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Abstract  
 

The Transactional Network Project is a multi-lab activity funded by the US Department of 

Energy’s Building Technologies Office. The project team included staff from Lawrence Berkeley 

National Laboratory, Pacific Northwest National Laboratory and Oak Ridge National Laboratory.  

The team designed, prototyped and tested a transactional network (TN) platform to support 

energy, operational and financial transactions between any networked entities (equipment, 

organizations, buildings, grid, etc.). PNNL was responsible for the development of the TN 

platform, with agents for this platform developed by each of the three laboratories. LBNL 

contributed applications to measure the whole-building electric load response to various 

changes in building operations, particularly energy efficiency improvements and demand 

response events. LBNL also provided a demand response signaling agent and an agent for cost 

savings analysis. Both LBNL and PNNL demonstrated actual transactions between packaged 

rooftop units and the electric grid using the platform and selected agents. This document 

describes the agents and applications developed by the LBNL team, and associated tests of the 

applications.  
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Transactional Network Platform Overview 
 

The Transactional Network (TN) project, funded by the Department of Energy’s (DOE’s) 

Building Technologies Office (BTO), is a multi-laboratory effort lead by Pacific Northwest 

National Laboratory (PNNL), with Lawrence Berkeley National Laboratory (LBNL) and Oak 

Ridge National Laboratory (ORNL) also contributing to the effort. This report provides a 

summary of the LBNL work to date.  LBNL designed, prototyped and tested components of this 

platform related to measuring system response to various planned modifications to the building 

operations. These modifications include energy efficient control strategies and automated 

demand response events.  

 

Building loads constitute a large proportion of the overall load on the electric grid, consuming 

about 70% of total electricity use in the United States.  The TN is intended to support energy, 

operational and financial transactions between networked entities (equipment, organizations, 

buildings, grid, etc.). The underlying platform of the Transactional Network consists of the PNNL 

developed VOLTTRON Lite™ (VL) agent execution software and a number of agents that 

perform specific functions (fault detection, demand response, weather service, logging service, 

etc.).  VL serves as a single point of contact for interfacing with devices (building equipment, 

power meters, etc.), external resources, and platform services such as data retrieval and 

archive.  In the initial phase, the focus is on rooftop units (RTUs) for small commercial buildings. 

For more details on the platform, please refer to the PNNL report on VOLTTRON Lite™ (Haack 

et al. 2013). 

 

The TN Platform is designed to facilitate “transactive energy” systems and markets. At present 

there are several somewhat divergent definitions of Transactive Energy. The GridWise 

Architecture Council defines a formal framework for Transactive Energy,that includes both 

economic mechanisms and control mechanisms. An alternate definition of Transactive Energy 

arises from TeMIX efforts, where Transactive Energy consists of frequent, small, easily-

understood automated transactions between buyers and sellers. Buyers and sellers may be 

generators, loads, storage, or traders with no actual delivery and metering. Transactive energy 

as used here refers to techniques for managing the generation, consumption, or flow of electric 

power within an electric power system through the use of economic or market based constructs 

while considering grid reliability constraints. A transactional network platform supports energy, 

operational and financial transactions between any networked entities (equipment, 

organizations, buildings, grid, etc.), according to Katipamula et al., 2013. 

 

LBNL developed new software to operate with the VL platform that demonstrated the capability 

of both the LBNL and PNNL transactive applications at a building at LBNL. This report begins 

with a summary of the agents developed as part of the project. We describe their design, input 

data requirements, output and function. We then present an example of the software sequence. 

The next section provides sample results from an implementation of the VL agents deployed at 

a test site at LBNL. We end the report with a discussion of the results and a summary of key 

findings and next steps. The appendices provide additional details on the software systems 

developed in this project. 

http://gridoptics.pnnl.gov/VOLTTRON/
http://gridoptics.pnnl.gov/VOLTTRON/
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Agents  

Transactional Network Agent Design, Development and Testing 
 

This report describes the VL agents developed by LBNL. These agents provide support services 

to augment and complement the agents from PNNL and ORNL. The PNNL agents are further 

described in Katipamula et al., 2013. These agents may reside directly on the VL platform, on 

the equipment being controlled, on a local building controller, or in the cloud, hosted by a 

remote internet-based server.  

 

LBNL’s agents in the TN focus on characterizing the energy savings associated with short- or 

long-term operational changes in a building.  A demand response (DR) event would be an 

example of a short-term change whereas an energy efficiency (EE) measure would be a long-

term change. Demand response is a change from normal patterns of electric energy 

consumption by end-use customers in response to changes in electricity price or incentive 

payments designed to induce lower electricity use when wholesale market prices are high or 

when the supply system reliability is jeopardized. The energy and power savings associated 

with these actions can be quantified and measured against the electric load that might 

reasonably be anticipated in the absence of those changes. These changes can be translated 

into economic terms based on an electricity tariff associated with a particular site. Specifically, 

LBNL developed applications to  

 
Calculate a baseline electric load shape that is used to estimate the short-term peak 

demand reduction from DR events (kW) or long-term savings from energy efficiency 

measures (kWh). This baseline load shape is the basis of our measurement and 

verification services. This initial work is oriented toward techniques to evaluate whole 

building load shapes (Mathieu et al.. 2011 and Price, 2010). 

 

Conduct measurement and verification (M&V) of energy and demand savings. 

Baseline loads are compared to actual metered energy use to determine the savings 

during DR events managed by applications such as PNNL’s automated DR agent, or 

from energy efficiency interventions such as changes in RTU operations based on 

information from PNNL’s fault detection agent. 

 

Estimate the economic savings from participating in DR events or long-term savings 

from energy efficiency interventions based on representative electricity tariffs.  

 

Convey demand response (DR) events using a DR event scheduler. This application 

provides signals that publish DR events on the VL communication bus using an open 

source, Open Automated Demand Response (OpenADR) client developed by an 

industrial partner, EnerNOC®, Inc.  OpenADR is an interoperable, standards-based 

communications specification that provides price and grid reliability signals that allow a 
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building to transact changes in its electric load with utility and grid activities. This activity 

builds on previous work funded by the BTO described in Kiliccote et al. (2006) and the 

OpenADR Alliance (www.openadr.org/specification; See also Ghatikar, 2012; Holmberg, 

2012). 

 
The relationship between the baseline, M&V and economic valuation applications is shown in 

Figure 1. 

 
 

 
 
Figure 1.  Relation between LBNL developed Baseline, M&V, and Economic Savings 
agents  

In addition, LBNL provided administrative and software development support for the data 

historian for the VL platform. This historian archives time series data from the building control 

and metering systems using sMAP - the Simple Measurement and Actuation Profile (Dawson-

Haggerty, 2013). The core object in sMAP is the time series, a single progression of 

(time+value) pairs. Each time series in sMAP can be tagged with metadata; all grouping of time 

series occurs using these tags.  

 

LBNL also developed a weather data management system to automate the acquisition of 

reliable weather data for any location in the continental United States from a commercial 

weather data archive. Knowledge of outside air temperature is critical to the development of 

baseline load shapes, and therefore the accurate determination of energy, demand, and 

economic savings. This system develops a single outdoor air temperature time series by 

averaging data from five Weather UndergroundTM certified stations nearest the zip code of a 

given site.  

http://www.openadr.org/specification
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Baseline Load Shape Agent 

Baseline Model 

 
In every building, the consumption of electric power (or “load”) is not constant. In most buildings 

the load varies with outdoor temperature due to the use of heating and cooling systems. The 

load also varies with time, because of (1) scheduled events such as exterior lighting being 

automatically turned on and off at certain times, (2) routine but not strictly scheduled events 

such as employees turning lights and computers on or off, and (3) non-routine variability such 

as the occasional use of copy machines, or people turning office equipment on or off at unusual 

times.   

