


# **Biomass 2013 – FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil feeds**

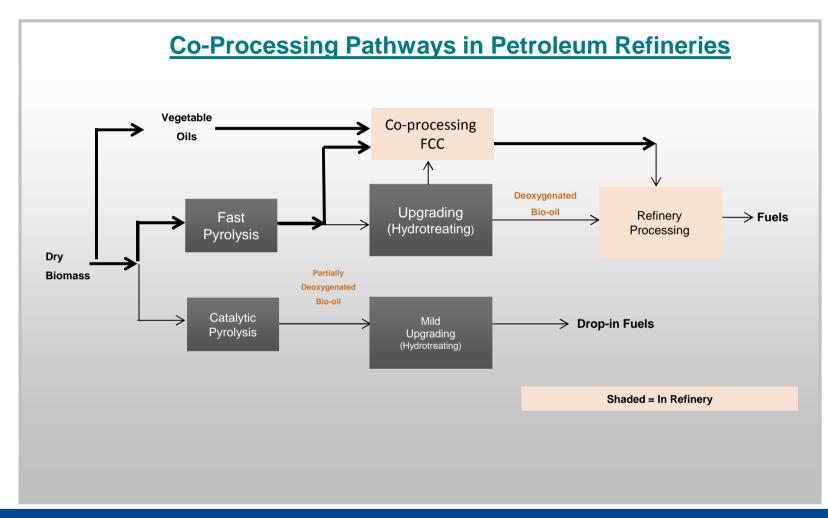
Kenneth Bryden, Gordon Weatherbee, and <u>E. Thomas Habib, Jr.</u>

August 1, 2013



Enriching Lives, Everywhere.®

## Introduction


- Refiners are under pressure to process bio-oils in petroleum refineries, with co-feed to the Fluid Catalytic Cracking (FCC) unit a favored option.
- The presentation gives data on two bio-oil FCC feed options.

### **Overview of Presentation**

- Options for co-processing bio-mass in petroleum refineries.
- Description of the Grace FCC unit pilot plant (DCR<sup>™</sup>).
- Performance comparison of the DCR to commercial FCC units.
- Results Vegetable oil feed
- Results Pyrolysis oil feed
- Conclusions



## **Bio-Mass Refining Options**



There are multiple pathways for co-processing biomass in refineries.



### **Grace DCR™ Pilot Plant Schematic**



#### Continuous circulating riser.



### Grace DCR<sup>™</sup> Pilot Plant



#### 26 licensed DCR pilot units have been constructed throughout the world.



## **DCR Comparison to Commercial FCCU- Gas Oil Feed**

#### Commercial Ecat, feed, operating conditions used in DCR

|                            | DCR  | FCCU |
|----------------------------|------|------|
| Riser Temperature (°F)     | 959  | 959  |
| C/O                        | 6.6  | 5.9  |
| Conversion (wt%)           | 67.2 | 66.2 |
|                            |      |      |
| Yields (wt%)               |      |      |
| Fuel Gas                   | 2.2  | 2.3  |
| LPG                        | 9.2  | 8.7  |
| Light Gasoline (C5–302°F)  | 31.4 | 31.1 |
| RON                        | 93.3 | 93.1 |
| MON                        | 79.4 | 78.3 |
| Heavy Gasoline (302-365°F) | 7.2  | 6.4  |
| Naphtha (365-500°F)        | 13.1 | 12.7 |
| LCO (500-644°F)            | 11.3 | 13.3 |
| HCO (644°F+)               | 21.4 | 20.4 |
| Coke                       | 3.9  | 4.5  |

Close match to commercial yields.

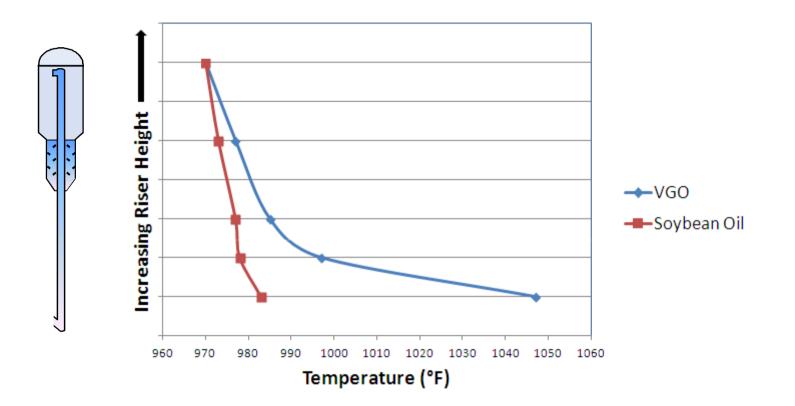


# **Comparison of 100% Soybean Oil to a Mid-Continent VGO**

 A model case to understand how vegetable oil would change yields and process conditions

|                  | Soybean Oil | Mid Continent<br>VGO |
|------------------|-------------|----------------------|
| API (°)          | 21.6        | 24.7                 |
| Sulfur, wt.%     | 0.00        | 0.35                 |
| Oxygen, wt.%     | 10.5        | 0.0                  |
| D2887            |             |                      |
| Distillation, °F |             |                      |
| IBP              | 702         | 527                  |
| 5%               | 1059        | 651                  |
| 10%              | 1069        | 691                  |
| 30%              | 1090        | 773                  |
| 50%              | 1102        | 848                  |
| 70%              | 1111        | 928                  |
| 90%              | 1183        | 1045                 |
| 95%              | 1232        | 1108                 |
| FBP              | 1301        | 1259                 |

