BTO Program Peer Review

Air Barriers for Residential and Commercial Buildings

Diana Hun, PhD

Oak Ridge National Laboratory dehun@ornl.gov 865-574-5139 April 4, 2013

Problem Statement & Project Focus

- Air leakage is a significant contributor to HVAC loads
 - ~50% in residential buildings (Sherman and Matson 1997)
 - ~33% of heating loads in office buildings (Emmerich et al. 2005)
- Airtightness of buildings listed in BTO prioritization tool
- IECC 2012 airtightness requirements

Residential Construction

- Zones 1 and 2: $ACH_{50} \le 5$
- Zones 3 through 8: ACH₅₀ ≤ 3

Commercial Construction

- Zones 1 through 3: no air barrier required
- Zones 4 through 8:
 - Air barrier material ≤ 0.02 L/(s·m²) at 75 Pa or
 - Air barrier assembly $\leq 0.2 \text{ L/(s} \cdot \text{m}^2)$ at 75 Pa or
 - Building enclosure $\leq 2 L/(s \cdot m^2)$ at 75 Pa

Problem Statement

Field measurements vs. IECC 2012

- a. Sherman and Matson 2002
- b. Offermann 2009
- c. Persily and Grot 1986; Persily et al. 1991; Musser and Persily 2002
- d. Cummings et al. 1996; Cummings et al. 2000
- e. Brennan et al. 1992
- f. Bahnfleth et al. 1999

ACoE: US Army Corps of Engineers FSEC: Florida Solar Energy Center

NIST: National Institute of Standards and Technology

PSU: Penn State University

Impact of Project & Overall Approach

- Cost-effective means to meet and exceed IECC 2012 requirements
- Evaluate the eight typical air barrier types

- Tests

Phase 2: Field Tests

- Effect of air leakage on energy and durability

- Material: Level 1 \rightarrow 0.02 L/(s·m²) @ 75 Pa \rightarrow Baseline

- Assembly: Level 2 \rightarrow 0.2 L/(s·m²) @ 75 Pa

- Enclosure: Level $3 \rightarrow 2 \text{ L/(s} \cdot \text{m}^2)$ @ 75 Pa

Syracuse natural exposure test facility

Eight air barrier types

- Three wall samples per air barrier type
 - Representative of residential or commercial construction
 - Simulated imperfections
- Data collection started in November 2011

Field Tests: Wall Assembly

General Material Layout Horizontal Cross Section of Wall

General Sensor Layout Vertical Cross Section of Wall

T. RH. P. MP T. RH. HF T, RH, P T. RH T. RH. HF T, MP

temperature

Field Tests: Heat Flux Data

Air barrier type: non-insulating sheathing (south facing walls)

Imperfection: unsealed OSB joint at stud

% Increase in Heat Flux

Compared air leakage levels	Sensor location	Nov	Dec	Jan	Feb	Mar	Apr
Level 3 vs. Level 1	½ height	54	39	48	37	44	19
Level 2 vs. Level 1		11	7	9	7	9	5
Level 3 vs. Level 1	1/4 height	97	67	90	71	80	43
Level 2 vs. Level 1		13	8	13	11	12	8

Field Tests: Moisture in Wall Cavities

Field Tests: Moisture in Wall Cavities

- Airtightness can affect the drying potential of walls
- Condensation occurred despite the R-7.5 XPS exterior insulation

Phase 3: Sub-Assembly Tests

- Characterize major air leakage paths
 - Joints: wall / foundation, wall / roof, exterior sheathing
 - Penetrations: electrical outlets, pipes
 - ASTM E2357
- Assess common sealing methods for each air barrier type

Test matrix

A in la qui ou tous a				
Air barrier type	Wood (8'×8')	Steel (8'×8')	6" CMU (6'×4')	
Fluid-applied non-foaming liquid				
Insulating sheathing				
Non-insulating sheathing		NA	NA	
Interior air barrier		NA	NA	
Mechanically-fastened membrane				
Self-adhered membrane				
Spray-applied foam				Commiste
Sealants w/ backup structure		NA	NA	Complete
Interior drywall		NA	NA	In progress
Baseline (i.e., no air barrier)				
Number of tests	10	6	6	Not started