 

Baseline models provide a basis of comparison to determine the impact of operational changes 

by predicting building electric loads based on historic electric load data and explanatory 

variables (Addy, 2013). The model is fit to data from a “training period”, and is used to predict 

the load in the “prediction period.” The key output of a baseline model is the “projected baseline 

load”, which is a time series of the predicted energy use if the building is operated during the 

prediction period the same way it was operated during the training period. Ideally, a baseline 

prediction will account for all of the scheduled and routine uses of electricity in the building as 

well as electric load that varies with outdoor air temperature. The agents described here build 

upon baseline models that are described in detail by Mathieu et al. (2011a, 2011b), Mathieu 

(2012), and Price (2010).  

 

There are two ways to use the baseline agent to predict whole-building electric load: (1) the 

agent can predict the load based only on previous electric load, or (2) the agent can also use 

outdoor air temperature data to yield an improved prediction.  

 

Usage patterns will vary over time, as will outdoor air temperatures. The final predicted baseline 

load at a given time is a weighted average of several model predictions. Each prediction is the 

output of a model that uses a weighting scheme that is designed so that the predicted baseline 

load at any given time is influenced most strongly by data from close to that time, with data from 

the distant past (and distant future) being given less statistical weight. Details are given in the 

“statistical weights” section below.  

 
 

Model based on load data only 

 
When outdoor air temperature data is not used in the model, only the historic time series of 

electric data are used to create the baseline model.  In this case the predicted load for a given 

time of the week will simply be the weighted average load at that time of the week. For example, 
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the predicted load for a particular Tuesday at 12:15 would be the weighted average load on all 

other Tuesdays at 12:15 in the training period.  

 

Model based on load and outdoor air temperature 

 
A more sophisticated statistical model is possible if outside air temperature data are provided in 

addition to the electric load data, The basis of the full model is an underlying linear regression 

model that assumes that the predicted load is the sum of a “time-of-week” effect plus a 

temperature effect (described in Mathieu et al., IEEE Transactions on Smart Grid, 2011).  The 

“time-of-week” effect is implemented through the use of indicator variables for each time interval 

during the week: an indicator variable for 00:15 on Sunday morning, one for 00:30, and so on 

through the week. (Indicator variables, also called “dummy variables”, are used in linear 

regression models to indicate whether a data point is, or is not, a member of a class; in the 

present case, for example, there is a variable that has a value of 1 for all data that were 

collected at 00:15 on a Sunday, and 0 for all other data, and so on for each time of the week).   

 

The resulting regression coefficients account for the regular variation of load during the week 

that is not correlated with outdoor air temperature. The temperature-dependent part of the load, 

assumes a piecewise-linear relationship between temperature and load: within each of several 

temperature ranges, described below, the load is assumed to increase (or decrease) as a linear 

function of temperature, but each temperature range may have a different slope. Temperature 

ranges may be chosen through a statistical procedure, but in practice good results are usually 

attained by simply assigning bin boundaries so that they span most of the temperature range 

experienced by the building and include at least two bins in the range between 50F and 70F. 

For example, for a building the San Francisco Bay Area, bin boundaries might be chosen at 50F, 

60F, 70F, and 90F.  In many buildings, load will decrease with temperature in the lowest 

temperature range (below 50 F) since less heating would be required with warmer temperatures.  

At the other end of the range, load in many buildings increases with increasing temperature in 

the higher temperature ranges because more air conditioning would be needed with higher 

temperatures.  

 

The model uses an approach described in Price et al. (2013) to separate the times of the week 

into two groups: a group of times in which the load depends more strongly on temperature, and 

one in which the load depends less strongly on temperature; a separate model is fit to data from 

each group.  In most buildings these time groups correspond to times when the building is 

occupied versus unoccupied.  Typically, but not always, these times correspond to similarly 

named HVAC modes.  

 
 

Statistical weights 

 
The underlying statistical model accounts for weekly periodicity in load, and for changes in load 

that are correlated with changes in outdoor air temperature. But in most buildings there sources 
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of load variation besides weekly periodicity and air temperature. For example, changes in 

nighttime lighting might lead to an increase or decrease in the load at night, so that the pattern 

of electricity consumption is different after the change was made than it was before.  To adjust 

for this sort of change in behavior, in order to predict the load shape on a given day, we give 

more statistical weight to days that are nearby in time, whether before or after the given day. 

This is achieved by fitting the regression model using statistical weights that fall off as a function 

of time in both directions from a central day.  A central time point is selected as discussed below, 

and the time difference between that point and every other data point is determined (in days, 

which may be fractional). The statistical weight, w, given to a point d days from the central time 

point is: 

 
where D is a user-selected parameter defined by the weighting days argument. 

Figure 2 shows how this weighting function varies for different values of D. 

 
 

 
Figure 2.  Weighting function for different choices of D, the metric by which “short term” 
is measured. 

 
The parameter D can be thought of as a “sensitivity” parameter that determines how closely the 

baseline model tries to match short-term fluctuations in the load data, versus capturing long-

term trends. Setting a large value for D (such as 90 days) implies that data from three months 

ago are almost as informative about tomorrow’s energy consumption as data from one week 

ago; setting a small value (such as 5 days) implies that data from two or three weeks ago are 

almost useless in predicting tomorrow’s energy consumption. Empirically D=14 days is a good 

choice when predicting the short term load variation for several buildings we have studied, so 
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we set it as the default value while allowing the user to change it if needed. Buildings that vary 

greatly from week to week would be better modeled with a smaller value of D, while buildings 

that are extremely consistent would be better modeled with a larger value of D.   

 
 
To train the predictive model over a given time period, the weighted regression procedure is 

repeated for several different “central time points.” Specifically, a set of “central time points” 

about D days apart is selected, spanning the time range of the data and the regression model is 

fit multiple times (e.g., using D=14, there would be 28 regression models generated in one 

complete year of training data), using each of these in turn as the “central time point.”  Each of 

these models is used to make a prediction for each of the requested output times, resulting in a 

set of predictions for each output time: one prediction for each regression model.  For a given 

output time, some of these predictions are from models in which the central time point was far 

from the output time, and some are from when the central time point was close to the output 

time. The predictions are weighted, using the same w(d) function above, to give more statistical 

weight to the predictions from “nearby” central time points. 

 

The process for combining the individual regression predictions to generate the final prediction 

is illustrated in Figure 3. The upper panel of the figure shows the final baseline prediction in blue. 

At any given time, the final prediction is the weighted sum of several different predictions, three 

of which are shown in the lower panels of the plot. For example, consider a point 11 days after 

the end of the training period.  Since the first regression model has a central time point 0 days 

before the end of the training period, it is the most strongly weighted model at the point being 

predicted (see the red line on the second panel of the figure). The second regression model has 

a central time point 14 days earlier, so it has a lower weight (third panel). The third regression 

model has a central time point even farther in the past, and thus an even lower weight (final 

panel).   
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Figure 3. Illustration of different weighting functions for statistical model. 

Top panel: 
Data (black) go from the left side of the plot up to the green line. The baseline prediction 
(blue) goes all the way across the plot;.  To the right of the green line the baseline 
prediction is a forecast, i.e. we have no data from the green line forward. 
 
Second, third, and fourth panels (black lines) show (1) linear regression predictions with 
central time points 0, 14, and 28 days before the end of the data, respectively, and (2) 
the weight function used for each prediction.  
 

The weighting function w(d) has the effect that a prediction for a time less than D days after the 

end of the training data will be based mostly on the data from near the end of the training period, 

but a prediction for a time more than D days after the end of the training period will be based on 

a more equal weighting of the training period.   As an example, consider using the parameter 

value D = 14 days with data from all of 2013 to predict the baseline from January 1, 2014 to July 

1, 2014. The prediction on January 1, 2014 is the weighted sum of regression predictions that 

are fit to the 2013 training data using different central time points, as previously 

discussed.  Since one of these central time points (December 31) is just one day away from the 

start of the time for which a baseline will be generated (January 1), that regression has a weight 

of over 0.99 at the start of the baseline.  A previous regression, with a central time point about 

14 days earlier, has a weight under 0.5 on January 1.  A regression with a central time point an 
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additional 14 days earlier has a weight under 0.2, and the regression centered in mid-November 

has a weight under 0.1, and so on back through time.  In this case, training data prior to 

November have weights so low that they are essentially negligible. Therefore, the prediction for 

January 1, 2014 is based almost entirely on data from December 2013, with data from 

November playing a minor role and data from the rest of 2013 having a nearly negligible effect.  

