WOOD ENERGY SCENARIOS AND SOUTHERN MARKETS

PRAKASH NEPAL¹, KAREN ABT², KEN SKOG³, ROBERT ABT¹

- ¹ DEPARTMENT OF FORESTRY & ENVIRONMENTAL RESOURCES, NORTH CAROLINA STATE UNIVERSITY
- ² USDA FOREST SERVICE, SOUTHERN RESEARCH STATION, RESEARCH TRIANGLE PARK
- ³ USDA FOREST SERVICE, FOREST PRODUCTS LABORATORY, MADISON, WI (RETIRED)

BACKGROUND

- Previous billion ton reports did not explicitly consider competition for wood with conventional products
- ☐ This update incorporates wood energy and conventional wood products market interaction
- Developed and analyzed 6 scenarios with 3 levels of wood energy demand in conjunction with 2 levels of housing growth and 2 levels of pine plantation growth
- Use of global, national, and regional timber market models

Photo: P. Nepal

BASELINE SCENARIO: DEMAND & SUPPLY DRIVERS

- Derived from the USDA Forest Service 2012
 Baseline Scenario
- ☐ Single family housing growth returns to long-term average by 2020 (1.1 million)
- Historical relationship of fuelwood demand with respect to GDP
- About 26% increase in wood energy use by 2040 relative to 2010 level
- Assumes current rate of plantation growth
- ☐ Weaker projected U.S. dollar favoring export
- ☐ Declining timberland area- 2010 RPA A1B scenario

United States Department of Agriculture

Forest Service

Forest Products Laboratory

General Technical Report FPL-GTR-219

Effects on U.S. Timber Outlook of Recent Economic Recession, Collapse in Housing Construction, and Wood Energy Trends

Peter J. Ince Prakash Nepal

BASELINE SCENARIO: DEMAND DRIVER

BASELINE SCENARIO: TIMBERLAND AREA

- □ Declining timberland area (about -0.15% per year) mainly due to urbanization
- Projected timberland area for 2010 RPA A1B scenario

ALTERNATIVE SCENARIOS: WOOD ENERGY LEVEL

- Low wood energy: Based on historical relationship between fuelwood demand and GDP
 - 138 million m3 (73 million dry short ton) by 2040 (26% more from 2010 level)
- Medium wood energy: Based on announced pellet demand (FORISK consulting) and EU renewable energy requirement
 - 205 million m3 (108 million dry short ton) by 2040
 - 86% more from 2010 level
 - 50% more above baseline
- ☐ High wood energy: Double medium energy demand, assumes a boost in plantation growth
 - □ 273 million m3 by 2040 (145 million dry short ton) by 2040
 - 150% more from 2010 level
 - □ 100% more above baseline

ALTERNATIVE SCENARIOS: HOUSING STARTS LEVEL

- ☐ The top quartile of housing starts from 1959-2011 is at least 10% above the long-term average
- Indicates a possibility of achieving higher growth rate
- Assumed housing growth represents 10% increase above baseline
- ☐ SF housing starts increase to 1.2 million by 2025
- ☐ Remain at that level thereafter

ALTERNATIVE SCENARIOS: MANAGEMENT INTENSITY

- ☐ The high energy scenario assumes a boost in plantation growth
 - 50% above current FIA growth rate by 2040
- ☐ Based on assumption that timber supply response occurs due to increased timber demand for energy
 - Increased use of selected genetic stocks and/or best practices for plantation management

SCENARIO: SUMMARY

MODELS

- ☐ United States Forests Products Module (USFPM) in conjunction with Global Forest Products Model (GFPM)
 - Partial market equilibrium model of the U.S. and global forest products market
 - Land use/timberland area projection is exogenous
- ☐ Southern Regional Timber Supply (SRTS) model
 - More detailed timber supply model of U.S. South
 - Demand for timber products is exogenous
- ☐ Projected outcome came from integrated runs of two models
- ☐ Projected biomass feedstock amounts were provided to FORSEAM as inputs for further runs

Photo: D.R. Larsen, University of Missouri

RESULTS: FUEL FEEDSTOCK SUPPLY BY REGION

Low Energy

Medium Energy

High Energy

RESULTS: FUEL FEEDSTOCK SUPPLY BY SOURCE

Roundwood pulpwood used for energy

Logging residue used for energy

RESULTS: COMPETITION FOR WOOD

Baseline--Moderate

housing+low wood

Roundwood pulpwood used in conventional products

☐ Total paper and paperboard production

45

SUMMARY & CONCLUSIONS

- Results show tradeoffs among fuel feedstock sources (e.g., logging residues, small roundwood) and between end uses (e.g., wood energy and conventional wood products)
- Increased wood energy demand coupled with increased housing demand raises both fuel feedstock prices and small roundwood prices
 - Makes both recovery of logging residues and the diversion roundwood pulpwood to wood energy use economically feasible
- ☐ The demand for wood energy competes with the demand for wood for conventional products
- Less pulpwood is available for production of panels and paper and paperboard products under the moderate and higher wood energy demand scenarios

Photo: conserve-energy-future.com

Photo: Juergen Henkelmann, Alamy

Wood energy demand in the context of southern forest resource markets

- Evaluated the conditions and characteristics of Southern forests and timber markets that are relevant to wood energy
- Identified factors include
 - Changes in non-energy demand for softwood and hardwood pulpwood
 - Changes in demands for sawtimber
 - Existing age class distribution and replanting

Changes in non-energy demand for softwood and hardwood pulpwood

Changes in demand for sawtimber

Effect of the 'sawtimber overhang'

