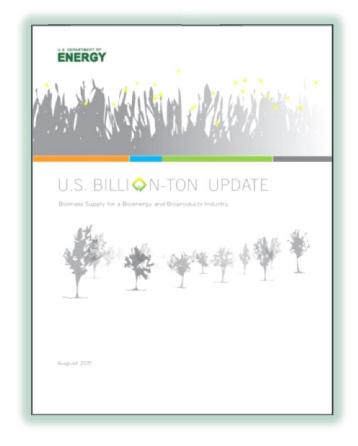


Importance of Biomass Production and Supply

June 20, 2013 Symbiosis Conference Cornell University **Bryce Stokes**, PhD

Senior Advisor CNJV Contractor - DOE

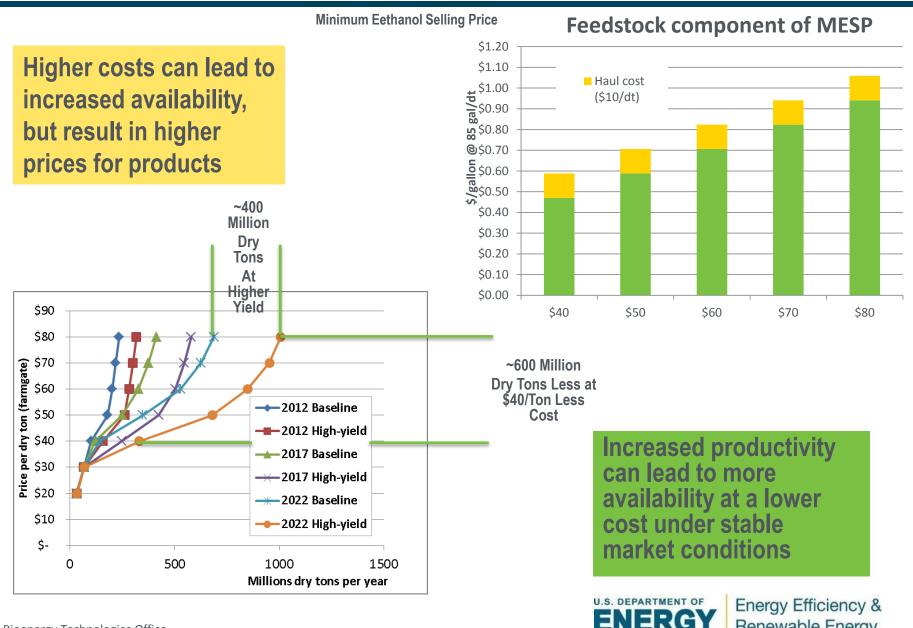
A Second Look – John's Plenary Talk


- DOE (BETO, SC, ARPA-e), other agencies, and partners are working to:
 - Understand and enhance the availability and accessibility of biomass feedstocks
 - Develop technologies and systems to reduce cost of feedstocks and overall final product cost
 - Improve quality of feedstocks at the biorefinery
- Energy crop yield is important for commercialization and important to BETO although production is not program's primary focus.
- Sustainability is very important.
- New, integrated approaches, especially in feedstock supply and logistics with production and conversion, are being developed with partners.

Billion Ton Update

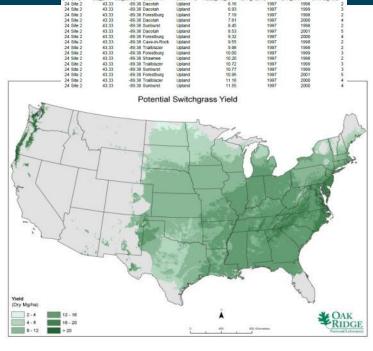
- Originally published in 2005 with about billion dry tons annually. Includes agriculture and forestry
- Update in 2011 has ~half to ~1.5 billion dry tons.
- Includes economics, sustainability, LUC, time, scenarios, etc.
- Focus
 - County-by-county feedstock availability by cost, type, year, scenario
 - Models yield and yield increases for ag residues and energy crops
- Additional efforts underway
 - Transportation and storage costs
 - Effects of quality and blended feedstocks
 - Improved economics data
 - Better regional yield data

https://bioenergykdf.net/



A new bioeconomy from a billion tons will

- Provide about 68 billion gallons of biofuels or 980 billion kWh per year
- Displace almost 50% of annual gasoline consumption or about 30% of petroleum consumption
- Provide electricity for 87 million households
- Almost twice the current RFS levels of biofuels
- CO2 reductions of about 600 million tons
- About 2 million jobs and about \$100 billion economic output by 2022