 

Now consider the prediction for June 30, 2014.  This is d=180 days after the end of the training 

data. In making a prediction for June 30, the regression that has a central time point on 

December 31 is given a weight of 0.006. The regression with a central time point 14 days earlier 

has a weight of 0.005. The regression with a central time point another 14 days earlier has a 

weight of 0.004. Even the regression with a central time point a full year ago, at the end of June, 

2013, has a weight of over 0.001, which is still 17% as much weight as the regression with the 

most recent central time point. Even the regression with the most distant time point, all the way 

back on January 1, 2013, is assigned 10% as much statistical weight as the regression with the 

most recent central time point.   Thus, in contrast to the baseline prediction for early January 

2014, which is based almost entirely on the previous month or two of training data, the baseline 

prediction for June 2014 ends up being an average of regression predictions that take into 

account the full year of training data, although still weighting the last half of the year more 

heavily than the first half.   

 

We believe, based on limited tests of the model for several sites, that in most cases the optimal 

value of D will probably be of the order of 10 to 20 days both for quantifying demand response 

effectiveness and for making long-term predictions suitable for M&V applications (see Figure 4).  

Using smaller values of D cause the baseline prediction to be influenced strongly by anomalies 

or changes in building load shape that only last a few days or a week, whereas much larger 

values for D prevent the predictions from adapting to long-term changes in load patterns.  
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Figure 4.  Example of predicted baseline load (black) and actual load (blue) for a week in 
November 2014 in the LBNL test building 

 

Agent Implementation  

 
The Baseline Load Shape agent implements the baseline model for use by other VL agents and 

applications. This agent’s inputs include load data and timestamps for the training period; 

optionally, outdoor air temperature data and timestamps may be provided.  The other required 

input is the set of timestamps that define the prediction period (i.e. start and end timestamps).  

Figure 5 shows the inputs and outputs from this agent.  The required input is a historical electric 

loads shape with associated timestamps. The time increments can be any increment, but are 

typically 15-minute intervals to correspond with traditional time intervals used by building electric 

meters.   

Figure 5.  Inputs and outputs for the Transactional Network Baseline Load Shape Agent 
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Since the accuracy of baseline model predictions has important implications for the 

quantification of economic value from building energy transactions, a set of goodness of fit 

statistics is provided by the baseline agent to measure the degree to which a particular baseline 

model is able predict the building’s load. They include (a) the standard error of the residuals 

during the “training” period (which is the dataset on which the model is based); and (b) a 

correlation coefficient that quantifies how much of the variance in load is predicted by the 

baseline behavior (where 1 indicates perfect fit). 

To provide weather data, LBNL developed a tool (i.e., a common function used my more than 

one agent) to compile and aggregate weather data from Weather Underground sources, 

indexed by zip codes. Information is acquired from up to five weather stations in the zip code.  

Since these data come from sources of varying degrees of accuracy, the median temperature 

from the available temperatures for a given time is assigned to that time slot in the data stream. 

 

Measurement and Verification Agent 

 

The Measurement and Verification (M&V) agent quantifies short-term transactional load 

reductions, for example from use of the DR agent (Katipamula et al., 2013), as well as longer-

term energy savings from efficiency measures or improved controls.  The M&V agent uses the 

predicted baseline load provided by the Baseline Load Shape agent, combined with information 

about the timing and duration of transactional events or efficiency measures. Figure 6 shows the 

agent’s inputs and outputs. 

 

Figure 6.  Inputs and outputs for the Transactional Network Measurement and 
Verification agent 

The M&V agent is configured to quantify avoided energy use, or “energy savings” as illustrated 

in Figure 7. A baseline model, created by the Baseline Load Shape agent is developed to 

characterize the building’s typical load in the absence of any transactional events or efficiency 

measures. Once an event or efficiency measure is implemented, the baseline model is used to 

project the load that would have occurred without the event or measure. The difference between 

the baseline-projected use and the actual metered use comprises the reported savings.  
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Figure 7.  Method of savings quantification applied in the Transactional Network 
Measurement and Verification Agent  

 

Using the M&V Agent to Quantify Demand Response Load Reductions 

 
DR event performance is calculated using a baseline model that gives heavier weight to days 

immediately preceding the event than it does to days that passed months before the event. This 

gives more accurate predictions from the baseline model. The projected baseline load is 

generated for each metered time-interval in the DR event day, using weather data from the DR 

event day.  For DR events, the M&V agent calculates the difference between the actual energy 

use and the predicted baseline energy use at each time interval during the DR event day, and 

cumulatively through the day. Dividing the average demand reduction by the building floor area 

yields the load reduction per square foot; dividing the cumulative energy saved by the 

cumulative predicted baseline energy use yields the percent reduction in load.  

 

Using the M&V Agent to Quantify Long-Term Energy Savings 

 

In contrast to DR, or other short-term transactional events, the impact of energy efficiency 

improvements can accumulate for days, months or years. As in the DR case, the projected 

baseline load is generated for each metered time interval following implementation of the 

efficiency measure, using weather data from the building location, and the projected load is 

compared to the actual load both cumulatively and at each measurement interval. Dividing the 

savings by building floor area yields savings per square foot, and dividing by predicted baseline 

load yields the savings as a percent of baseline load.  
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Cumulative sums (CuSum) represent the aggregated, or cumulative, difference between the 

baseline projected load and the actual metered load. Described in Granderson et al. 2011, with 

application examples, CuSum is useful for tracking operational persistence of savings as well as 

total accumulated energy savings since an improvement was made. Represented in Figure 8, 

the y-value of the CuSum plot shows the total accumulated energy savings. Operationally, a flat 

slope marks a period of no savings, or no usage in excess of baseline; a positive slope indicates 

a period of decrease use, or energy savings; a negative slope marks a period of usage in 

excess of baseline.    

    

-  

Figure 8.  EE Measurement and Verification (Cumulative Summation) 

 

Economic Valuation Agent 

 
The cost of providing electricity varies over the course of time, with this variation represented by 

time-varying tariffs to which an increasing number of utility customers subscribe.  Tariff 

information is conveyed within the TN via OpenEI format1 that allows for time of day and time of 

week energy cost characterizations as well as demand charges. The transactional network 

optimizes building operations in the context of time-varying tariffs. To do this, the economic 

valuation agent converts the energy savings or load reductions described above, into financial 

terms. By comparing actual load to the predicted baseline load, this application quantifies the 

monetary impact of changes in energy use and hourly demand considering the price changes 

inherent in a time-of-use tariff. The agent can also handle the DR event-based changes in price 

associated with critical peak pricing.  The result is a data stream of savings values over the 

course of a day (or other selected time period), typically used for DR events, or an accumulated 

sum over a period of time, typically used to measure the results of energy efficiency measures. 

 

                                            
1
 http://en.openei.org/wiki/Main_Page 



 

 14 

Price-based DR events are triggered by price signals that can indicate a series of day-ahead 

hourly prices or an abrupt change in the price of electricity for a given period of time. High price 

events provide incentives for peak power reductions to have greater economic value then 

medium or low price periods.  To convert power savings to an economic value, a conversion 

using a specific tariff is required.  The economic valuation agent currently supports time-of-use 

and common critical-peak pricing tariffs (see Figure 9).   

  

 

  

Figure 9.  Economic Valuation agent 

 
Figure 10 illustrates typical time of use and critical peak pricing  tariff designs in general terms, 

but does not represent any utility’s actual tariff.  Time of use (TOU) price periods are fixed, 

predictable time periods for off-peak, part peak, and peak prices.  Critical peak pricing (CPP) 

tariffs often include a dynamic price in addition to the on-peak costs. CPP price events may be 

associated with higher regional demand for electric energy. Some California CPP events are 

triggered with higher outdoor air temperatures. For example, the 10 to 15 hottest days of the 

summer would be designated as CPP days, when they occur, by the utility.  

 

 

Figure 10.  Illustration of TOU and CPP tariff  
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The economic value of the response to the DR event is measured by the difference between the 

anticipated cost (calculated using the baseline) and the actual cost (calculated from the actual 

load), using tariff price information conveyed via the DR scheduler agent.    

