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Introduction

« Develop and deploy integrated
biorefineries

 Research and develop advanced
biofuels technologies |

+ Navy/USDA/DOE Advanced Biofuels ~ :=§ Ig;gfgg{je
Initiative ’

\ : ) /
* Resource assessment —do we have  gmmmmg - *% - Distrouton

enough biomass? —
‘\. Processing & Conversion

« Techno-economic analysis — can
biofuels be produced at competitive
prices?

« Sustainability — What are the
greenhouse gas emissions?
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« Biomass at $70/dry

$3.69/million Btu
$324/dry metric tonne
$14.50/million Btu

metric tonne
e Corn at $7/bushel =

$129/bbl, July 2008

== Crude oil

— Natural gas
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eere.energy.gov

S
]
—
(@2]
(@]
—
[a
(2]}
n
©
(S
i)
m
(0]
=
—
(@]
(]
L2
=
@)
(90}




Oil Price Forecasts
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Source: Energy Information Administration, “Annual Energy Outlook 2012”, DOE/EIA-0383(2012), available at http://www.eia.doe.gov, June 2012
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Market Driver for Alternative Fuels

« Military, aviation, marine, long-haul trucking, and long-distance rail
have limited alternatives to liquid transportation fuels

» Biofuels as a mechanism for reduced price volatility

« Opportunity for innovative technologies incorporating natural gas
and biomass

— Wil natural gas prices continue to decline and remain stable?
— Can biomass and natural gas conversion processes be integrated?

— What are the greenhouse gas emissions implications of biomass-natural
gas technologies?

« Higher value use of biomass as a fuel substitute instead of an
electron substitute
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Resource Assessment — “Billion Ton

Update”

U.S. Billion-Ton Update:
Biomass Supply for a Bioenergy
and Bioproducts Industry

* Provides current and potential
available biomass for 2012-2030

» Estimates are at the county level and
for a range of costs to roadside

» Has scenarios based on crop yields
and tillage practices

* Models land use for energy crops
and ensures meet food, forage, and
export commodity crop demands

* Includes sustainability criteria
 Report and data on the web

Data and analysis tools located on the Knowledge Discovery
Framework: http://bioenergykdf.net
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U.S. Billion-Ton Update: Findings

Baseline scenario

— Current combined resources from
forests and agricultural lands total
about 473 million dry tons at $60 per
dry ton or less; about 200 million dry
tons from forestry

— By 2030, estimated resources
increase to nearly 1.1 billion dry tons;
about 300 million dry tons from

forestry
High-yield scenario

— Total resource ranges from nearly 1.4
to over 1.6 billion dry tons annually of
which 80% is potentially additional
biomass;

— No high-yield scenario was evaluated
for forest resources, except for the
woody crops
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Potential County-level Resources

at $60 Per Dry Ton or Less in 2030

Under Baseline Assumptions
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Micro-algae Resource Assessment
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Mean Annual Oil
Production per
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Wigmosta, M. S., A. M. Coleman, R. J. Skaggs, M. H. Huesemann, and L. J. Lane, 2011, National
microalgae biofuel production potential and resource demand, Water Resour. Res., 47, WO0OH04

« A National resource
assessment identified
~430,000 km? of
suitable land for algae
cultivation with
potential for 58 BGY of
algal oil production

» Optimizing to
maximize productivity
and minimize water
use identifies 10,000
km?2, or about 3.7M
acres, mainly around
the Southwest and
Gulf Coast

* These optimized sites
would support
production of 5 BGY
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Integrated Biorefinery Projects

* 11 IBRs will produce
hydrocarbons from
biomass

* 12 IBRs will produce
cellulosic ethanol from
biomass

Project Scale Key

(_ Research and Development
(. Pilot
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Commercial
@ Complete/Inactive
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For more information visit:
http://www.eere.energy.gov/biomass/integrated biorefineries.html
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Techno-Economic Analysis

« Setting R&D priorities

* Benchmarking

 Informing multi-sectoral analytical activities

« Track Program R&D progress against goals

 |dentify technology process routes and prioritize funding

* Program direction decisions:

» Are we spending our money on the right technology pathways?

« Within a pathway: Are we focusing our funding on the highest
priority activities?
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Terminology and Concepts

* Nth plant economics

— Costs represent the case where several biorefineries with this technology have
been built, which assumes lower contingency and other cost escalation factors

— Assumes no risk premiums, no early-stage R&D, or start-up costs

* Pioneer plant
— Costs represent a first-of-a-kind construction, where added cost factors are
included for contingency and risk
— Most closely represented by IBR projects
— Few estimates available in the public domain

« Design Case:
— Detailed, peer reviewed process simulation based on ASPEN or Chemcad
— Establishes cost of production at biorefinery boundary
— Provides estimate of nth plant capital and operating costs
— Based on best available information at date of design case

— Scope: feedstock cost (harvest, collection, storage, grower payment), feedstock
logistics (handling, size reduction, moisture control), conversion cost, profit for
biorefinery

— Excludes: taxes, distribution costs, tax credits or other incentives
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Cost of Production for Hydrocarbon

Biofuels

5
4 I
m Co-product

mO&M
Capital

- m Feedstock
1 4
Met oline Pyrolysis Fischer-Tropsch

-1
. Other economically viable technology routes for hydrocarbon biofuels exist, such as conversion of waste and plant oils, and
sugar-to-hydrocarbons

. These costs are projected for the Nth Biorefinery Plant, after operation of initial commercial-scale Pioneer Plants

Sources:

1. Sue Jones et. al., “Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case”, Pacific Northwest National
Laboratory, PNNL-18284, available from http:/www.pnl.govFebruary 2009.

