

Multifamily Ventilation Strategies and Compartmentalization Requirements

Sean Maxwell, CEM

Previous Research

 Where does makeup air come from?

- Centrally-ducted supply
- Door undercuts
- PTAC "fresh air kit"
- Passive vents (including trickle vents)

Airflows within an apartment

 $Q_{Fan} = \text{apartment exhaust flow}$

 $Q_{TV} = \text{supply airflow from trickle }$ vents

 $Q_{Ext} =$ air leakage from exterior envelope

 Q_{Int} = air leakage from other apartments through interior partitions (demising walls, ceiling, floor)

 $Q_{\it Corr} = {\it air leakage from corridor}$ walls

 $Q_{Door} =$ air leakage from corridor door

$$Q_{Fan} = Q_{TV} + Q_{Ext} + Q_{Int} + Q_{Corr} + Q_{Door}$$

Quantifying airflows

 $Q_{Fan} = \text{apartment exhaust flow} = \text{good}$

 $Q_{TV} = \text{supply airflow from the trickle vents} = \mathbf{good}$

 $Q_{Ext} = \text{air leakage from exterior envelope= good}$

 $Q_{Int}=$ air leakage from other apartments through interior partitions = bad

 Q_{Corr} = air leakage from corridor walls = bad

 $Q_{Door} = air leakage from corridor door = bad$

$$\frac{Q_{TV}}{Q_{Fan}}$$
 = controlled makeup air fraction

Greater than 50% = good?

Exhaust-only apartments

Apartments all equally depressurized

Open windows

- Someone burns a grilled cheese sandwich
- They open the window, the apt. drops to 0 Pa WRT outside
- Air moves freely in and out of apartment from outside

Other apartments receive pollution

- One apartment drops to 0 Pa WRT outside
- Air moves out of apartment into corridor
- Airflow from corridor into apartments
- Net pollutant transfer to other apartments

Passive Vent Tests

Trickle Vents

Wall Vents

[®] Steven Winter Associates, Inc. 201

Passive vents

Trickle Vent Tests

Trickle vent performance

Performance affected by installation

How to specify passive vents

- To specify properly, must know
 - Airtightness of apartment
 - Airtightness of door
 - Flow rate of exhaust
 - Performance of trickle vent
- Standard procedure = 1 vent per room
- Common trickle vent = 4 in² nominal opening per vent
- Common apartment = 70 in² total leakage, not including vents or door

Overview of two buildings

Summary table	Building 1	Building 2
ACH50	2.5	6.7
Exhaust	41 CFM	53 CFM
Supply from passive vents	11.5 CFM	4.3 CFM
Passive vent type	Trickle vents	Airlet®

Some super-tight apartments

CFM50

CFM50/SF

564	158*	127*
579	356	167*
585	180*	375

0.26	0.08*	0.06*
0.27	0.17	0.08*
0.27	0.09*	0.18

*enhanced sealing

What level is realistic?

Results of 600+ SWA MF Blower Door Tests

Operating Pressures

-5.7	-15.8*	-14.5*
0.6	-12	-4*
-3.3	-10.4*	-4.9

^{*}apts received enhanced sealing

- Trickle vents open
- Bath fan running
- Door closed
- Windows closed

Comparison – sealed vs. unsealed

Conditions:

- 1. Exhaust off
- Maximum pressure (exhaust on, trickle vents closed)
- Normal operation; (trickle vents open)
- 4. Door cracked
- Normal operation; (trickle vents open)
- 6. Exhaust off
- Pressure across exterior in standard apartment is close to zero
- Pressure response in sealed apartment much greater
- Inside and outside pressures track each other in sealed apt.

"Functional" leakage

Airflows in an ideal (very tight) apartment

			Flow at	Functional	Flow at
			50 Pa	Leakage	10 Pa
Blower Door Test	13.6 in ²	Q _{Ext} (20%)	22.0	Yes	9.8
	0.05	Q _{Int} (60%)	66.0	No	-
	CFM50/SF	Q _{Corr} (20%)	22.0	Yes	9.8
Door Leakage Test	2.5 in ²	Q_Door	20.0	No	8.9
Trickle Vent Test	8 in ²	Q_{TV}	64.8	No	29.0
Exhaust Flow Measurement			Q_{Fan}	58	

Controlled makeup air fraction =
$$\frac{Q_{TV}}{Q_{Fan}} = \frac{29}{58} = 50\%$$

Aerosol process (UC Davis)

Average at least 75% leakage reduction in 90 min.

- Sealing has an effect on neighbors
- Complex air barriers air seals created on interior surface

CFM50/SF

0.26	0.08*	0.06*
0.27	0.17	0.08*
0.27	0.09*	0.18

*aerosol sealing

What level is realistic?

Results of 600+ SWA MF Blower Door Tests

Conclusions

- Compartmentalization is beneficial for airflow control
- Field evaluation of under real-world conditions for passive vents is important
- Passive vents can function in extremely tight apartments, most of the time
- Great majority of projects cannot achieve necessary airtightness

Are these conditions realistically achievable on a wide scale?