

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Commercial Refrigeration Expansion Loss Reduction Technique

Oak Ridge National Laboratory Brian A. Fricke (R&D Staff) 865.576.0822, frickeba@ornl.gov

Project Summary

Timeline:

Start date: Oct 1, 2017

Planned end date: Sept 30, 2020

Key Milestones

- 1. Formalize collaboration with industry, Dec 31, 2018
- 2. Experimental evaluation of pressure exchanger performance, Dec 31, 2019

Budget:

Total Project \$ to Date:

- DOE: \$658K
- Cost Share: \$0

Total Project \$:985K

- DOE: \$870
- Cost Share: \$25K

Key Partners:

THE UNIVERSITY OF TENNESSEE KNOXVILLE

Project Outcome:

ORNL will collaborate with industry and academia to develop a pressure exchanger for implementation in refrigeration systems that use carbon dioxide (R744). The outcome from this project will consist of a computer simulation tool for the pressure exchanger. In addition, a prototype pressure exchanger will be fabricated for use in a commercial refrigeration system using R744.

Team

- Oak Ridge National Laboratory
 - Brian Fricke (R&D staff)
 - Kashif Nawaz (R&D staff)
 - Ahmed Elatar (Postdoctoral associate)
 - Vishaldeep Sharma (R&D staff)
- Energy Recovery, Inc.
 - Azam Thatte (Director of Engineering)
- Hillphoenix
 - Michael May (Head of R&D, Innovation)
 - Jeff Newell (Director of R&D)
- University of Tennessee
 - William Miller (Lecturer)

Challenge

- Pressure losses are unavoidable in HVAC&R systems
 - Pressure drop in piping, heat exchangers, etc.
- Pressure loss in certain components can be recovered, e.g., expansion processes
 - Ejectors
 - Turbines/expanders
- Existing techniques have limited implications due to operating constraints
- Transcritical CO₂ refrigeration systems
 - Systems operate at high pressures
 - Expansion processes lead to significant "lost work"
 - Performance could be enhanced with work recovery

Second Law Efficiency

- Components of vapor compression refrigeration cycle
 - Compressor, condenser, expansion device, evaporator
- Irreversibility in these components
 - Fluid friction
 - Heat transfer through a finite temperature difference
- Consider the expansion device
 - Isenthalpic process
 - First Law: $h_{in} = h_{out}$
 - Second Law: $\dot{S}_{gen} = \dot{m}(s_{out} s_{in})$

- Second Law Efficiency:
$$\varepsilon = \frac{h_{out} - h_o - T_o(s_{out} - s_o)}{h_{in} - h_o - T_o(s_{in} - s_o)}$$

Second Law Efficiency

High-Pressure Expansion Valve	Temperature (°F)	Pressure (psia)	Enthalpy (Btu/Ibm)	Entropy (Btu/Ibm R)
Inlet	94.0	1310	127.2	0.3119
Outlet	33.5	517	127.2	0.3223
T _o , P _o	77.0	14.7	217.6	0.6541

Second Law Efficiency:

$$\varepsilon = \frac{h_{out} - h_o - T_o(s_{out} - s_o)}{h_{in} - h_o - T_o(s_{in} - s_o)}$$
$$\varepsilon = 0.875$$

Approach

- Design and implement "pressure exchanger" (PX) technology in refrigeration systems
- Challenges for integration
 - Seals are critical path component for successful implementation
 - Laboratory data is sparse
 - Information is lacking on component design and implementation

MP water

Approach

4-Port PX for CO₂ refrigeration

- PX is used to replace high-pressure expansion value and increase pressure of the medium-temperature suction
- Reduces power consumption of medium-temperature compressor
- COP increases upwards of 15% if suction flow boosted by PX
- Other configurations possible

Approach

- Model the pressure exchanger, develop designs, and test the designs in benchtop test stands
- Validate the technology to evaluate the potential improvement in performance
- Develop practical performance correlations for commercial systems

Impact

- Commercial refrigeration in food retail:
 - 550 TBtu of primary energy per year
 - 25 Mt CO₂ emissions per year
- Estimated to increase efficiency of CO₂ (R744) refrigeration systems by up to 15%
 - Annual energy savings: 66 TBtu
 - ~\$600M savings in electric bills for commercial refrigeration customers
- Increased deployment of the low-GWP refrigerant CO₂ (R744) in commercial refrigeration:
 - R404: GWP = 3900
 - R744: GWP = 1
- Extended use of CO₂ refrigeration systems into warmer climates
- Direct support of BTO Emerging Technologies 2016-2020 MYPP
 - By 2030, develop cost-effective technologies capable of reducing a building's energy use per square foot by 45%, relative to 2010

Progress — Industrial Engagement

- Energy Recovery, Inc., has been engaged
 - Global leader in pressure energy technology
 - Primary market: Water desalination
 - Great potential for work recovery
- There are some major differences compared with proposed implementation

