
Conversion Technologies for Advanced Biofuels – Bio-Oil Upgrading

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Report-Out Webinar February 9, 2012

Doug C. Elliott PNNL Douglas C. Elliott

Laboratory Fellow Pacific Northwest National Laboratory

1974 – present PNNL

B.S. in Chemistry from Montana State UniversityM.B.A. in Operations and Systems Analysis from the University of Washington

- Over 37 years of project management and research experience in biomass thermochemical conversion R&D involving biomass liquefaction and bio-oil upgrading.
- Manage projects related to biomass fast pyrolysis, hydrothermal liquefaction and gasification and catalytic upgrading of bio-oils.
- > Focus on process development activities and underlying science for biofuels production.

Biomass Liquefaction Technology

high capital

Fast Pyrolysis

- 1 atm
- 500°C
- low capital
- High throughput 7
- High yield (74% of C)
- Low quality oil
- Dry biomass
- Next generation
 - Catalytic pyrolysis
 - Hydropyrolysis

Hydroprocessing

- 50-100 atm
- 80-410°C
- Significant capital

> Hydrothermal Liquefaction

- 200 atm
- 350°C
- Low throughput
- Moderate yield (53% of C)
- Moderate quality oil
- Wet biomass
- Variations
 - Solvent liquefaction
 - Reductive liquefaction

✤ <u>Variations</u>

- Low temperature for stabilization
- ↔ Moderate severity for partial deoxygenation
- ↑ High severity for <u>hydrocarbon fuels</u>

Current Efforts in Upgrading

> Pyrolysis Core R&D

- Bio-oil hydrotreating (numerous feedstocks)
- Bio-oil analysis

National Advanced Biofuels Consortium

 Hydrothermal liquefaction (of lignocellulosics) and product hydroprocessing

National Alliance for Advanced Biofuels and Bio-products

 Hydrothermal liquefaction (of algae) and product hydroprocessing

Bio-oil Upgrading (numerous feedstocks)

- Fast pyrolysis hydrotreating reactor/catalyst improvements
- Catalytic pyrolysis and hydrotreating
- Catalytic hydropyrolysis

IBR (numerous feedstocks)

- Fast pyrolysis and hydroprocessing
- Catalytic hydropyrolysis

Barriers to Selective Fractionation

ENERGY Energy Efficiency & Renewable Energy

Process Integration

- Lack of understanding of what we need and want to separate in the fractionation step
- Lack of understanding: impact of downstream/upstream processing, including integration into a petroleum refinery

Characterization of bio-oil intermediates

 A need for new methodologies and standards for chemical and physical characterization of fractions

Corrosion of Structural and Handling Materials and Metallurgy

> TEA/LCA

Demonstration

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Process Integration

- Indentify applications for the fractions and develop fractionation approaches
- Explore opportunities for downstream processing which could include fermentability of products
- Evaluate site specific requirements for feedstock source and refinery customers

Characterization of bio-oil intermediates

- Improve chemical analysis of bio-oil and fractions new methods development
- Develop standardized oils from labs/industrial leaders for analysis

Barriers to Destabilizing Component Removal

Energy Efficiency & Renewable Energy

Components

Unknown identity of destabilizing components

Metrics

- Lack of criteria to define "stability" of a bio-oil (e.g., change in viscosity, O-content, residual loss on heating, TAN)
- Unknown acceptability level for stability

Chemistry

- Need for understanding of destabilizing chemistry
- Understanding the complex interactions amongst components

Separations

How to efficiently separate destabilizing components from stable components

Materials—Demonstration—TEA/LCA

Components

- Identify and characterize categories of components for their potential impacts on stability
- Evaluate the effect of operating variables on formation and fate of destabilizing components

> Metrics

 Evaluate applicability of petroleum standards for bio-oils and modify where needed

Chemistry

- Systematic study of component concentration vs. aging and chemical properties
- Determine the optimal point(s) to remove components (e.g., front, middle, back, local vs. central)
- Determine how TAN is related to and impacts stability of intermediates, catalyst performance, materials/equipment

ENERGY Energy Efficiency & Renewable Energy

Separations

- Compare separation technologies
- Determine effect of bio-oil chemical properties on membranes (particle fouling, acidic nature)
- Evaluate staged condensation of bio-oil fractions
- Evaluate targeted biomass harvesting to decrease composition of destabilizers due to seasonal fluctuations in composition
- Perform fundamental and pilot research for char removal/filters and membranes

Barriers to Chemical Composition Modification

> Catalysis

Understanding the mechanistic basis for catalyst fouling and deactivation

Hydrogen Considerations

High cost of hydrogen and means of production and recycle systems

Refinery Integration and Specifications

 Establishing minimum requirements for acceptable refinery inputs at specific points of integration

Improved Processes

Need a novel, non-hydroprocessing (non-conventional) upgrading technology

Supply Chain Robustness – Bio-oil Analysis

Critical R&D for Chemical Composition Modification

ENERGY Energy Efficiency & Renewable Energy

Catalysis

- Develop protocols for operating in the presence of destabilizing components and contaminants
- Develop poison and corrosion tolerant or easily regenerable catalysts that can maintain high C yields

Hydrogen Considerations

- Engineer internal hydrogen production capabilities such as from aqueous waste streams
- Explore novel non-H₂ intensive and/or non-catalytic routes

Refinery Integration and Specifications

- Understand refinery insertion point requirements/specifications
- Analyze the impact of finished fuel and new specs for biofuels

Improved Processes

Produce low cost, low tech upgrading for distributed systems

Materials

- Need for low(er) cost, corrosion resistant materials of construction (i.e., cheaper than stainless steel)
- Detail mechanisms of bio-oil corrosion on materials and the species formed under ambient and reaction conditions

Demonstration

- Need for demonstration at-scale to attract investors and financing
- Lack of robust data set to show and convince refineries that bio-oil is compatible with their systems (>1000 hr continuous operation

Produce a database of bio-oil chemical composition based on such variables as:

- Feedstock,
- Type of process,
- Process conditions

> TEA/LCA

- Lack of information about impact on cost of final product
- Sustainability metrics for bio-oil processing
- Systems optimization--identify optimal point in process to remove contaminants
- "Solutions" need to be vetted across the value chain (refineries, pipelines, end-users [engine manufacturers], environmental regulators)
- Program to analyze and classify "removed streams" and development of treatment options for recovery of byproducts from waste streams
- Upfront TEA before bigger R&D investment