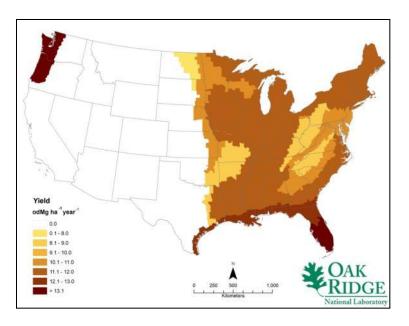

Feedstock Availability and Costs (or vice versa)

Renewable Energy

Perennial Grasses – Production Costs and Productivity

Item	Units	North- east	Appalachia	South- east	Delta	Corn Belt	Lake States	Southern Plains	Northern Plains
Stand life	Years	10	10	10	10	10	10	10	10
Productivity	dry tons/acre	4.0-7.5	5-9.5	3.5-9.5	3–7	4–7	3.5–5	2-6.5	2-6.5
Establishment									
Seed	\$/Ib.	\$10	\$22	\$22	\$22	\$10	\$10	\$22	\$10
Planting	lb./acre	5	5	5	5	5	5	5	5
Replants	percent	25	25	25	25	25	25	25	25
No-till drill	-	1-time	1-time	1-time	1-time	1-time	1-time	1-time	1-time
Total kill herbicide	No. applications	1-time	1-time	1-time	1-time	1-time	1-time	1-time	1-time
Pre-emergent herbicide	No. applications	1-time	1-time	1-time	1-time	1-time	1-time	1-time	1-time
Phosphorous	lbs P205/ acre	40	40	40	40	40	40	40	40
Potassium	lbs K20/ac	80	80	80	80	80	80	0	0
Lime	tons/acre	1	2	2	2	1	1	0	0
Total establishment costs	\$/acre	\$21 0	\$340	\$330	\$330	\$200	\$200	\$220	\$150
Maintenance y	ears								
Reseeding	year applied	2	2	2	2	2	2	2	2
Pre-emergent herbicide	No. applications	0	0	0	0	0	0	0	0
Nitrogen	lbs/acre	60	70	70	50	60	40	40	40
Phosphorous	lbs P205/ acre	0	0	80	0	80	0	0	0
Potassium	lbs K20 /acre	0	0	80	0	80	0	0	0
Harvest costs	\$/dry ton	\$19.50 - \$21.00	\$18.50 - \$19.90	\$18.00- \$20.20	\$18.60 - \$20.60	\$19.20 - \$20.60	\$20.60 - \$21.90	\$19.20 \$22.10	\$19.40 - \$22.30

- Herbaceous crop productivity
 - Varies geographically
 - Baseline yields (dry tons/acre)
 - 2014 3.0 9.9
 - 2030 3.6 12.0
 - Database available