	MEN	IBRANE
High Pressure Pump	ENERGY RECYCLING	Low Pressure Potable Water High Pressure
Low Pressure Seawater	PX PRESSURE EXCHANGER	Reject Water

Desalination	Refrigeration				
High operating pressure	Moderate operating pressure				
Moderate operating temperatures	Moderate operating temperature				
Working fluid: liquid	Working fluid: liquid and vapor				
Mixing is not desired	Mixing is acceptable				

• PX: Analogy to Heat Exchangers

Heat Exchanger

Transfer heat energy

Involves heat losses

Fluids can be in liquid/gas or 2-phase state

Phase change process can occur during the transport process

Geometry establishes the effectiveness

Pressure Exchanger

Transfer work energy

Involves pressure losses

Fluids can be in liquid/gas or 2-phase state

Phase change process can occur during the transport process

Geometry establishes the effectiveness

• PX: Analogy to Heat Exchangers

Heat Exchanger

$$q_{max} = C_{min} (T_{h,i} - T_{c,i})$$

$$\varepsilon = \frac{q}{q_{max}}$$

$$\varepsilon = \frac{C_c (T_{c,o} - T_{c,i})}{C_{min} (T_{h,i} - T_{c,i})}$$

$$q = \varepsilon C_{min} (T_{h,i} - T_{c,i})$$

$$\varepsilon = f \left(NTU, \frac{C_{min}}{C_{max}} \right)$$

$$NTU \equiv \frac{UA}{C_{min}}$$

$$W_{max} = v_{min} (P_{h,i} - P_{l,i})$$

$$\varepsilon = \frac{W}{W_{max}}$$

$$\varepsilon = \frac{v_l (P_{l,o} - P_{l,i})}{v_{min} (P_{h,i} - P_{l,i})}$$

$$W = \varepsilon v_{min} (P_{h,i} - P_{l,i})$$

$$\varepsilon = f \left(NTU, \frac{v_{min}}{v_{max}} \right)$$

$$NTU \equiv \frac{\Delta P_{max} - \Delta P_{loss}(f, mixing)}{\Delta P_{max}}$$

• PX: Analogy to Heat Exchangers

Heat Exchanger

$$q_{max} = C_{min}(T_{h,i} - T_{c,i})$$

$$\varepsilon = \frac{q}{q_{max}}$$

$$\varepsilon = \frac{C_c(T_{c,o} - T_{c,i})}{C_{min}(T_{h,i} - T_{c,i})}$$

$$q = \varepsilon C_{min}(T_{h,i} - T_{c,i})$$

$$\varepsilon = f\left(NTU, \frac{C_{min}}{C_{max}}\right)$$

$$NTU \equiv \frac{UA}{C_{min}}$$

$$W_{max} = v_{min} (P_{h,i} - P_{l,i})$$

$$\varepsilon = \frac{W}{W_{max}}$$

$$\varepsilon = \frac{v_l (P_{l,o} - P_{l,i})}{v_{min} (P_{h,i} - P_{l,i})}$$

$$W = \varepsilon v_{min} (P_{h,i} - P_{l,i})$$

$$\varepsilon = f \left(NTU, \frac{v_{min}}{v_{max}} \right)$$

$$NTU \equiv \frac{\Delta P_{max} - \Delta P_{loss}(f, mixing)}{\Delta P_{max}}$$

• PX: Analogy to Heat Exchangers

Heat Exchanger

$$q_{max} = C_{min}(T_{h,i} - T_{c,i})$$
$$\varepsilon = \frac{q}{q_{max}}$$
$$\varepsilon = \frac{C_c(T_{c,o} - T_{c,i})}{C_{min}(T_{h,i} - T_{c,i})}$$
$$q = \varepsilon C_{min}(T_{h,i} - T_{c,i})$$
$$\varepsilon = f\left(NTU, \frac{C_{min}}{C_{max}}\right)$$
$$NTU \equiv \frac{UA}{C_{min}}$$

$$W_{max} = v_{min}(P_{h,i} - P_{l,i})$$
$$\varepsilon = \frac{W}{W_{max}}$$
$$\varepsilon = \frac{v_l(P_{l,o} - P_{l,i})}{v_{min}(P_{h,i} - P_{l,i})}$$
$$W = \varepsilon v_{min}(P_{h,i} - P_{l,i})$$
$$\varepsilon = f\left(NTU, \frac{v_{min}}{v_{max}}\right)$$
$$NTU \equiv \frac{\Delta P_{max} - \Delta P_{loss}(f, mixing)}{\Delta P_{max}}$$

