

ORNL, Molex, PARC Teja Kuruganti, Senior R&D Staff

Project Lead – Oak Ridge National Laboratory (ORNL)

- Systems integration to develop high degree of coordination between novel communication technology, sensors, energy harvesting
- Low-power, low-data rate communication technology driven by innovation in spread spectrum techniques.
- Roll-to-roll deposition techniques that enable high-volume throughput of semiconductor and electronic materials and devices
- Innovative thermal annealing techniques, such as pulse thermal processing (PTP), will permit high-temperature processing of thin-film materials on low-cost flexible polymer substrates at a minimal thermal budget.

Manufacturing Partner - Molex

- 45 design, development and manufacturing centers in 17 countries.
- Variety of printing systems used for fabricating electronic circuits and devices and includes a state-of-the-art nine station roll-to-roll printing system with rotary screen and flexographic capability as well as a variety of curing modules and multiple flatbed screen printing systems

Printed Electronics Materials and Processing – PARC

- Materials science, modeling, electronics and circuit design, materials deposition and patterning, metrology, device analysis, and system integration
- Wide range of printing and coating techniques including ink jet, screen, extrusion, aerosol jet, gravure, spin casting, slot dye coating, doctor blading, and more.

Self-powered "peel-andstick" low-cost wireless sensors enable control system upgrades that could potentially reduce energy consumption of buildings by up to 20-30% ORNL-developed sensor platform has potential to reduce cost from \$150-300/node to \$1-10/node while also reducing installation cost.*

*Price points may vary based on market conditions.

Provide information for optimal control of energy-consuming systems (HVAC, lighting); enable fault detection and diagnostics

Project Focus: Develop Self-powered wireless sensor technology and System-level integration exploiting roll-to-roll manufacturing compatible technologies

Target Market and Audience:

- All residential and commercial buildings.
 - Small and medium commercial buildings improved control of energy providing opportunity for 6-8 quads of energy savings potential
 - Large commercial buildings improved control of energy use optimization, and diagnostics of large equipment with 8-9 quads of energy savings potential

Technology Solution

Current wireless sensor Platform: \$150-\$300/node

Proposed Advanced Sensors Platform: \$1-\$10/node

Four Key Elements of Technology

- 1 Low-power Wireless Communication
- 2 Energy-Harvesting and Storage
- 3 Integrated System Design
- 4 Innovative low-cost manufacturing

Approach

- Ultra-low power wireless communication:
 - Printed Antenna, Spread Spectrum
 Communication
- Energy harvesting:
 - Thin Rechargeable Battery, Flexible PV
- Multiple sensors:
 - Temperature, humidity and light sensors
- Thin, light form factor:
 - Base circuit printed on PET film
 - Low temperature solder based component attach

Key Technology Improvements

- → Low-power wireless
- → Multifunctional sensor
- → Advanced materials

Project Impact: The project envisions reducing the cost barriers to deploying advanced sensors to enable optimization of energy usage. The project will develop and demonstrate low-cost wireless sensors along with path towards roll-to-roll manufacturing techniques.

- <u>Near Term</u>: Demonstrate end-to-end technology and identify path towards low-cost manufacturing through industrial partnerships
- <u>Intermediate Term</u>: Identify building equipment and automation manufacturing partner(s) for commercialization and deployment tailored to specific building applications
- Long Term: Demonstrate energy savings realized by widespread adoption of the low-cost sensors within buildings

Thank You

ORNL, Molex, PARC Teja Kuruganti, Senior R&D Staff