Figure 11 illustrates how a building’s energy costs might vary for each hour of the day as a 

result of this kind of tariff. The amount of energy use (kWh) at a given time and the TOU costs 

associated with that time combine to get this cost shape. The Economic Valuation Agent will 

host a number of other tariffs in future releases of the software. 

 

 
 

Figure 11.  Resulting Economic Value of Energy Savings 

 

Demand Response Scheduler Agent 

 
Demand response (DR) programs, dynamic pricing, and future transactive markets provide 

incentives for building operators to modify their electric loads during identified times such as 

when there is a reduced supply of energy or high prices (Piette et al, 2012). Demand response 

signals typically originate at a retail electric utility or a wholesale independent system operator, 

indicating a need for consumers to modify their electricity usage on certain days in a given time 

period, or shift that usage to another time period. In this project we use OpenADR to provide 

pricing signals from the electric grid to the consumer. OpenADR is a client/server 

communication standard for conveying DR signals from the utility to a building’s control system, 

where preprogrammed response strategies can be initiated (Ghatikar et al, 2011). Figure 12 

illustrates how utilities, independent systems operators, and curtailment service providers or 

aggregators currently use OpenADR to convey price and grid reliability signals to end users to 

enable a response in a timely and standardized way. 
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Figure 12.  OpenADR 2.0 messages conveyed from server to client 

 
The DR Event Scheduler agent receives DR event signals from an OpenADR client (also called 

as virtual end node or VEN). The client translates these signals into a format more easily 

processed by other agents in the VL platform, and then communicates these signals to the VL 

communication bus. The utility or grid operators use a DR server (also called as virtual top node 

or VTN) to generate and publish signals specific to a particular customer’s participation in a DR 

program. These signals can support secure transactions in accordance with national smart grid 

standards requirements (NISTR, 2010). For this demonstration, a DR message from a server is 

transmitted to PNNL’s DR agent, which automatically triggers preprogrammed actuation of the 

RTUs in response to the DR signal. Figure 13 illustrates how the DR scheduler agent works: 

 

 

  

Figure 13.  DR Scheduler Agent 

 
Specifically, the DR Scheduler extracts the event status (none, far, near, active, completed or 

cancelled), event start, event end, and event ID from the signal received by the OpenADR client, 

and publishes this information to the VL communication bus. Figure 14, below, illustrates how 

these various components of DR information relate to a DR signal. Prior to the start of an event, 

the notification time includes both the far and near states.  The entire notification time is the time 



 

 17 

during which an event is pending.  The demarcation between far and near times is the time at 

which the resource is expected to begin ramping to the desired change in load.  The duration of 

the event (active state) can be subdivided, if needed, with different signals to indicate changes 

in pricing or severity of need (e.g. change from moderate to high as an indicator of increased 

need to reduce load).  The completed time identifies when the DR event ends and although a 

recovery period is observed in some cases (e.g. HVAC load increases because of temperature 

rise in the building during the DR event), from a DR event perspective, that is in the completed 

part of the event. A typical DR event will have a signal associated with each of the identified 

time components. For example, typical DR signals include event status information such as far, 

near, active, and completed, and start and end time (or start and duration) of a DR event period. 

The other aspects of time components could be used by the building controls to support the key 

characteristics of DR program requirements (e.g. particular ramp time is required for fast DR 

programs). 

 

 

Figure 14.  Key components of DR event conveyed by OpenADR 

 
By publishing this information to the VL bus, the DR Scheduler agent enables other control 

agents to act on this information to modify electric loads.  The first phase of development 

supports an automated response to critical peak prices. Figure 15, below, illustrates the flow of 

information in the DR signal to be used by VL to trigger the pre-programmed strategies at the 

individual building equipment level. 
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Figure 15.  DR signal within the Transactional Network 
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Prototype Application 
 
The agents described in the previous sections are intentionally designed to provide generalized 

functionality, for baselining, M&V, and other applications.  To confirm the functionality of these 

agents, they were implemented in a prototype application at the LBNL campus.  The text below 

describes the software and hardware aspects of that testing. 

 

Software Implementation  

During testing, building supervisory control was performed either directly via a web interface to 

the Catalyst controller installed on the RTUs at the LBNL campus or, in the last test, using the 

VL platform, LBNL’s DR scheduler agent, and PNNL’s DR and RTU control agents (described in 

Katipamula et al., 2013).  Analysis of the resulting building data was performed by LBNL’s 

baseline, M&V, and economic valuation agents using the steps listed below:  

 Ongoing data collection and compilation into the data historian is run daily using these steps: 

1. Download the latest outdoor air temperature data for the building from a commercial 
source (Weather UndergroundTM), pre-process, and upload to the sMAP database.  

2. From the sMAP database, retrieve the following data up to the present time: the 
building’s load, the outdoor air temperature, and data on which RTUs were 
participating in a DR event at which times. 

3. From a configuration file, retrieve a list of holidays. 

Steps 4-8 demonstrate the M&V application by comparing the predicted baseline load to the 

actual load. We have chosen November 1, 2013 as an example of a date for implementation of 

an energy conservation measure and we are evaluating its effectiveness. These steps are 

automatically performed every day. 

4. Create input files for the baseline agent’s training period. The training period is all 
days prior to November 1, 2013 that are not holidays or DR days. 

5. Use the baseline agent to fit the baseline model, and generate the predicted baseline 
load for all days from November 1, 2013 to present. 

6. Use the M&V agent to calculate the difference between the predicted baseline load 
and the actual load since November 1. 

7. Use the economic valuation agent to calculate the electricity cost since November 1, 
and compare this to the cost that would have been incurred under the predicted 
baseline load. The economic valuation agent calculates this cost difference for each 
time interval, and cumulatively since November 1.  
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8. Store all of the results of steps 5-7 in the sMAP database, where they can be 
accessed by a website that can display the results.    

The remaining steps estimate the effectiveness of Demand Response measures in the test 

building.  They are carried out only if the previous day was a “DR day,” where a day is defined 

as a “DR day” if any of the building’s RTUs were manipulated for DR purposes at any point 

during the day. 

9. Create input data files for the baseline agent’s training period. The training period is 
all days that are not holidays or DR days,  

10. Use the baseline agent to fit the baseline model, and generate baseline load 
predictions for all DR days. 

11. Use the M&V agent to calculate the difference between the predicted baseline load 
and the actual load for all of the DR days. The agent calculates the difference 
between baseline load and actual load at each measured time interval, and also the 
cumulative sum of the difference throughout the day. 

12. Use the economic valuation agent to calculate the electricity cost during each DR 
day, and compare this cost to the cost that would have been incurred for the 
predicted baseline load. The agent calculates this cost difference for each time 
interval during each DR event, as well as the cumulative sum of the difference for 
each event. 

13. Store all of the results of steps 1010-12 in the sMAP database, where they can be 
accessed by a website that can display the results.     

 

 

Building Demonstration 

To test these software tools, LBNL installed a series of control and communications platforms 

similar to the configuration described in Katipamula et al (2013) at a small (5000 ft2) office 

building on the LBNL campus.  The building, known as 46A, is served by seven RTUs, as seen 

in Figure 16, each of which was equipped with a Catalyst controller. Three of the RTUs are 2-

ton units, two are 3-ton units, and two are 2.5-ton units.  The three-ton units were also fitted with 

variable speed drives for the supply air-handler fans. The 3-ton units serve the reception area 

and entrance to the middle portion of the building. The power demand from each unit is 

measured individually as well as the whole-building load. For the purposes of the testing 

described below, only the whole building power was used for analysis. 
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Figure 16.  Roof of the LBNL Testbed for Transactional Network project 

 

Testing 

A series of manual and automated DR tests evaluated the complete group of electric load-

shape analysis agents described in this paper. These tests included two events initiated by 

LBNL to reset zone temperatures and evaluate the electric load shape response, as well as one 

end-to-end test of PNNL’s DR agent. Table 1 shows the RTU control strategies used to create a 

change in the electric load shape of the building. 