• PX: Analogy to Heat Exchangers

Heat Exchanger

$$q_{max} = C_{min}(T_{h,i} - T_{c,i})$$

$$\varepsilon = \frac{q}{q_{max}}$$

$$\varepsilon = \frac{C_c(T_{c,o} - T_{c,i})}{C_{min}(T_{h,i} - T_{c,i})}$$

$$q = \varepsilon C_{min}(T_{h,i} - T_{c,i})$$

$$\varepsilon = f\left(NTU, \frac{C_{min}}{C_{max}}\right)$$

$$NTU \equiv \frac{UA}{C_{min}}$$

$$W_{max} = v_{min} (P_{h,i} - P_{l,i})$$

$$\varepsilon = \frac{W}{W_{max}}$$

$$\varepsilon = \frac{v_l (P_{l,o} - P_{l,i})}{v_{min} (P_{h,i} - P_{l,i})}$$

$$W = \varepsilon v_{min} (P_{h,i} - P_{l,i})$$

$$\varepsilon = f \left(NTU, \frac{v_{min}}{v_{max}} \right)$$

$$TU \equiv \frac{\Delta P_{max} - \Delta P_{loss}(f, mixing)}{\Delta P_{max}}$$

Progress — Performance Characterization

Euler's equation (angular momentum): $\tau_A \Omega = \dot{m}(U_2 c_{\theta_2} - U_1 c_{\theta_1})$

Work imparted on fluid streams:

$$\Delta W_{LP} = \frac{\dot{W_{LP}}}{\dot{m_{LP}}} = \frac{\tau_A \Omega}{\dot{m_{LP}}} = \left(U_2 c_{\theta_2} - U_1 c_{\theta_1} \right) > 0$$
$$\Delta W_{HP} = \frac{\dot{W_{HP}}}{\dot{m_{HP}}} = \frac{\tau_A \Omega}{\dot{m_{HP}}} = \left(U_4 c_{\theta_4} - U_3 c_{\theta_3} \right) < 0$$

Efficiency of PX:

$$\eta_{PX} = \frac{\Delta W_{LP}}{\Delta W_{HP}}$$

$$R = h + \frac{1}{2}c^{2} - Uc_{\theta}$$
$$R_{lost,PX} = \Delta R_{HP} - \Delta R_{LP}$$

Progress — Numerical Analysis

- Performance of PX modeled with computational fluid dynamics (CFD) software package
- Model assumptions:
 - Stationary inlet/outlet ports
 - Rotor (1,000 RPM)
 - 12 channels in rotor
 - Channel length = 0.19 m
 - Channel diameter = 0.02 m
 - Rotor outside diameter = 0.18 m
 - Stationary port depth = 0.05 m

Progress — Numerical Analysis

Progress — Numerical Analysis

• Comparison of CFD model with existing experimental data (desalination data)

Mixing%

- Inflow length is defined as the total travelling distance of any flow inside the rotor duct
- Mixing is the term that quantifies the amount of mixing that occurs between the primary and secondary flow inside the PX

Stakeholder Engagement

- Development of the technology
 - Energy Recovery, Inc.
 - Non-disclosure agreement
 - Preliminary analysis
 - Prototype PX development
- Meetings with experts at technical forums
 - ASHRAE (TC 10.7)
 - Purdue conferences
- Presentations/conference papers
 - Paper to be presented at upcoming 25th International Congress of Refrigeration (August 24–30, 2019, Montreal)

Hillphoenix

Remaining Project Work

- Development of a pressure exchanger test apparatus and prototype pressure exchanger for R744 applications
- Experimental evaluation of pressure exchanger performance using R744
- Retrofit pressure exchanger in R744 refrigeration system

Thank You

Oak Ridge National Laboratory Brian A. Fricke (R&D Staff) 865.576.0822, frickeba@ornl.gov

REFERENCE SLIDES

Project Budget

Project Budget: \$870K Cost to Date: \$615K Additional Funding: Cost share from industry partner, \$25K

Budget History							
1 Oct 2017 – FY 2018 (past)		FY 2019 (current)		FY 2020 – Insert End Date (planned)			
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share		
\$382k	\$0	\$276k	\$0	\$212k	\$25k		

Project Plan and Schedule

Project Schedule								
Project Start: 1 Oct 2017			Milestone (originally planned))	
Project End: 30 Sept 2020			Milestone (actual)					
Task	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Oct-Dec)	Q2 (Jan-Mar)	Q3 (Apr-Jun)	Q4 (Jul-Sep)
FY19								
Q1 Milestone: Formalize collaboration with industry								
Q2 Milestone: Refrigeration system model with pressure exchanger								
Q3 Milestone: Pressure exchanger test apparatus								
FY20								
Q1 Milestone: Pressure exchanger performance evaluation								
Q2 Milestone: Pressure exchanger compatible with refrigeration system operating conditions								
Q4 Milestone: Retrofit pressure exchanger in refrigeration system								
Q4 Milestone: Implementation plan								