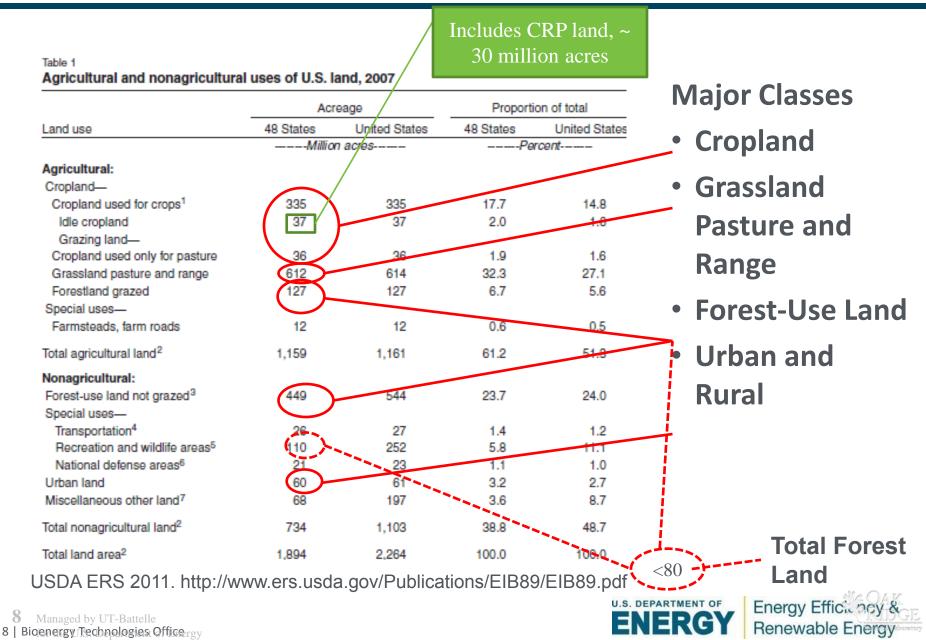


•

Woody Crops – Production Costs and Productivity

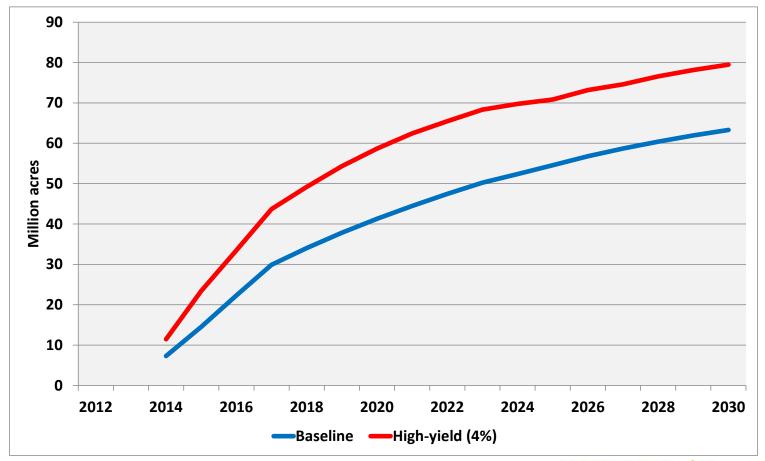
Item	Units	Poplar	Pine	Eucalyptus	Willow (coppiced)
Rotation	Years	8	8	8	4ª (5 harvests)
- ·	sq. ft.	60	60	60	4ª (5 harvests 7.5 5800 5.1 Northeast an
Spacing	trees/acre	726	726	726	5800
Productivity	dry tons/acre-year	3.5-6.0	5.0-5.5	6.0	5.1
Growing range	Region	Northeast, Lake States, Northwest, Midwest, Plains	Southeast	Sub-tropics	Northeast and Lake States
Establishment - yea	ar 1				
Cuttings	\$/tree	\$0.10	\$0.06	\$0.10	\$0.12
Planting	\$/tree	\$0.09	\$0.09	\$0.09	\$0.02
Replants	percent	5	5	5	0
Moldboard plow	-	1-time	1-time	1-time	1-time
Disk	-	1-time	1-time	1-time	1-time
Cultivate	-	2-times	2-times	2-times	2-times
Total kill herbicide	No. applications	1-time	1-time	1-time	1-time
TOTAL KIT HELDICIDE	lbs a.i./acre	1.5	1.5	1.5	1.5
Pre-emergent	No. applications	1-time	1-time	1-time	1-time
herbicide	lbs a.i./acre	1.5	1.5	1.5	1.5
Phosphorous	lbs/acre	0	40	0	0
Establishment costs	\$/acre	\$310	\$280	\$310	\$1120
Maintenance years	•				
Cultivate - year 2	-	2-times	2-times	2-times	1-time
Cultivate - year 3		1-time	1-time	1-time	None
Pre-emergent	No. applications	1	1	1	1
herbicide - year 2	lbs a.i./acre	1.5	1.5	1.5	1.5
Lime - year 3	tons/acre	90	90	90	100
Lillie - year 5	year applied	-	year3	year3	-
NE	lbs/acre	90	90	90	100
Nitrogen - vear 4 and 6	year applied	4 and 6	2,4, and 6	4 and 6	4
	-	-	-	-	-
Phosphorous -	lbs/acre	20	40	15	-
year 3	year applied	3	3	3	-
Potassium -	lbs/acre	35	40	25	-
year 3	year applied	3	3	3	-
Maintenance costs - year 2	\$/acre	\$60	\$100	\$100	\$30
Maintenance costs - year 3-8	\$/acre	\$220	\$200	\$200	\$100 ^b
Harvest costs	\$/dry ton	\$20	\$20	\$20	\$15