 

Table 1.  DR Tests at LBNL office building  

Date Time Test Strategy 

 

9/23/2013 2pm – 4pm 2°F increase in set point on all thermostats 

9/27/2013 2 pm – 4 pm 4°F increase in set point on all thermostats 

 

10/18/2013 

 
1 – 2 pm: Precool 

2 – 5 pm: Event 

5 – 6 pm return to normal  

 
One hour precooling,  

gradual increase in set point to +4°F from normal,  

then slow return to normal to minimize rebound effect 
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The first of these tests was triggered manually via a web interface to the Catalyst units 

controlling the thermostats in the building.  It examined the interactions between components of 

the system and verified that the metered electric load data could be reliably obtained and used 

for calculations.  The second test refined this process further and explored the ability of the 

building to respond to a more severe load reduction (modeling the response to a higher price 

signal indicating a greater need for load reduction).  The third test verified that DR events could 

be triggered automatically using the OpenADR server and the DR and control agents running on 

the VL platform. It also tested the ability of the building RTUs to respond to more complex DR 

signals.  To illustrate the calculations performed during testing, Figure 17 shows the results from 

the second of these tests. 

 
Figure 17.  Data from second DR test at LBNL test bed (DR event shaded) 

Note that the building uses about 5 kW during the night. Electricity use increases during the day 

and the peak demand shown in the baseline model reaches about 17 kW around 2 pm.  The 

electric load was reduced to about 9 kW at the start of the event, increasing to nearly 15 kW by 

the end of the event.  The DR strategy reduced the electric use by an average of about 6 kW for 

the two-hour event. This reduction is equivalent to over one-third of the electricity use and over 

1 W//ft2.  

It is notable that there was a rebound to nearly 25 kW, which could have been mitigated through 

a variety of rebound avoidance strategies. The building could have gone into an early 

“unoccupied mode” to coast through the recovery event without a new peak. Or, the control 

could have moved the zone temperature back to normal more slowly. Characteristics of this 

response from the load-shape analysis agents are shown in the two tables below. 
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Table 2.  Power and Energy changes during 9/27/2013 DR test at LBNL building 

Estimated Shed (During DR Period) Total Savings (Whole Day) 

Average shed:  6.13 kW (1.17 W/ft
2
)  Total energy reduction: 9.6 kWh  

Average power reduction: 38%  Reduction in power consumption:  5.1%  

Total energy reduction:  13.8 kWh  Total reduction in energy cost: 20.1%  

 
 

It is important to understand how the zone reset strategy influences the zone temperatures. 

Figure 18 shows the change in zone temperatures in seven of the zones (labeled 8 – 14 to be 

consistent with site numbering; each zone was served by a single RTU) during the two-hour 

event. On average the building warms up from about 75 – 77 °F, with each zone experiencing a 

2 – 3 °F increase. This is a common result, that space temperature warm up less than the reset 

of 4 °F.  There was a greater variation among individual zones. None of the zones rose above 

78 °F. The zones have a variety of external orientations, some receiving more solar gain than 

others. 

 

 
 

Figure 18.  Change in zone space temperatures during the Friday, September 27 DR test. 
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The baseline agent reports several goodness-of-fit statistics that summarize how well the 

baseline model fits the actual load during the training period, and, by extension, provides a 

measure of the expected accuracy of the model predictions during the prediction period. Table 3 

shows two of the goodness-of-fit statistics that report the expected error in the predicted load for 

15-minute and 1-hour periods during the training period. The bottom line of the table shows that 

when predicting the hourly average load, the expected error is 1.07 kW in either direction (that 

is, either high or low), corresponding to an error of 9%.  

 
Table 3.  Goodness of fit statistics, DR test event at LBNL, 9/27/2013 

Model goodness of fit Mean absolute percent error  Root mean squared error 

15 minute intervals 12.4% 1.52 kW 

Hourly average 9.0% 1.07 kW 

 

The goodness-of-fit statistics report the error both in absolute terms (kW) and relative terms 

(percent error).  Generally, as in the example here, the longer the time period being predicted, 

the more accurate the prediction: in some short time periods the load will be over-predicted 

while in others it is under-predicted, and the accumulated errors will tend to cancel out with 

time.  
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Discussion 

A team comprised of staff from three national laboratories performed development of the 

Transactional Network. The team has a long term goal to develop an agent based platform that 

can respond to signals associated with managing the consumption or flow of electric power 

within an electric power system through the use of economic or market based constructs while 

considering grid reliability constraints. The term “transactive” is used because the decisions are 

made based on a value. These decisions may be analogous to or literally economic transactions.   

LBNL’s primary contribution to this platform was the development of M&V systems to allow 

automated feedback for energy efficiency and DR events. This agent platform benefits from 

having standard methods to measure, report, and evaluate energy use patterns. LBNL also 

provided an initial transactional platform where grid signals are represented as price signals 

conveyed using OpenADR 2.0 standard.  OpenADR is U.S. smart grid interoperability standard, 

and also used in over eight countries with over 100 members supporting it. A final element 

LBNL provided uses simple electricity tariffs to translate the peak demand and energy savings 

data into economic, or dollar savings. While the VL platform was in development, a related set 

of cloud-based applications representing the VL agents were developed and tested to verify the 

underlying concepts associated with baseline model codification.  The baseline model provides 

a reference against which the impact of operational changes can be measured.  Conversion of 

these measurements to financial terms used a sample tariff based on time of use and critical 

peak pricing tariffs currently used by some utilities.   

The initial tests of the system, using an occupied office building located at LBNL, demonstrated 

that the VL based network conveys signals reliably and that the resulting changes in building 

equipment operations can be reliably characterized in terms that provide a foundation for future 

transactions. 
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Summary and Next Steps  

The work described here consisted of developing and testing a collection of M&V and 

automation software agents as part of an autonomous agent platform. The initial efforts tested 

these agents in their ability to measure and evaluate changes in whole building electric loads 

that resulted from changes in HVAC control strategies. The agents predicted the electric load 

shape for each hour of the day and used the baseline model to report the change in electric use 

between the baseline and the actual consumption. Each RTU received and responded to a 

variety of set point changes such as precooling and zone reset strategies. RTUs provide a good 

starting point for this platform because heating, ventilation, and air conditioning constitute a 

large fraction of electric demand in buildings in the US.   

In collaboration with PNNL, LBNL will release software described in this effort in an open source 

form to allow others to build on and apply these tools. The open source licenses are intended to 

help spur innovation and industry adoption by fostering an open platform for third parties to 

collaborate with this DOE sponsored effort.  

LBNL will be expanding this work to develop and test agents to control electric lighting systems. 

One of the emerging concepts in the transactive agent platform development is to explore how 

data from, and interoperable access to, end-use controllers can be leveraged to allow building 

energy use to be better managed. One example is to explore new ways to measure and 

continuously diagnose the operation of occupancy and scheduling-based controls. Two key 

goals are present in this concept. First, energy use can be reduced overall if the agent systems 

are able to evaluate and identify energy waste. Energy waste may be present if the HVAC or 

lighting systems are operating outside of design parameters or if the systems are running when 

there are no occupants present. This is a common problem in buildings. Second, by building 

and demonstrating control systems that are able to maintain fault-free efficient operations, and 

also report savings achieved over time, industry can take the needed steps to scale adoption of 

efficient controls.   

A final goal is to understand how a building might be able to transact with a dynamic electric grid.  

New work is needed to understand how to represent the availability of a load to the grid. How 

reliable is the load reduction? How often can the reduction be called? How large of a reduction? 

These are questions that will be explored in future phases of the project.  
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Glossary 
 

BLS   Baseline electric load shape 

BTO   Building Technologies Office 

CPP  Critical Peak Pricing 

CuSum   Cumulative Sum 

DOE   Department of Energy 

DR   Demand response 

ECM  Energy Conservation Measure 

EE   Energy Efficiency 

HVAC   Heating,ventilation, air conditioning 

ISO    Independent System Operator  

JSON  Javascript Object Notification 

kW    kilowatts 

kWh   kilowatt-hours  

LBNL   Lawrence Berkeley National Laboratory 

M&V    Measurement and Verification 

OpenADR   Open Automated Demand Response  

ORNL   Oak Ridge National Laboratory 

PNNL   Pacific Northwest National Laboratory 

RTU    Roof top unit 

sMAP   Simple Measurement and Actuation Profile  

TN    Transactional Network 

TOU  Time-of-Use 

UTC    Coordinated Universal Time  

UUID    Universally unique identifier 

VEN   Virtual end node in OpenADR2.0  

VL    VOLTTRON LiteTM 

VTN   Virtual top node in OpenADR2.0  
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Appendices 
 

Terminology used here: 

Tool describes a common function used by more than one agent. 
 
