

REnewable Acid-hydrolysis Condensation Hydrotreating (REACH) Technology

DIESEL & JET FUEL FROM BIOMASS HELPING TO SECURE OUR FUEL SUPPLY

MERCURIUS BIOREFINING

Why Are We Here?

Climate Change!

- It's REAL!
- Biofuels are key for GHG mitigation.
- Drives value.

Energy Security

- Shale gas and oil have changed this equation.
- US is still a net importer of oil that is used for transportation fuels.

Rural Redevelopment

- Agricultural areas.
- Paper and saw mill towns
- More jobs, less meth.

Reduced GHG = better world

+

More domestic energy = better country.

Advanced Biofuels Categories

Biochemical Conversion:

- Fermentation to alcohols
- Very long residence time (days)
- Requires sugars as a feedstock

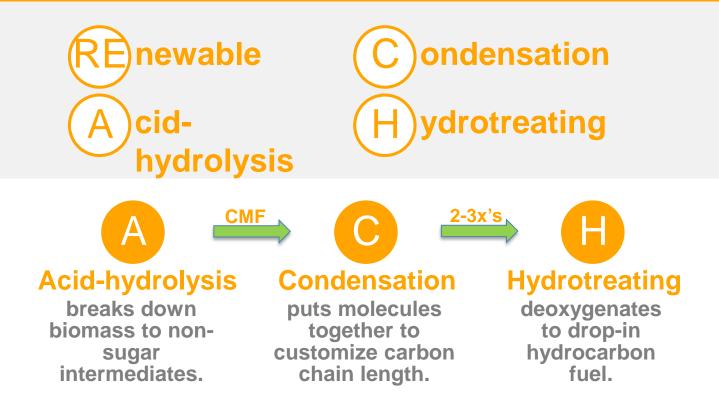
Thermochemical Conversion:

- Gasification and Pyrolysis
- Vapor phase process
- Large equipment to handle vapor volumes

Liquid Phase Catalytic (LPC) Conversion:

- Low volumes with liquid phase
- Fast reactions and low residence times (hours)
- Converts raw biomass
- Low temperature / pressure

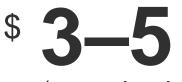
Liquid phase = smaller equipment.


+

Catalytic = faster = smaller equipment.

Lower capital costs.

REACH Technology



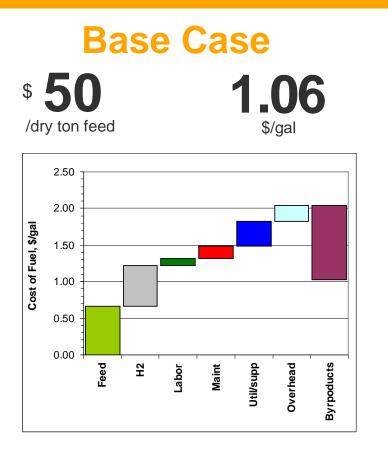
Cost Structure (Corn Stover)

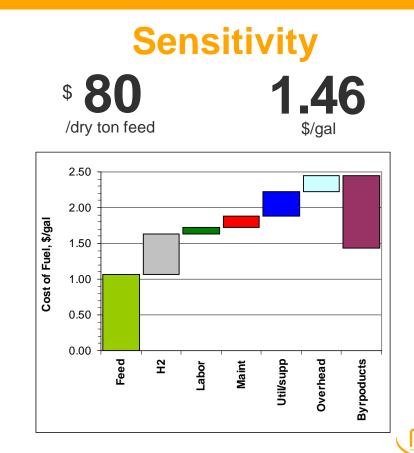
CapEx:

/annual gal capacity

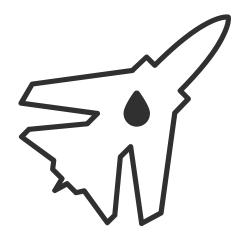
For example, a 15 mil gal plant at \$4/annual gal capacity would cost \$60 million **OpEx:**

\$**1.06**


/gal excluding capital charges


\$1.62

/gal including capital charges


Cost Breakdown

Fuel Products

Drop-in Hydrocarbon Jet Fuel

Drop-in Hydrocarbon Diesel Fuel

Optional Chemicals & Byproducts

Levulinic Acid (LA) / Ethyl Levulinate (EL)

- Plasticizers
- Solvents
- Polymers

Formic Acid / Ethyl Formate

- Food safe fumigant/ animal feed supplement
- Environmentally friendly de-icer
- Fuel cell feed

Furfural

- Solvent for extraction processes
- Resin manufacturing

Char

- Solid Fuel
- Fertilizer / Soil Enhancer
- Potential On-site Hydrogen Production

Future Products and Technologies

Fatty Acids

- Nutraceuticals
- Specialty chemicals

Lignin Products

- Flavorings and perfume ingredients
- Aromatic fuels

Cyclic Ethers

- High cetane diesel additive
- Specialty chemicals

Polymers

- 2,5-Furandicarboxylic acid (FDCA) for PEF
- Succinic acid (SA) for BDO to PBT and PBS

