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Challenges with predictive modeling and scaleup of bioenergy applications

What doesn’t work...
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Challenges with predictive modeling and scaleup of bioenergy applications

Why is it so hard to get this right? Hierarchical Structure and Variability

The hierarchical structure gives rise to emergent
properties that dictate the behavior of biomass
feedstocks in handling, pre-processing, and
conversion operations.

Emergent properties are difficult or impossible to
characterize by experiment or simulation
performed at individual length/time scales.
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This makes scale-up particularly challenging!
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Emergent property example: nanomechanics of cellulose
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Emergent property example: nanomechanics of cellulose
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Pseudo-reactive simulations combine quantum results with classical MD
predict strain-induced bond breakages accompany kink defects
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Sharpening will occur in the direction of the reducing end
(in the case of digestion by R-end acting Cel7A)
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These findings provide new fundamental insights to evaluate the impacts of pre-processing

and pretreatments

Untreated corn stover cell walls Steam exploded corn stover cell walls

e S " T i"'il'.

21.5 % cellulose converted - 88.0e'IIquse converted

after 96 h of enzymatic digestion after 96 h of enzymatic digestion
Ciesielski, et al. (2014).



How do hemicellulose and lignin impact mechanics of lignocellulose assemblies?

Atomistic model informed by NMR
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ss-NMR: AcMe-S3/5 (xylan
acetyl with syringyl —CH,)
Kang et. al Nat. Commun. 2019
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A thermochemical conversion example: catalytic fast pyrolysis
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A thermochemical conversion example: catalytic fast pyrolysis

Poplar Pine Corn stover

* Biomass feedstocks are highly variable
* The species-specific microstructure dictates intraparticle heat and mass transfer
e Particle size and shape impacts required conversion times, fluidization behavior, and flowability

Ciesielski, Pecha, Lattanzi, Bharadwaj, Crowley, Bu, Vermaas, Steirer, Crowley. “Advances in Multiscale Modeling of Lignocellulosic Biomass.”
ACS Sustainable Chemistry and Engineering. 2020



The critical question for biomass models: if the feedstock attributes change, how does the

model change?
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Finite element simulations of conjugate heat transfer

Time=0 Surface: Temperature (degC)

A2
x10°

IS

[N)

)

0.5 mm particle

v 20

2 mm particle

P } 99
[}]
7 é £
\E, I = g
© H15 8 £ e
© =3 ot ——
=) = Q [}]
= : ; :
> X & S
g 1.0 Z =z =
= 2 "
.6 3 e
o > 7
] ¥ K
>
e : TG ’ . ?‘a“
o s Aspen 5 Pine

Pecha, M. Brennan, Manuel Garcia-Perez, Thomas D. Foust, and Peter N. Ciesielski. "Estimation of Heat Transfer Coefficients for Biomass Particles by Direct Numerical Simulation Using
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Finite element simulations of reaction/diffusion process for lignin extraction
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Procedurally-generated
wood particle
models

Determination of regimes for kinetic vs.
mass transfer control
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Pyrolysis simulations
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Coupling to reactor simulations and ensemble calculations enables highly accurate,

predictive reactor models

Fluid bed reactor
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Reactor scale simulations
account for hydrodynamics
and are used to estimate
residence time
distributions

Particle-scale simulations
are used to account for

feedstock-specific effects
and calculate conversion

These simulations predict
the product yield from
NREL's 2” FBR within 1-2%
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Catalytic upgraind: Direct import of complex 3D geometries

for FEM analysis

Time=0 Reactant Concentration

TEM Micrograph of
Catalyst Particle Microstucture _ ed Simulation Geometry




Direct import of complex 3D geometries for FEM analysis
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Development of reduced order models enables extraction of intrinsic kinetics from