Agent is an application focusing on a single task that communicates via the VOLTTRON 
LiteTM bus 
 
Savings indicates a decrease in energy use, relative to the projected baseline load.  
Negative savings represent an increase in energy use relative to the projected baseline 
load. 
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Appendix A:  Load Shape Details 

Introduction 

The loadshape tool is included in each agent, with the wrapper of each particular agent 
providing the context to identify what aspects of the loadshape tool are needed.  The loadshape 
tool generates the information needed to compare actual electric loads with predicted (baseline) 
electric loads. The statistical model used by this tool considers two distinct aspects of load:  
those that have a pattern that is consistent based on the time of week (day of the week and time 
of day) and those that are sensitive to outdoor air temperature. To download the loadshape 
library go to https://pypi.python.org/pypi/loadshape/ 

The Loadshape class that is provided by this tool makes it easy to manage time series electric 

load data, and exposes a simple interface to several underlying R functions, including the 

function that fits a statistical model to the input load data for the purposes of generating 

baselines. 

 

Input Data 

The only input data required by the loadshape tool is a set of time-series electric load data: 

# electric load data should be provided as a List of tuples 
load_data = [ ("2013-08-01 00:00:00", 5.168), 
             ("2013-08-01 00:15:00", 6.235), 
             ("2013-08-01 00:30:00", 5.021), 
             ..., 
             ("2013-09-26 23:45:00", 4.739) ] 
 
my_loadshape = Loadshape(load_data=load_data) 
 

As shown above, the load data must be provided in the form of a Python List containing Tuples 

with two elements each. The first element of each Tuple is a timestamp, and the second 

element is a value representing power (kW). 

Timestamps 

Timestamps may take several different forms. Any of the timestamps below are valid: 

valid_load_data = [("2013-08-01 00:00:00", 5.168), # string: "YYYY-MM-DD HH:MM:SS" 
                   (1375341300, 6.235),             # integer: seconds since Unix epoch 
                   (1375342200000, 5.021),          # integer: milliseconds since Unix epoch 
                   ("1375343100", 5.046),           # string: seconds since Unix epoch 
                   ..., 
                   ("1380264300000", 4.739) ]       # string: milliseconds since Unix epoch 
 

https://pypi.python.org/pypi/loadshape/
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Timezones 

The timezone associated with the timestamps in the input data should be specified using the 

appropriate time zone name from the tz database. This time zone name should be passed as an 

argument to each new instance of the Loadshape class. If no timezone is specified, the module 

will use the timezone of the operating system. 

my_loadshape = Loadshape(load_data, timezone="America/Los_Angeles") 
 

Specifying the timezone is important to (1) maintain consistency between data from different 

sources (e.g. weather data and load data); (2) properly handle daylight savings time; and (3) 

ensure that each local day begins at midnight in the internal calculations. 

Power Data 

Values within the provided time-series load data are assumed to represent power (kW). This is 

especially important because units specified by the output of the event_performance method 

assumes that the power data has been provided in kW. 

Outdoor Air Temperature Data 

Including outdoor air temperature data in addition to electric load data will allow the loadshape 

module to produce much more accurate baselines. The units of the temperature data may be 

configured by passing a temp_units argument of either "C" or "F" to the Loadshape object’s 

initializer. 

# electric load data - values are expected to be power (kW) 
load_data = [ ("2013-08-01 00:00:00", 5.168), 
             ("2013-08-01 00:15:00", 6.235), 
             ("2013-08-01 00:30:00", 5.021), 
             ..., 
             ("2013-09-26 23:45:00", 4.739) ] 
 
# outdoor air temperature data 
temp_data = [ ("2013-08-01 00:00:00", 54.23), 
             ("2013-08-01 01:00:00", 54.60), 
             ("2013-08-01 02:00:00", 54.65), 
             ..., 
             ("2013-09-26 23:45:00", 58.44) ] 
 
my_loadshape = Loadshape(load_data, temp_data, temp_units="F") 
 

Output Data 

Instead of passing input data to the Loadshape initializer as a List of tuples, data may also be 

passed by referencing appropriately formatted comma separated variable (CSV) files: 

my_loadshape = Loadshape("path/to/load_data.csv", "path/to/temperature_data.csv") 
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If this option is used, the loadshape module expects CSVs to contain two columns. As with the 

tuples, the first element in each column must be a valid timestamp, and the second column 

must be the corresponding load value.  

 

Generating Baselines 

The Loadshape object uses a baseline method that compiles the input data, passes the data to 

the R script that implements the baseline model, and then reads in the result. The baseline 

method will return an object (a Series object) containing the baseline data. The “data” method 

on this object is the preferred method for accessing the list of tuples containing the time series 

baseline data. 

>>> my_baseline = my_loadshape.baseline() 
>>> my_baseline.data() 
[(1375340400, 5.1), (1375341300, 5.1), (1375342200, 5.26), ..., (1380264300, 4.9)] 
 

Prediction Periods 

By default, the baseline method on the Loadshape object will return a baseline for all of the 

input load data. To calculate the baseline for a specific period, identify that time period with 

additional arguments to the baseline method: 

prediction_start = "2013-09-26 00:00:00" 
prediction_end = "2013-09-26 23:45:00" 
 
my_baseline = my_loadshape.baseline(prediction_start, prediction_end, step_size=900) 
 

The step size argument above is optional, the default is 900 (seconds). Also, note that the 

prediction_start and prediction_end do not need to be within the date range of the input data; 

the module may be used to generate forecasted baselines. 

Forecasting with Outdoor Air Temperature Data 

To produce a temperature adjusted baseline, the module requires outdoor air temperature data 

that overlaps both the input load data and the prediction period. 

To generate a forecasted baseline, split the temperature data into two streams: one containing 

historical temperatures that overlaps the historical load data, and one containing forecasted 

temperatures that overlaps the desired prediction period. 
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If no temperature data is available for the requested prediction period, then the model will not be 

temperature adjusted. The resulting baseline will be the same as if no temperature data had 

been provided. 

# electric load data - values are expected to be power (kW) 
load_data = [ ("2013-08-01 00:00:00", 5.168), 
             ("2013-08-01 00:15:00", 6.235), 
             ("2013-08-01 00:30:00", 5.021), 
             ..., 
             ("2013-09-26 23:45:00", 4.739) ] 
 
# outdoor air temperature data 
temp_data = [ ("2013-08-01 00:00:00", 54.23), 
             ("2013-08-01 01:00:00", 54.60), 
             ("2013-08-01 02:00:00", 54.65), 
             ..., 
             ("2013-09-26 23:45:00", 58.44) ] 
 
# forecasted outdoor air temperature data 
forecast_temp_data = [ ("2013-09-27 00:00:00", 52.15), 
                      ("2013-09-27 01:00:00", 52.40), 
                      ("2013-09-27 02:00:00", 51.85), 
                      ..., 
                      ("2013-09-27 23:45:00", 60.31) ] 
 
my_loadshape = Loadshape(load_data, temp_data, forecast_temp_data) 
my_loadshape.baseline("2013-09-27 00:00:00", "2013-09-27 23:45:00") 
 

Exclusion Periods 

If parts of the load data are anomalous, they can be omitted by registering exclusion periods 

from the baseline calculation.  For example, if different energy management strategies have 

been tested and a baseline is needed to calculate energy savings from a particular strategy, 

then all of the periods during which other strategies were being tested should be excluded, so 

that only periods of normal operation are included in the baseline calculation. 

my_loadshape.add_exclusion(first_exclusion_start, first_exclusion_end) 
my_loadshape.add_exclusion(second_exclusion_start, second_exclusion_end) 
 

Named Exclusion Periods 

The Loadshape module also includes a mechanism for excluding periods of data that are likely 

to be anomalous, such as Holidays: 

my_load_shape.add_named_exclusion("US_HOLIDAYS") 
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Note that the current implementation of named exclusions is not very sophisticated. Named 

exclusions currently consist of a hard-coded list of periods corresponding to holidays that are 

observed by Lawrence Berkeley National Laboratory. 

