

The Future of Bioenergy Feedstock Production

Cornell University June, 2013

John Ferrell

Feedstock Technology Lead Bioenergy Technologies Office US Department of Energy

- >Bioenergy Technologies Office background
- Feedstock assessment, production and logistics
- Biomass yield improvements
- Sustainable feedstock production
- **Future directions**

Bioenergy Technologies Office

EERE Goals:	Reduce Dependence on Oil, Reduce Greenhouse Gas Emissions, and Create Jobs								
Program Strategies	Develop sustainable, commercially viable, advanced cellulosic biofuel, bioproduct, and biopower technologies		Demonstrate advanced cel biofuel, biopr biopower pro capability	lulosic oduct, and	Ensure environmentally sustainable biofuels, bioproducts, and biopower				
Program Approaches	Reduce costs and develop commodity-scale feedstock logistics systems	Reduce costs by increasing conversion yields and reducing conversion costs	Demonstrate and deploy technology at first-of-a-kind facilities	Establish production incentives for cellulosic biofuels	Develop approaches to support sustainability and best practices				

Introduction: Terrestrial and Algae Feedstocks

Feedstock supply and logistics efforts focus on RD&D to develop and optimize cost-effective and sustainable integrated systems for growing, harvesting, collecting, storing, preprocessing, handling, and transporting quality feedstock to biorefineries.

Feedstock Technology Area Partnerships

- Sun Grant Initiative: land-grant universities in partnership with industry, National Laboratories, and U.S. Department of Agriculture (USDA)
- National Laboratories
- Universities and industry
- Office of Science and ARPA-E
- Other agencies: USDA, DoD, DoI, DoT, EPA, NASA, NSF (Biomass R&D Board)

Terrestrial Feedstock Projects

Projected National Feedstock Demand from Biofuel and Biopower

YEAR	2012	2013	2014	2015	2016	2017	2022	2030
EISA (bg/y)	2	3	4	6	7	9	21	21
Feedstock Demand (bt/y)	44	60	76	102	129	155	325	325

Assumption of 85 gallons per dry ton of biomass

Bioenergy Technologies Office Multi-Year Program Plan May, 2013

Energy Crop Supply

Energy Efficiency & Renewable Energy

Yield Improvements

Workshop Report: High Yield Scenario Workshop Series Prepared by Idaho National Laboratory

Energy Efficiency & Renewable Energy

Challenge: Expanding to commercialscale volumes while delivering on the promise of clean renewable energy requires proactively:

- 1. Understanding resource availability
- Considering complex policy, socioeconomic, market, and environmental factors
- 3. Developing beneficial collaborative solutions with diverse stakeholders
- 4. Promoting technologies and best practices that enable a viable, large-scale advanced biofuels industry

Energy Efficiency & Renewable Energy

Current Efforts

- Watershed Modeling
 - Multiple scales, feedstocks, and regions
- Field Research
 - Best practices for bioenergy feedstock production

Bioenergy Crop Workshop, March 2013 in Fairbury, Illinois (ANL)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Future Directions

- Meet feedstock availability targets
- Meet feedstock cost targets
- Meet feedstock quality targets
- Meet sustainability
 - Improve assessments by better understanding drivers of availability and production
 - Work with partners to increase yields
 - Improve quality and reduce costs by using Uniform Format Supply system
 - Meet sustainability through management systems and landscape modeling
 - Complete techno-economics and data delivery for improved deployment

Energy Efficiency & Renewable Energy

Feedstock Yield and Management Development

- New commercial varieties tested, "Best Local Varieties" identified via in SGI Regional Feedstock Partnership (40+ Institutions)
- Synthesis of field trials to create site potential yield based upon best reasonable management practices
- Expert meetings for each crop team (energy cane, switchgrass, *Miscanthus x Giganteus*, willow, poplar, CRP grasses, biomass sorghum)

Energycane Yield (dry fiber) x predicted

Energy Efficiency & Renewable Energy

Sun Grant Initiative Regional Feedstock Partnership Field Site Locations Current as of October 25, 2010 Feedstocks umber of sites Cereal Stover (1) Corn Stover (8) Corn Stover, rain fed (1 Switchgrass (7) Energycane (9) CRP Grasses (9) Hybrid Poplar (30) Hybrid Poplar & Cottonwood (1) Willow (16) Regions North Centra Northeast South Centra Southeast SunGrant 1.000 Miles CAK RIDGE

Disclaimer: This map is intended for visual representation only. Many field trials occur within the same research location and may not be indicated on the map. Users of this information should contact the Department of Energy Golden Field Office for additional data informat

Feedstocks: Vision for the Future

Commodity feedstock supply system supports an expanding bioenergy industry by sustainably and economically supplying an onspec feedstock to future biorefineries

Energy Efficiency & Renewable Energy

- Export custom aggregations of feedstock resource types at all price points for various years
- Data on Feedstock Quality and Characteristics INL Resource Library

https://bioenergykdf.net/

BETO Goals and Symbiosis Workshop

- 1. Energy crop yield is a driving factor for availability and cost. Yield also has a significant role in feedstock quality (blended and uniform format) and sustainability (less land, water, inputs, etc.).
- 2. Need better integration of the biological sciences with BETO's engineering, chemical, and socio-economic sciences to over come the availability, cost, and quality barriers.
- 3. Dependent on partners and collaborators working on yield, ecological, and environmental issues to help meet Office goals, but more importantly, overcome barriers to commercialization of energy crops and enhancement/facilitation of the bioeconomy.
- 4. Symbiosis workshop is such a step by developing collaborations and fostering an integrated approach to increased feedstock production at decreased costs.
- 5. Inclusion of climate variability and resulting impacts on feedstock performance is a novel and timely topic. Providing a solution through the utilization of mutualistic symbionts is an approach to be considered along with other genetic tools.