#### Soybean oil is much different than VGO - 10 wt% oxygen.




## **Yields at Same Operating Conditions**

|                                                    | 100% Soybean Oil | 100% VGO |
|----------------------------------------------------|------------------|----------|
| Rx Exit Temp (°F)                                  | 970              | 970      |
| Catalyst Temp (°F)                                 | 1300             | 1300     |
| Feed Temp (°F)                                     | 250              | 250      |
| Pressure (psig)                                    | 25               | 25       |
| C/O Ratio                                          | 6.7              | 9.3      |
| H2 Yield wt%                                       | 0.04             | 0.02     |
| C1 + C2's wt%                                      | 1.9              | 2.1      |
| Total C3 wt%                                       | 4.3              | 6.7      |
| Total C4 wt%                                       | 6.2              | 12.4     |
| Gasoline (C5-430 <sup>-</sup> F) wt%               | 44.5             | 53.1     |
| G-Con RON EST                                      | 90.9             | 90.2     |
| G-Con MON EST                                      | 79.0             | 79.5     |
| LCO (430-700°F) wt%                                | 22.0             | 15.4     |
| Bottoms (700°F+) wt%                               | 3.9              | 4.9      |
| Coke wt%                                           | 4.6              | 5.2      |
| Fuel Gas CO (wt%)                                  | 1.2              | 0.0      |
| Fuel Gas CO <sub>2</sub> (wt%)                     | 0.9              | 0.0      |
| Fuel Gas H <sub>2</sub> O (wt%)<br>(by difference) | 10.3             | 0.0      |

Soybean oil produces less gasoline and more LCO than VGO.





Same preheat, catalyst temperature and riser outlet temperature.

Soybean oil has significantly lower heat of cracking than VGO!



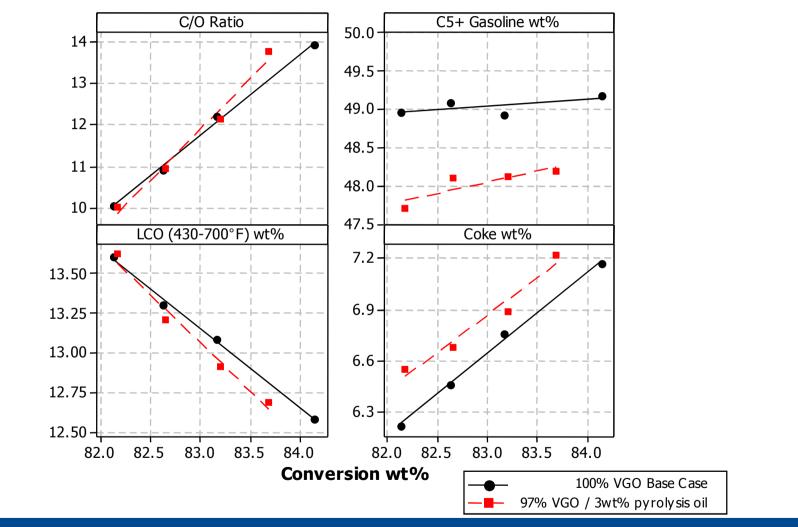
Key Findings – Soybean Oil

- Soybean oil cracking changes the riser temperature profile.
  - Heat of cracking is only ~15% of conventional VGO.
- Most of the oxygen reacts to form water.
- Product yield slate is different.
  - Sharply lower gasoline.
  - Sharply higher LCO, lower bottoms.

Soybean Oil could likely be processed in a commercial FCC unit.



## Processing a Blend of Pyrolysis oil and VGO


- A blend of 3wt% pine-derived pyrolysis oil and 97wt% midcontinent VGO was processed in the DCR.
- The pine-derived pyrolysis oil had the following properties.

| Vater content (wt%) 23.0   |      |  |
|----------------------------|------|--|
| Carbon (as-is) (wt%)       | 39.5 |  |
| Hydrogen (as-is) (wt%)     | 7.5  |  |
| Oxygen (as-is) (wt%)       | 52.0 |  |
| (by difference)            | 53.0 |  |
| Carbon (dry basis) (wt%)   | 55.5 |  |
| Hydrogen (dry basis) (wt%) | 6.5  |  |
| Oxygen (dry-basis) (wt%)   |      |  |
| (by difference)            | 38.0 |  |

Properties are those of a typical pyrolysis liquid that has not been upgraded.