7

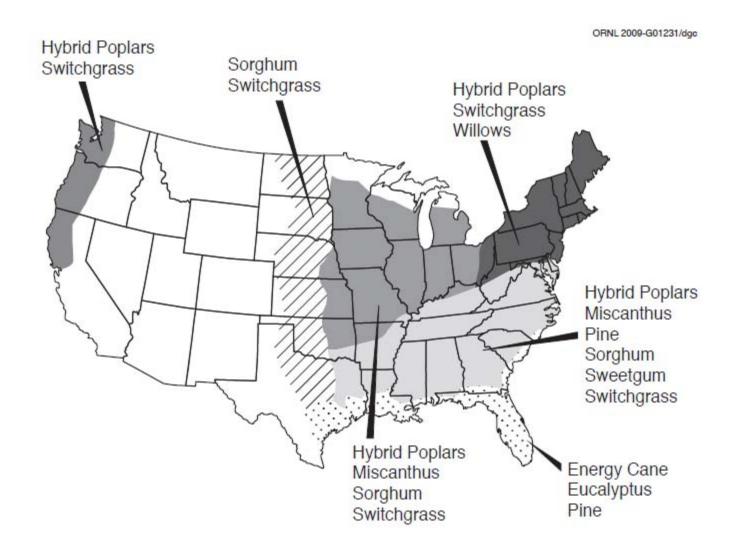

- Woody crop productivity
 - Varies geographically
 - Baseline yields (dry tons/acre)
 - 2014 3.5 6.0
 - 2030 4.2 7.2

Database available

U.S. DEPARTMENT OF ER

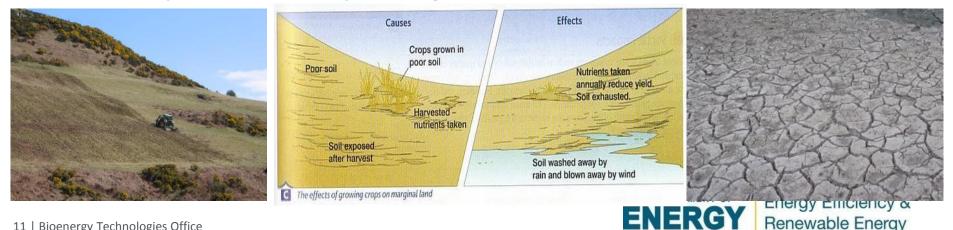

Land Use

8

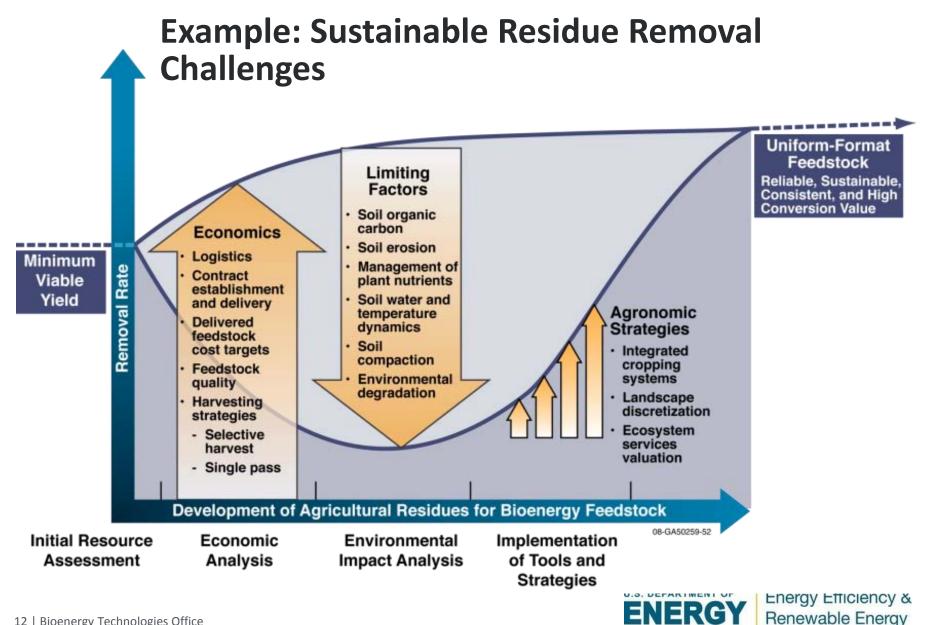

Land Use Change for Energy Crops

Total land use change (\$60/dry ton) is 63 million acres under the baseline scenario and 79 million acres under the high-yield scenario (4% annual growth in energy crop yield) by 2030

Energy Crops Across the U.S.