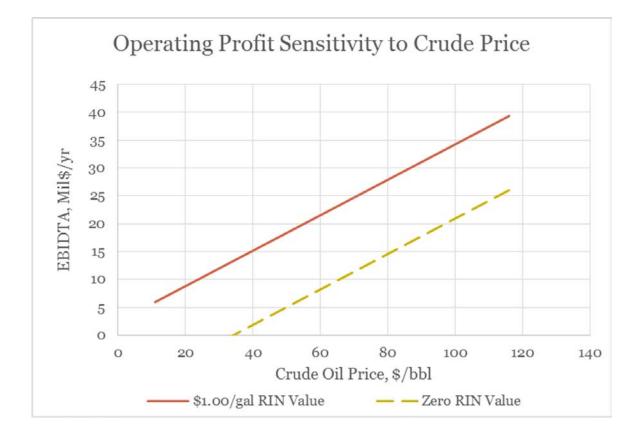
Market

U.S. liquid fuels sales in 2011 was estimated at 200+ Billion gallons D >45B >22B Jet Fuel **Diesel Fuel**

> Source: US Energy Information Association

RFS2 mandates advanced biofuels ramp up to a minimum of

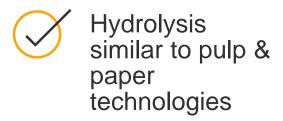
21 Billion gallons annually by 2022 (at \$4.00 per gallon)


or

\$84 Billion market for 2nd generation biofuels A 2% Market Share nearly \$2Billion for Mercurius in 2022

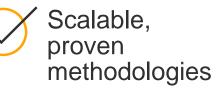
with an \$84Billion market assuming \$4/gal

Economics Good at Lower Crude Prices


Customers

The US Navy is committed to supply 50% of its fuel needs with non-petroleum fuels by 2020 Many airlines, including Alaska, Delta, and United have committed to using increasing amounts of biofuels

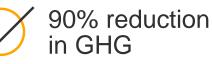
Diesel vehicle fleets are potential high volume customers Customers for optional chemicals and by-products include agricultural and specialty chemical companies



Technology Development Advantages

Condensation Hydrotreating similar to petroleum refining

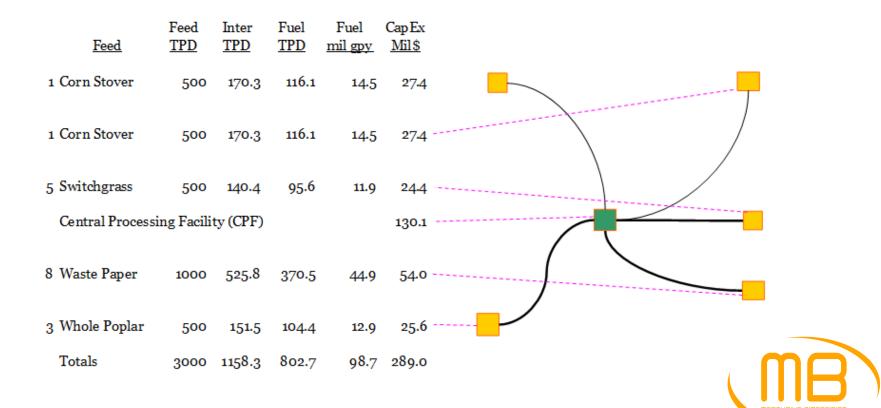
Value Proposition



- Larger sizing
- No inhibitor issues
- High moisture ok

Distributed
model
capable

Fuel products with increasing demand



Distributed Model Example

DOE Pilot Plant Project

- Build and operate at University of Maine
- \$4.6 million matching grant from the US DOE
- Hydrolysis/Condensation
- Hydrotreating existing small scale facilities available

Scale-up Strategy

 US Department of Defense, DPA grant for military fuel

Target 2019 start-up

 \bigcirc

Other grants and loan/bond guarantees available

Supply and off-take agreements

CSIRO (Australia)

process optimization research

Purdue University

scientific/engineering/aviation expertise

UMaine

continuous flow optimization, engineering and pilot plant operation

UC Davis

Hydrolysis technology & IP

Pacific Northwest National Laboratory

past hydrotreating & catalyst development

Haldor Topsoe

catalyst / hydrotreating technology

Management Team

K.S

Karl Seck President & CEO

Karl has nearly 30 years experience as a process engineer in the petroleum industry. He has a Bachelor of Science in Chemical Engineering from the University of Kansas.

Michael Vevera Chief Financial Officer

Michael has started-up and run successful companies in Japan and Australia. He has a degree in International Finance from Oregon State and a Masters in International Marketing from University of Technology, Sydney.

Knud Balslev

K.B

VP of Business Development

Knud has 25+ years of international business development experience. He has a BSC in Electronics from the Danish Technical University.

Advisors

Mark Mascal

Professor of Chemistry, University of California–Davis Mark received his PhD from the University of London, Imperial College and was a Postdoctoral Fellow at the University of Strasbourg, France.

Pete Kitzman

Sr. Manager: Risk Management & Procurement, The Kellogg Company Pete has over 30 years of experience in risk management, strategic project management, biofuel co-product dev. & agriculture production. He has a BS in Agriculture from Iowa State University

Clayton Wheeler Assistant Professor of Chemical & Biological Engineering, University of Maine.

Clay received his BS, MS and PhD degrees from the University of Texas at Austin.

Funding Needs

Series A 2016

Seeking \$5 million

of equity funding to use as matching funds along side the DOE grant of \$4.6 million to build the 10 MTPD Pilot Plant

Series B 2017

Seeking \$35 million

of equity funding to use along with \$35 million of debt to build the 500 MTPD Commercial Plant

MERCURIUS BIOREFINING

Karl Seck karl@mercuriusbiorefining.com