

Bioproduct Life Cycle Analysis with the GREETTM Model

Jennifer B. Dunn Biofuel Life Cycle Analysis Team Lead Systems Assessment Group Argonne National Laboratory

Biomass 2014 July 29 and 30, 2014

Selection of bioproducts based on a high-level market analysis

Process simulations provided material and energy flows used in analysis

EDI: electrodeionization ³

The GREET (<u>G</u>reenhouse gases, <u>R</u>egulated <u>E</u>missions, and <u>E</u>nergy use in <u>T</u>ransportation) Model at Argonne National Lab

the fuels that can be produced from each of those feedstocks.

Carbon Accounting in the Bioproduct System Boundary

6

Bioproducts uniformly showed reductions compared to their fossil-derived counterparts

Process natural gas and feedstock consumption drive GHG emissions

PE: polyethylene; ADP: adipic acid

8

Bioproduct	Feedstock	GHG Emissions: Cradle-to-Grave		Poforoncoc
		kgCO ₂ e/kg	% Reduction	Kelerences
Propylene Glycol	Soybean & Canola	3.2	61%	ADM
	Glycerol	1.1	66%	GREET
1,3-PDO	Corn	2.7-3.5	46-71%	Urban (2009)
	Corn	1.2-2.9	37-55%	Hermann (2007)
	Sugar Cane	-1.8	62-115%	Hermann (2007)
	Glycerol	2.7	66%	GREET
	3-HP	5.3	39%	GREET
Acrylic Acid	Corn starch	2	43%	Hermann (2007)
	Corn stover	1.2	66%	Hermann (2007)
	Sugar cane	0.7	80%	Hermann (2007)
	3-HP	8.7	53%	GREET
Succinic Acid	Corn starch	0.88	90%	Cok (2014)
		1.7	81%	Cok (2014)
		1.5	83%	Cok (2014)
	Clean Sugars	1.9	86%	GREET

Conclusions and Outcomes

- Bioproducts from corn stover and algae feedstocks have the potential for life-cycle GHG emissions that are below peer fossil-derived compounds.
- Heat integration and yield increase opportunities will improve bioproduct life-cycle GHG emissions.
- The GREET bioproducts module, to be released Fall 2014, will allow the community to explore these results and generate results for bioproduct pathways of interest.
- A technical report will document data sources and methodology used to build the GREET model.
- Bioproducts module is subject to updates as additional information becomes available. It will be expanded to include additional products.

Acknowledgements

- Felix Adom ANL
- Jeongwoo Han ANL
- Norm Sather ANL
- John Molburg ANL
- Seth Snyder ANL
- Michael Wang ANL
- Fengqi You Northwestern
- Chang He Northwestern
- Jian Gong Northwestern
- Dajun Yue Northwestern

- Travis Tempel BETO
- Alicia Lindauer BETO
- Kristen Johnson BETO

of Energy Efficiency and Renewable Energy of the United States Department of Energy, under contract DE-AC02-06CH11357.

This work was supported by the Bioenergy Technologies Office (BETO) of the Office

Contact information: jdunn@anl.gov