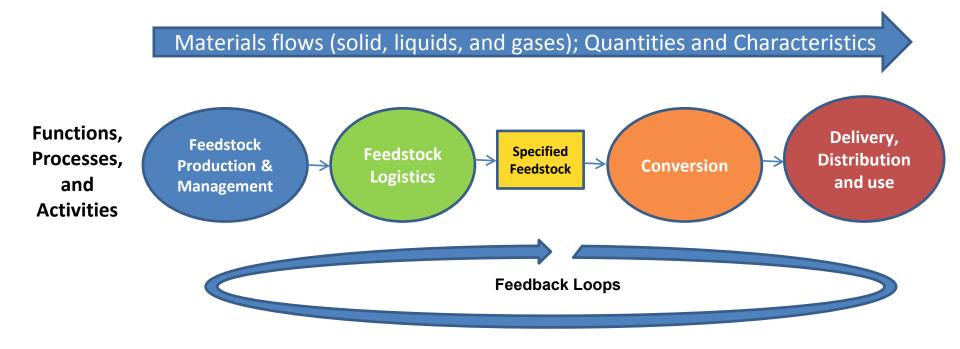


Marginal Lands – Opportunities for Symbionts


Definition: Land having limitations which in aggregate are severe for sustained application of a given use (FAO, 1997). Increased inputs to maintain productivity or benefits will be only marginally justified. With inappropriate management, risks of irreversible degradation.

Biophysical Constraints: Soil constraints (low fertility, poor drainage, shallowness, salinity), steepness of terrain, unfavorable climatic conditions (FAO, 1997).

Opportunities: Endosymbionts capable of conferring tolerance towards drought, salinity, and high temperatures to host plant, thereby increasing biomass yields, particularly in marginal lands.

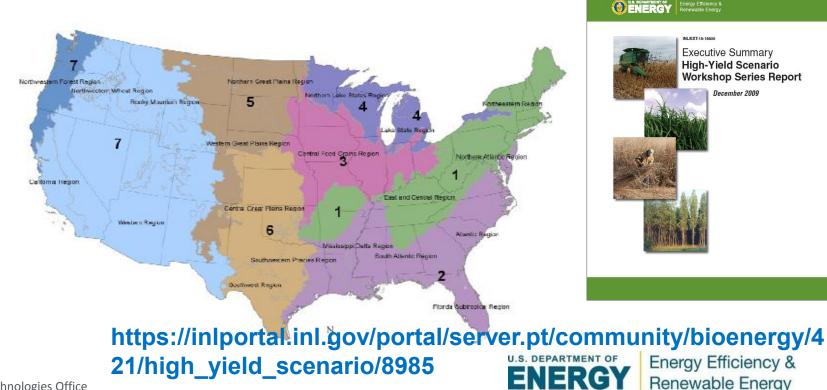


Understanding and Overcoming Limiting Factors

Using an Integrated Approach

Final Product Cost Can be Managed by Managing Components in Biomass Supply Chain Holistically

U.S. DEPARTMENT OF


The End Thank You!

Herbaceous Energy Crops Yields

Table 2-1. Currently achievable HEC yields agreed upon by participants (dry tons per acre) for each land resource zone shown in Figure 2-1.

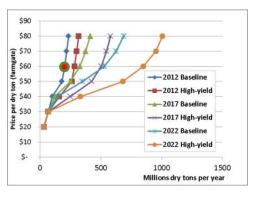
	Switchgrass	Miscanthus	Sorghum	Mixed Grasses	Energycane ¹	Sorghum
Region 1	5-10	2-16	6-12	0.5-5	0-12	6-12
Region 2	5-12	4-16	8-14	5-12	10-14	8-14
Region 3	3-8	4-16	9-13	3-8	0	9-13
Region 4	2–6	2-12	0-8	2-6	0	0-8
Region 5	2-6	1-5	0-6	2-6	0	0-6
Region 6	3-13	2-15	8-9	3-13	7–8	8-9
Region 7	ion 7 10–16				(coast 10-16)	