Sub-Assembly Tests: Characterization of Major Air Leakage Paths

Air Leakage Effects

2-Story house (Floor area = $2,000 \text{ ft}^2$)

IECC 2012 requirement = $3 ACH_{50}$

- 1. Both joints unsealed \cong 1 ACH₅₀ Contribution to IECC requirement \cong 33%
- 2. Both joints unsealed + bottom plate sealed to flooring + top plates continuously sealed \cong 0.96 ACH₅₀ Contribution to IECC requirement \cong 32%

Sub-Assembly Tests: Comparison of Air Barrier Types

- Airtight drywall approach (ADA)
 - Economical
 - Time consuming
- Mechanically-fastened membrane
 - Economical
 - Air leaked at nailed fasteners
 - Will repeat test with screwed fasteners
- Non-insulating sheathing
 - Easier to meet wall assembly airtightness requirements
 - More expensive than ADA
- Fluid-applied membrane
 - Easier to meet wall assembly airtightness requirements
 - More expensive than other tested systems

Project Plan & Schedule

6																
Summary								gend								
						Work completed										
						Active Task										
							Milestones & Deliverables (Original Plan									
						Milestones & Deliverables (Actual)										
		FY2	012			FY2013 FY2014										
	(ce	ar)	n (n	(d	ec)	ar)	<u>r</u>	(d	ec)	ar)	Ē	<u> </u>				
	II-D	(Jan-Mar)	r-Ju	-Se	(Octt-Dec)	(Jan-Mar)	r-Ju	-Se	(Octt-Dec)	(Jan-Mar)	r-Ju	(Jul-Sep)				
	00	Jan	Ap	İn	Oct	Jan	Ap	Jul	Oct	Jan	Ар	İn				
Task / Event	Q1 (Octt-Dec)	o2 (Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Q2 (Q3 (Apr-Jun)	Q4 (Jul-Sep)	Q1 (Q2 (Q3 (Apr-Jun)	04 (
	ΤŤΤ		ΠŤΤ	ΠŤ	TŤ	ΠĬΤ	ΙΤΙ	TŤ	TŤ	TŤ	TŤĦ	ΠŤΤ				
Project Name: Air Barriers for Residential and Commercial Buildings																
Complete CRADA with ABAA																
Interim report for Phase 2																
Current work and future research																
Q1: Heat-air-moisture chamber quality assurance test and delivery to ORNL																
Q2: Complete first year of Phase 2																
Q3: Commissioning of heat-air-moisture chamber																
Q4: Continue Phase 3																
Continue Phase 2 tests																
Airtightness assessment of Flexible Research Platform (FRP) facilities																

Project Budget

Project budget

FY13 project budget is \$275K (\$150K from ET and \$125K from RBI)

Variances

No variances from planned budget

Cost to date

As of 20 March, \$115K or 42% of budget expended

Additional funding

No other funding sources beyond in-kind contributions

Budget History								
FY2010		FY2	2011	FY2012				
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share			
\$550K	\$300K	\$400K	\$300K	\$400K	\$600K			

Project Integration, Collaboration & Market Impact

Partners and Technology Transfer

Communications

- Hun and Desjarlais (2011) Update to ABAA research participants, Syracuse, NY
- Hun and Desjarlais (2012) Air Barrier Conference, Chicago, IL
- Hun and Desjarlais (2013) Durability + Design Journal
- Hun and Desjarlais (2013) Air Barrier Conference, Chicago, IL
- Hun and Desjarlais (2013) Update to ABAA research participants, Indianapolis, IN
- Hun et al. (2013) Buildings XII Conference, Clearwater, FL

Next Steps and Future Plans: Continue CRADA with ABAA

- Continue monitoring some of the Phase 2 panels
- Finish sub-assembly tests
- Airtightness retrofits of Flexible Research Platforms
 - Simulate light commercial buildings from the 1980s
 - 1-story FRP: Metal Building Manufacturers Association (MBMA)
 - 2-story FRP: Energy Efficient Buildings Hub (EEB Hub)

