
- Exterior insulation confers many hygrothermal benefits
 - compared to typical interior approaches.
- Homeowners who understand these benefits currently choose exterior insulation upgrades
 - despite the inconvenience, cost, and landscape damage.
- Technologies evaluated are in current use in other sectors.
- Estimates indicate the method is cost competitive
 - with current exterior insulation upgrade methods and
 - replacement of landscape features was not included.

Building America: 2013-14 Project Innovative Exterior Retrofit Options

- Further investigation of means and methods
 - Comparison of available equipment/techniques
 - Continue material down selection and optimization

- Field demonstration and proof of concept
 - Address common accessibility issues
 - Identify critical process steps
 - Improve cost estimates

Building America: 2012-13 Project Innovative Retrofit Options for CMU

- Exploration of novel methods to insulate hollow concrete masonry block foundations.
 - Using existing models
 - To determine energy/hygrothermal benefits
 - Investigate means and methods to insulate cores
 - Estimate cost factors

Innovative Retrofit Options for CMU

- CMU is prevalent in this market
 - Especially for older homes
 - Frequently shows moisture activity
 - Open core top is common
- Convective looping contributes to
 - increased energy loss,
 - reduced interior surface temperature, and
 - hygric redistribution.

Figure 2-1: Concrete Masonry Basement Wall with Exterior Insulation

Innovative Retrofit Options for CMU

- Focus on core fill (or partial core fill)
 - Identify hygrophobic insulating material (or material with potential for safe storage)
 - pourable
 - sprayable
 - Determine potential installation processes
- Compatibility with other techniques

Innovative Retrofit Options for CMU

- Core Fill Benefits
 - Improved comfort
 - Condensation control
 - Energy savings
 - Reduced latent load
- Enable future add-ons
 - Exterior top of wall only
 - Interior whole or partial wall

Building America Resources

- Excavationless Exterior Foundation Insulation
 - http://apps1.eere.energy.gov/buildings/publications/pdfs/ building america/excavationless exterior found.pdf
- Hybrid Foundation Insulation Retrofit
 - http://apps1.eere.energy.gov/buildings/publications/pdfs/ building america/measure guide hybrid found.pdf
- High R-Value Foundations
 - http://apps1.eere.energy.gov/buildings/publications/pdfs/ building america/high-r foundations report.pdf
- Basement Insulation Guide
 - http://apps1.eere.energy.gov/buildings/publications/pdfs/ building america/measure guide basement insul.pdf%20

World Class Research...

... at Your Fingertips

Building America Solution Center

JUST RELEASED!

http://basc.pnnl.gov

Foundation Insulation for Existing Homes

- Questions?
- Contact Information
 - Patrick H. Huelman
 - 203 Kaufert Lab; 2004 Folwell Ave.
 - St. Paul, MN 55108
 - **-** 612-624-1286
 - phuelman@umn.edu