### Yield Effects of Blending in 3 wt% Pyrolysis Oil



Adding pyrolysis oil results in more coke, less gasoline and less LCO.

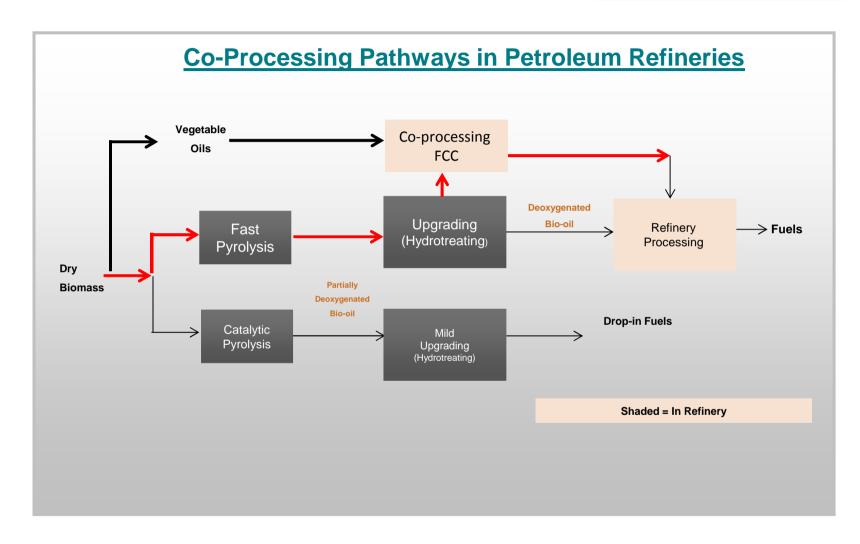


## **Interpolated Yields at Constant Conversion**

|                                                    | 100% VGO | 3 wt% pine-based<br>pyrolysis oil –<br>97 wt% VGO |
|----------------------------------------------------|----------|---------------------------------------------------|
| Rx Exit Temp (°F)                                  | 970      | 970                                               |
| Catalyst Temp (°F)                                 | 1300     | 1300                                              |
| Pressure (psig)                                    | 25       | 25                                                |
| Conversion wt%<br>(100-LCO-bottoms)                | 82.5     | 82.5                                              |
| C/O Ratio                                          | 10.7     | 10.6                                              |
| H2 Yield wt%                                       | 0.05     | 0.05                                              |
| C1 + C2's wt%                                      | 3.1      | 3.2                                               |
| Total C3 wt%                                       | 8.6      | 8.2                                               |
| Total C4 wt%                                       | 15.1     | 14.4                                              |
| Gasoline (C5-430°F) wt%                            | 49.0     | 47.9                                              |
| G-Con RON EST                                      | 93.6     | 94.5                                              |
| G-Con MON EST                                      | 82.5     | 83.1                                              |
| LCO (430-700°F) wt%                                | 13.4     | 13.3                                              |
| Bottoms (700°F+) wt%                               | 4.1      | 4.2                                               |
| Coke wt%                                           | 6.40     | 6.65                                              |
| Fuel Gas CO (wt%)                                  | 0        | 0.55                                              |
| Fuel Gas CO <sub>2</sub> (wt%)                     | 0        | 0.09                                              |
| Fuel Gas H <sub>2</sub> O (wt%)<br>(by difference) | 0        | 1.27                                              |

#### A majority of the pyrolysis oil formed $H_2O$ , CO and $CO_2$ in the product gas.




# Key Findings from Co-Processing Pyrolysis Oil

- Even small amounts (3 wt%) of pyrolysis oil result in significant yield shifts.
  - A majority of the pyrolysis oil converts to H<sub>2</sub>O, CO and CO<sub>2</sub>.
  - Incremental yields of coke and bottoms are also very high.
  - Gasoline and LCO decrease.
- Economics will likely preclude co-processing <u>raw</u> pyrolysis oil in an FCC.

Processing of raw pyrolysis oils in FCC will be very difficult.



### Likely Processing Pathway for Bio-Mass via Pyrolysis



Pyrolysis Oils will require upgrading (hydrotreating) prior to processing in FCC



# Conclusions

- Bio-oils vary greatly in quality, and their ability to be co-fed to commercial FCC units varies accordingly.
  - Vegetable oils can likely be processed easily.
  - Raw pyrolysis oils will be a major challenge. They will need to be hydrotreated prior to processing in FCC.
- The oxygen content of bio-oils can be expected to fully react in an FCC unit and will form mostly H<sub>2</sub>O, with some CO and CO<sub>2</sub>.
- Low oxygen feeds such as vegetable oil could be directly processed in FCC without pretreatment, but may still require some refinery adjustments due to their different product yield slate.





# Enriching Lives, Everywhere.®

#### For additional information, please visit www.grace.com or contact:

**E. Thomas Habib, Jr.,** Director Customer Research Partnerships and DCR Licensing Manager

410.531.4319 Tom.Habib@grace.com