Modeling Interval 

The modeling interval determines the resolution of the model that is used to make predictions. 

Higher resolution models will run more slowly. By default, the modeling interval is set to 900 

seconds. The argument that defines the modeling interval is passed to the baseline method as 

shown below. 

my_baseline = my_loadshape.baseline(modeling_interval=300) 
 

Weighting 

The "weighting_days" argument allows the model to be biased toward more (or less) recent 

data. The default value is 14 days, meaning the most recent 14 days of training data will be 

weighted more heavily than data that is older than 14 days. To configure the weighting 

differently, pass a weighting_days argument to the baseline method. 

my_baseline = my_loadshape.baseline(weighting_days=30) 
 

Goodness of Fit Statistics 

Once a baseline has been generated, some goodness of fit statistics will be available in the 

form of a dictionary: 

>>>my_loadshape.baseline() 
>>>my_loadshape.error_stats 
{'rmse_interval': 1.723, 'corr_interval_daytime': 0.88, 'rmse_interval_daytime': 2.421, 
'mape_hour': 11.343, 'mape_interval': 12.858, 'rmse_hour': 1.553, 
'mape_interval_daytime': 19.576, 'corr_interval': 0.908, 'corr_hour': 0.92} 
 

The goodness-of-fit statistics calculated are Root Mean Squared Error (RMSE) and Mean 

Absolute Percent Error (MAPE, sometimes called Mean Absolute Percentage Error).  

These statistics are calculated for each time interval in baseline series (typically 15-minute 

intervals); for each time interval in the “daytime,” from 8am-6pm; and also for load data and 

baseline predictions.  

Measurement and Verification 

Streamlined calculation of baseline loadshapes is useful, but in most cases, baselines are being 

calculated for the purposes of comparing the predicted baseline to an actual load shape. The 

Loadshape tool provides several methods that make this comparison simple. 
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Difference Method 

The Loadshape class includes a diff method for calculating the difference between a baseline 

and an actual load shape. This method passes the baseline time series and actual load time 

series to an R script, which interpolates the two streams and generates four streams of data: 

 kW difference (difference at each interval between actual and baseline) 

 cumulative kWh difference (accumulated kWh difference at each interval between actual 
and baseline) 

 kW baseline (interpolated baseline kW at each interval) 

 cumulative kWh baseline (cumulative interpolated baseline kWh at each interval) 

The difference method generates these to simplify the calculation of the magnitude of the 

calculated differences relative to the baseline. 

Cumulative Sum Method 

The Loadshape class includes a cumulative_sum method for calculating the cumulative 

difference between a baseline and the actual load shape. The cumulative_sum method is a 

convenience method that simply wraps the diff method and returns only cumulative kWh 

difference stream. The cumulative_sum method also ensures that a baseline is available with 

which to compare the actual load shape data; if a baseline is not available, the method 

automatically generates one using the default arguments. 

 

Economic Valuation (Event Performance Method) 

The Loadshape class includes an event_performance method that is purpose built for 

comparing the performance of a loadshape to a baseline over a specific period of time. The 

period over which this comparison is calculated could be an arbitrary length of time, but in 

practice this method is useful for calculating load performance relative to baseline on specific 

days when the load may be operating in a particularly energy efficient mode, or when a new 

optimization is being tested. Below is an example of usage: 

my_load_shape = Loadshape(load_data=LOAD_DATA, temp_data=TEMP_DATA, 
                         timezone='America/Los_Angeles', 
                         temp_units="F", sq_ft=BUILDING_SQ_FT) 
 
# ----- build the baseline to use as a reference for performance ----- # 
event_baseline = my_load_shape.baseline(weighting_days=14, 
                                       modeling_interval=900, 
                                       step_size=900) 
 
# ----- calculate the performance summary for the event period ----- # 
event_performance = my_load_shape.event_performance(EVENT_START, 
EVENT_END) 
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The output of the event performance method will include these calculated quantities: 

 average kW reduction relative to baseline 

 average percent kW reduction relative to baseline 

 average Watts per square foot reduction relative to baseline (if the Loadshape object 
was instantiated with a sq_ft argument) 

 total kWh reduction relative to baseline 

 percent kWh reduction relative to baseline 

 total savings ($)* 

 total percent savings* 

*included only if the Loadshape object was instantiated with a tariff (see below) 

 

The "dr-event-calc.py" example in the examples directory demonstrates how this 

event_performance method can be used to calculate load performance during a demand 

response event. 

 

Tariffs 

The Loadshape class includes a cost method that enables the calculation of the cost of energy 

for a load based on a specific tariff. In order to use this functionality, a tariff object must be 

passed into the Loadshape object using the set_tariff method. A Tariff object should be 

instantiated with a json formatted tariff file from openei.org. An example of a valid tariff file is 

included in examples/data/tariff.json. The below example demonstrates how a Tariff object 

should be initialized and passed to the Loadshape object. 

tariff = Tariff(tariff_file='example_tariff.json', timezone='America/Los_Angeles') 
tariff.add_dr_period("2013-09-23 14:00:00", "2013-09-23 16:00:00") 
tariff.add_dr_period("2013-09-27 14:00:00", "2013-09-27 16:15:00") 
 
my_load_shape.set_tariff(tariff) 
 

Note that specifying DR periods, as shown above, is optional. Adding these DR periods will 

ensure that the DR day tariff that is specified in the tariff JSON is used during the periods 

specified. Also, note that if a Loadshape object has a tariff set, the event_performance method 

will use the cost method that is described below to calculate the financial savings during the 

event period. 
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After a tariff has been set for a loadshape object, as shown above, the cost method may be 

used to calculate the cost of energy and the cumulative cost of energy at each interval of the 

data provided to the load_data argument. If no load_data argument is provided, the input data 

will default to the actual load data. The example below shows how the cost data for a baseline 

load shape can be calculated. 

my_load_shape.set_tariff(tariff) 
 
#c: cost  cc: cumulative cost 
c, cc = my_load_shape.cost(load_data=my_load_shape.baseline_series.data(), 
                          start_at=start_at, 
                          end_at=end_at) 
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Appendix B:  Agent Details 

Introduction 

LBNL developed three agents that thinly wrap the loadshape tool to interact with VL. These 

agents serve as a simple interface to the loadshape tool so that agents on the VL platform can 

use the capabilities of the loadshape module without having to declare it as a dependency. The 

agent wrappers create a consistent interface for different applications of the loadshape tool, with 

limited additional computing overhead. Essentially the use of these agent wrappers also allows 

for code optimization and reuse within different environments.  An example of this was 

described in the main report under Prototype Applications. 

 

The three agents contained within this repository are: 

 Baseline Load Shape agent 

 M&V agent 

 Economic Valuation agent  

As the names indicate, each of these agents exposes a different piece of functionality provided 

by the loadshape module. 

Baseline Load Shape Agent Usage 

To request a baseline from the Baseline agent, a requesting agent would publish a message to 

the baseline/request topic using the publish_json method. 

An example message is shown below: 

example_message = { 
   "load_data": [(1379487600, 5), (1379488500, 5), ... (1379491200, 5)], 
   "temp_data": [(1379487600, 72), (1379488500, 72), ... (1379491200, 72)], 
   "timezone": 'America/Los_Angeles', 
   "temp_units": "F", 
   "sq_ft": 5600, 
   "weighting_days": 14, 
   "modeling_interval": 900, 
   "step_size": 900 
   } 
 

Except for "load_data" all keys are optional. 