2. Sue Jones et. al., “Techno-Economic Analysis for the Conversion of Lignocellulosic Biomass to Gasoline via the Methanol-to-Gasoline (MTG) Process”, Pacific
Northwest National Laboratory, PNNL-18481, available from http://www.www.pnl.gov, February 2009.

3. Anex, R. A, et. al., “Techno-Economic Comparison of Biomass-to-Transportation Fuels via Pyrolysis, Gasification, and Biochemical Pathways”, Fuel, July 2010.

$igal %
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Biofuel Production Costs

Example of renewable fuels via pyrolysis

Renewable gasoline and diesel via pyrolysis

= $8.00 -
= Feedstocks
s $7.00 - $1.33 = Feed Drying, Sizing, Fast Pyrolysis -
E ' ' Upgrading to stable oil
@ C e
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2009 2012 Projection Feedstocks Fast Pyrolysis Upgrading to Fuel Finishing  Balance of 2017 Projection
State of stable oil Plant
Technology

Pyrolysis costs by unit and projected cost reductions through R&D
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Algae Model Harmonization Initiative

 The Biomass Program uses a baseline algal
production scenario with model-based

S ) . . . & w=e 7
guantitative metrics to inform strategic planning Argg!,mgﬁ ud NREL Pacific Northwest
. P _ : Renewable Diesel from Algal Lipids: An Integrated
Pre“r_nmary WOrk on resourqe, techno ecqnomlc, Baseline for Cost, Emissions, and Resource
and life cycle assessments integrated with Potential from a Harmonized Model
external stakeholder input during g el et gl e e E
Harmonization Workshop (Dec, 2011) e o o W T e
! Argonne National Laboratory, Argonne, Minois
 ANL, PNL, NREL joint technical report oS s s e
. . ” ation newabie Energy Laboratory, Golden, I
“Renewable Diesel from Algal Lipids” (June, * Pacic Nortwesi Nationai Laboratory, Rchiand, Washingion
2012), describes the conservative harmonized
pathway
 Renewable diesel from extracted algal lipids e R oot s
pathway is the Biomass Program’s baseline to i o AT s e
measure progress Tochnical Roort

NREL/TP-5100-55431

PNNL-21437

June 2012

Prepared for the U.S. Department of Energy Biomass Program

» Subsequent workshops will be held to further the
Initiative and consider whole algae processing
and other innovative pathways
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Integrated Baseline Design

Configuration
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Integrated Baseline -

Process Performance and Sensitivity

. . Breakdown of RD Production Costs
* The integrated baseline makes 2% -
3%\3% %

conservative assumptions on
productivity, processing, and co-

® Ponds + inoculum + land
Liners

1%

produ cts: m |nfrastructure
L. ® Primary settling
* Annual average productivity 13 m DAF
grams/mz2/day m Centrifuge

Cell disruption
Extraction/separation
AD + CHP system

» 80% processing efficiency
* No high-value co-products

% ® Hydrotreating
* The baseline performance is highly =
uncertain and small changes in
productivity have big impacts $45
S $40
« Baseline assumption results: Z $35 \\ ——25% Tipid
« Unit Scale: 10 MGY renewable diesel EE, $30 \ 50% lipid
« Minimum Selling Price: ~$20/gallon % iiz A\~
- Emissions: 67.4 kg cO2e/MMBTU 2 s1s N
renewable diesel T s10 // \\.
E $5
« Innovative work across the value chainis = - / -

. . . . 0 / 10 20 30 40 50
showing promise in reducing costs. Bageline Productivity, gim2/d
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New Pathways Being Considered

» Feedstocks — integrate herbaceous and woody feedstocks into a uniform format that is
transportable over long distances

«  Biochemical — Biological conversion (bacterial, fungal, heterotrophic algae) of ligno-cellulosic
sugars to hydrocarbons

« Biochemical - Catalytic upgrading of sugars or sugar derivatives (furfural) to hydrocarbons
«  Thermochemical - Catalytic fast pyrolysis with vapor phase upgrading (two liquefaction reactors)
«  Thermochemical — In-situ catalytic fast pyrolysis (one liquefaction reactor)

«  Thermochemical — Gasification, catalytic conversion or fermentation of synthesis gas to
hydrocarbons

« Algae — open pond, solvent extraction, algal lipid upgrading, anaerobic digestion of spent
biomass

« Algae — open pond, whole algae hydrothermal liquid upgrading, wet catalytic gasification

18 | Biomass Program eere.energy.gov
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