experimental data

51

Experiment(o) normalized MS intensity

e

—

0.8}

0.6 |

Pyrolysis vapor upgrading over Pt/TiO2 in a Packed Bed

Pyrolysis vapor upgrading over ZSM5

Pyrolysis Hydrocarbons
———— ——
vapors Oxygenates

Reaction Kime/(mol.s | Kime/tmol.s | Kime/mol.s))
@ T=450°C @ T=500°C @ T=550°C

Particle models are informed by 3D EM

N

1 PV +S1 > HC +S1 0.0066 2.5728 3.4127

2 PV +S1 > CK+S2 0.3983 0.4561 1.2097

3 PV +S2 - CK +S3 0.0348 0.1523 0.1245

4  PV+S2->FPN+S2 0.0031 2.9039 1.3198

|7 ) 5 HC+S1 > CK +S3 0.6676 0.5073 0.0110

e 6 FPN+S2->CK+S3 0.0059 0.006 0.0003

i //(/}5-\ 7‘ 7 FPN+S2->HC+S2 0.0795 0.0509 0.2824
//

M CK+LG+ B
WAT

biomass/catalyst ratio = 0.05

° °
0°

° o o
2 °

° oo ° 08
o
g % ° o a
° oo o o
° o =
800 [ ~
6" o 063

°
° °| §
° ° 3
L] o
= ° 0.4 =
° o © ° N

° °

© » Q.
° =
o ° c
° 0.2 x

¢ hydrocarbon
o phenol-naphthol-furan|

0.5 1 1.5
g biomass fed / g catalyst

Bharadwaj, et al. In preparation

Yields from dry wood for pyrolysis + VPU

<
w

0.5% Pt, 0.5mm, 50/50 clean pine/FR, B:C=12

=
S el
8 |experiment
o2
&=
HC concentration profiles inside the reactor % 01}

=

x10°% o
© 0

char LG H20 HMW PV LMW PV  HC 924 coke
1% Pt, 0.5mm, clean pine, B:C=3

=03
=
g
=02
&=
Fo1r
=
o
L
Q

0 o Time t

normalized reactor length

char

LG H20 HMW PVLMWPY HC ox coke

Pecha, et al. In preparation




Intrinsic kinetics enable process-scale models that investigate reactor designs and operating

conditions

* Computational fluid dynamics simulation is used to
accelerate the design and scale-up of CCPC catalytic Vapor
Phase Upgrading (VPU) circulating fluid bed systems for
upgrading biomass pyrolysis vapor.

e  MFIX two fluid model was developed and validated to
simulate the multiphase flow hydrodynamics, temperature
fields at different operating conditions in the VPU riser.

* The validated model has been used to predict the residence
time distribution and provided input data for the
development of the reduced order model.

|

. .\j
ﬂ/ﬁ * The validated R-cubed riser model has been coupled with

the VPU kinetics to guide the reacting flow experimental

@cnerey | Lise MFX v tests at NREL.

Biomass pyrolysis vapor phase upgrading (VPU)

simulation in circulating fluidized reactor X. Gau, B. Rodgers, NETL



Conclusions, guiding principles and lessons learned (the hard way)

[ Start by modeling the feedstock itself, not the process
» Helps avoid embedded assumptions (e.g. black box with
arrows)
» Models are generally applicable to many processes

vapor-phase catalytic upgrading

reactors must provide intimate

contact between catalyst particles

and reactant vapor; operating

conditions must be tuned to deliver 1 0]
optimal gas and solid residence

times based on reaction kinetics,
mesoscale transport effects, and
catalyst deactivation rates

fast pyroylsis reactors must
deliver very large heating
rates and often employ solid
fluidization media to increase
heat transfer; this can result in
complex reactor hydrodyamics E
that impact the residence time
distribution of particles and d
cause heterogeneous
conditions within the reactor

10°

(] Start from scratch and use measurements and data to 10°

parameterize the model
» Models are rooted in reality rather than assumptions or
convenient math (e.g. spherical cow)

2
catalyst particles can 1 O
contain localized
«variations in porosity
. and/or complex

heterogeneous, irregular
shaped particles exhibit
different effective
conversion rates based

Transport Phenomena Controlled

on shape, size, and
3 internal microstructure

.. geometries which -I 0—3
©  affect intra-particle

" residence times of

reactants and products

0.2mm ‘.

10

macro porosity
from microscale
aggregates affects
bulk intra-particle
transport

pyrolysis products

(1 Appreciate biocomplexity

wall as it transitions
through a quasi-

» Yes, it’s difficult and there aren’t plug and play tools e

10°

(w) ajeds yibuaT

10°

available. Stop whining and start coding. 2
. micro/meso scale
porosity from crystal
structure or support 1 0-7
dictates nanoscale
diffusivities of reactants

and products

polymer composite
architecture of
lignocellulose defines
nanoscale heat and
mass tranport

 Model variability distributions, not averages
» One particle model is not representative of the entire
feedstock

108

molecular structure
of catalytic sites
dictates reactivity,

10°

Reaction Kinetics Controlled

» Ensemble calculations are critical rueuresr e L

10—10

impacts fragmentation/ % ., ,
depolymerization reactions

Ciesielski, et al. WIRES, 2018
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