The contents of this message will be passed directly to the loadshape module and a baseline 

will be calculated using the arguments provided. Once the baseline calculation has completed, 

the Baseline agent will publish a message to the baseline/responses/[requesting-AgentID] 

topic. The message published to this topic will contain the requested baseline, as well as the 

error statistics that describe how well the baseline fits the training data. 

https://bitbucket.org/berkeleylab/eetd-loadshape
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Measurement & Verification (cumulativesum) Agent Usage 

To request a cumulative sum calculation from the Cumulative Sum agent, a requesting agent 

would publish a message to the cumulativesum/request topic using the publish_json method. 

An example message is shown below: 

example_message = { 
   "load_data": [(1379487600, 5), (1379488500, 5), ... (1379491200, 5)], 
   "temp_data": [(1379487600, 72), (1379488500, 72), ... (1379491200, 72)], 
   "timezone": 'America/Los_Angeles', 
   "temp_units": "F", 
   "sq_ft": 5600, 
   "step_size": 900 
   } 
 

Except for "load_data", all keys are optional. 

The contents of this message will be passed directly to the loadshape module and a cumulative 

sum will be calculated using the arguments provided. Once the cumulative sum calculation has 

completed, the Cumulative Sum agent will publish a message to the 

cumulativesum/responses/[requesting-AgentID] topic. The message published to this topic 

will contain a time series of kWh difference between the provided load data and the calculated 

baseline. 

Event Valuation (eventperformance) Agent Usage 

To request an event performance calculation from the Event Performance agent, a requesting 

agent would publish a message to the eventperformance/request topic using the publish_json 

method. 

An example message is shown below: 

example_message = { 
   "load_data": [(1379487600, 5), (1379488500, 5), ... (1379491200, 5)], 
   "temp_data": [(1379487600, 72), (1379488500, 72), ... (1379491200, 72)], 
   "timezone": 'America/Los_Angeles', 
   "temp_units": "F", 
   "sq_ft": 5600, 
   "start_at": "09-27-2013 00:00:00", 
   "end_at": "09-28-2013 00:00:00" 
   } 
 

Except for "load_data" all keys are optional, but in nearly all cases "start_at" and "end_at" times 

should be provided. 
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The contents of this message will be passed directly to the loadshape module and a set of event 

performance statistics will be calculated using the arguments provided. Once the event statistics 

calculations have completed, the Event Performance agent will publish a message to the 

eventperformance/responses/[requesting-AgentID] topic. The message published to this 

topic will contain a set of event performance statistics that characterize the performance of the 

actual load relative to the calculated baseline during the time period provided. 
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Appendix C:   Load Performance Assessment Example 

 
This section shows how to use the Loadshape module to assess the performance of a load 

relative to its normal operation during a specific time period, such as a demand response event.  

 

Specifically, this example outlines how to: 

 generate a baseline for the load during a specified time period 

 generate a “difference time-series”, or a time-series that is the result of subtracting the 

calculated baseline from the actual load data 

 

Loadshape Module Inputs 

 
In order to perform this calculation, four inputs will be necessary: 

 time-series load data - This data will form the basis of the baseline prediction. 

 time-series outdoor air temperature data - This data will enhance the baseline 

prediction by establishing a temperature dependence. 

 prediction time-series outdoor air temperature data - This data will be used to make 

a baseline prediction using the model generated from the historical load and temperature 

data. 

 event start / event stop - The will be used to select the appropriate portions of the time-

series data that is passed in to the Loadshape module. 

 

Figure 19 shows the inputs required by the Loadshape module to calculate a baseline that will 

be compared against the actual load data. The solid portion of each line represents data that 

must be provided to the Loadshape module. The dashed portion of each line represents data 

that is not needed by the calculation. Since the Loadshape module timeslices the input data, 

unnecessary data will simply be ignored. 
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Figure 19.  Diagram of inputs necessary for performing a temperature sensitive baseline 
prediction 

 
In most use cases, the “historical” time-series outdoor air temperature data (in red) and the 

time-series outdoor air temperature data associated with the prediction period (in yellow) come 

from the same source. Because of this, the Loadshape module does not require that “prediction” 

temperature data be passed in separately from “historical” temperature data. 

 

As noted earlier in the baseline description, “historical” temperature data is necessary to 

generate a temperature dependent baseline model of the load behavior. If “prediction” 

temperature data is provided, it will be used for predicting the baseline, however, if it is not 

provided, the temperature data necessary to generate the baseline prediction will be extracted 

from the “historical” temperature data. In other words, all temperature data may be passed in as 

a single “historical” stream. The rest of this example will define all temperature data in a single 

stream as described here. 

 

Loadshape Module Baseline Generation 

 

An R script contained within the Loadshape module constructs a statistical model using time-

series load data and time-series outdoor air temperature data. This model is then used to make 

a baseline prediction for a specific time period 
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Typically, the purpose of generating a baseline is to characterize what the normal behavior of a 

load would have been during a specific prediction period during which there was some kind of 

load perturbation (a demand response event, for example).  Data from the prediction period is 

excluded from the generation of the model.  Data from other time periods (such as holidays) 

may also need to be excluded. The Loadshape module accommodates this by allowing the user 

to define “exclusion periods”. Data from the exclusion periods are not used when fitting the 

model. 

 

 Loadshape Module Conventional Baseline Generation 

 
By convention, baselines are typically generated from data collected during the “training period” 

prior to the beginning of the baseline prediction period. As discussed earlier, by including time-

series load and temperature data on either side of the prediction period, but not data acquired 

during the prediction period itself, we can obtain a more accurate baseline. The Loadshape 

module accommodates either of these use cases (and others too): the user provides load data 

and temperature data for one set of timestamps to be used for training the model, and 

temperature data for the timestamps for which a prediction is required, and the model will 

provide the predictions; there is no requirement that the prediction times must all be after the 

training times.   

 

Loadshape Module: Subtracting Time-Series Data 

 
Once the predicted baseline has been generated (using the process described above), the 

difference between the baseline and the actual load data may be calculated. For the purposes 

of this calculation, the Loadshape module does not observe the exclusion period that was 

defined for the purposes of generating the baseline. The difference calculation that is built into 

the Loadshape module will subtract the time-series load data from the calculated baseline data 

wherever values are present.  

 

Figure 20 illustrates a typical use case for the Baseline module and the M&V (Difference) 

module. The top panel shows load as a function of time during the training period.  Day 4 has 

been excluded because it is a holiday, when load behavior might be different than typical days. 

The second panel shows the outdoor air temperature as a function of time for both the training 

period and the subsequent prediction period. The third panel (blue) shows the predicted 

baseline during the prediction period, as generated by the baseline model fit to the training 

period.  The fourth panel (black) shows the actual load during the prediction period.  Finally, the 

fifth panel (dark green) shows the difference between the actual load and the baseline load 

during the prediction period, as generated by the M&V (Difference) module.  
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Figure 20: Time series plots that illustrate the creation of a baseline prediction, and 
comparison of baseline to actual load. 

 

The Difference Calculation 

 
The following section outlines how to use the Loadshape module to calculate a time-series 

containing the difference between the actual load data and a calculated baseline during a 

specified time period. The description below is simplified:  some of the steps described in the 

conceptual overview are assumed to be completed prior to taking the difference, so they are not 

shown here.  

 

In this example we will be calculating the difference between the actual load profile and a 

calculated baseline for the following event period that spans one day: 

 event period start: "2013-09-27 00:00:00" 

 event period end: "2013-09-28 00:00:00" 
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Step 1: Instantiate a new Loadshape module 

 

 pass in time-series load data 

 pass in time-series outdoor air temperature data 

 set timezone of the time-series timestamps 

 set the units of the temperature data 

 

 
 

Step 2: Add an exclusion period 

 
add an exclusion period to the Loadshape object - in this example a conventional baseline is 

used, therefore all data after the beginning of the event period will be excluded. This type of 

exclusion can be achieved by setting an exclusion end date that is later than the end of the 

input data, or to be safe, one that is well in the future.   
 

 
 

Step 3: Calculate the difference 

 
Now that everything is set up, calculating the difference is simply a matter of calling the “diff” 

method. 

 

 
 
Note that the Loadshape diff method will return a python List containing four Series objects. The 

first element in this array will be the Series that contains the difference between the actual load 

data and the baseline.  

 