Energy Crop Yield Growth

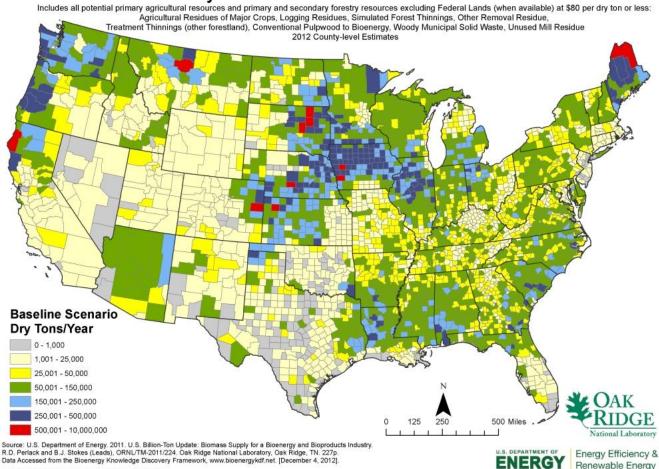
	2012	2017	2022	2030	2017	2022	2030	
Crop	Yield	Baseline 1% annual growth High-yield 2%–4% annual grow					ual growth	
		Dry	y tons/acre/ye	ear	Dry tons/acre/year			
Low end of	2	2.1	2.2	2.4	2.2 – 2.4	2.4 - 3.0	2.9-4.1	
	3	3.2	3.3	3.6	3.3 - 3.6	3.7 – 4.4	4.3 - 6.1	
yield range	4	4.2	4.4	4.8	4.4 - 4.9	4.9 - 5.9	5.7 – 8.1	
	5	5.3	5.5	6.0	5.5 - 6.1	6.1 – 7.4	7.1 – 10.1	
	6	6.3	6.6	7.2	6.6 – 7.3	7.3 – 8.9	8.6 – 12.2	
Middle of yield range	7	7.4	7.7	8.4	7.7 – 8.5	8.5 – 10.4	10.0 – 14.2	
	8	8.4	8.8	9.6	8.8 - 9.7	9.8 – 11.8	11.4 – 16.2	
High end of yield range	9	9.5	9.9	10.8	9.9 - 10.9	11.0 – 13.3	12.9 – 18.2	
	10		11.0	12.0 11.0 - 12.2	11.0 10.0	12.2 –	14.3 –	
	10	10.5	11.0		14.8	20.3		
	44 44 0	40.0	13.2	12.1 –	13.4 –	15.7 –		
	11	11 11.6 12.2		13.4	16.3	22.3		
	12	12.6	13.3	14.4	13.2 – 14.6	14.6 – 17.8	17.1–24.3	

Notes: The yields shown for 2017–2030 for the baseline and high-yield scenarios reflect the standing yield of the energy crop before losses. It is the yield for the energy crop planted in that particular year. For example, if the 2009–2012 yield for a particular crop is 5 dry tons per acre, the yield for that crop would be 5.5 dry tons per acre if planted in 2022 under the baseline and 6.1 to 7.4 dry tons per acre under the bigh yield scenario Energy Efficiency &

the baseline and 6.1 to 7.4 dry tons per acre under the high-yield scenario. 16



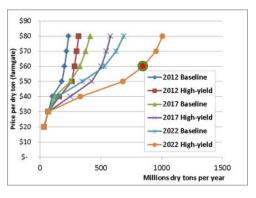
Renewable Energy

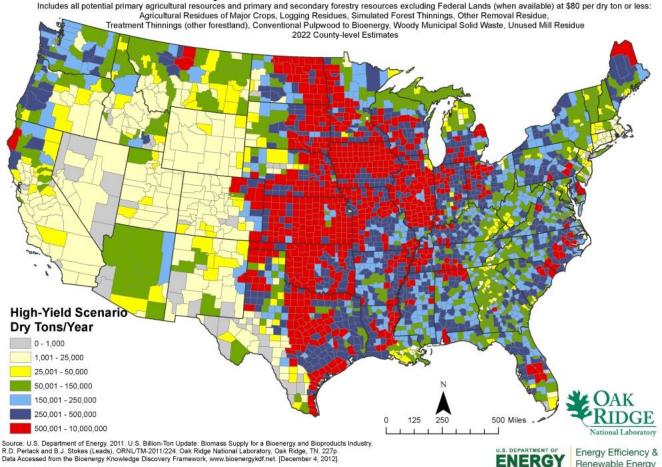

Supply Curve Results

- **2012**
- Baseline scenario
- \$60 dry ton⁻¹

201 x 10⁶ dt

Author: Laurence Eaton (eatonim@oml.gov)- December 4, 2012.


Currently Available Biomass Resources


Supply Curve Results

- **2022**
- High-yield scenario
- \$60 dry ton⁻¹

Potentially Available Biomass Resources

Author: Laurence Eaton (eatonim@oml.gov)- December 4, 2012.

