

Challenge # 1. Feedstock & Production

- 1. Target Market
- 2. Temporal Supply of Biomass
- 3. Feedstock Conditioning
- 4. Utilities & Resources

Northeast Heating Oil Demand

Energy Efficiency & Renewable Energy

- Northeast is largest regional consumer of heating oil in the U.S.
- Northeast is the location of >80% of the 7.2 million U.S. homes that used heating oil in 2009
- Average household consumes 850 gallons of heating oil per season (October March)
- New York, Maine, Massachusetts, New Jersey, and Vermont have announced state mandates to transition to ultra-low sulfur fuels

Northeast Heating Oil Supply-Demand Balance and Projections: Annual Average 2007-2013 (Thousand bbl/d)

(Rounded to closest 10,000 bbl/d)

						2012	2013
	2007	2008	2009	2010	2011*	Outlook	Outlook
Consumption	470	370	360	310	290	310	280
Supply	470	370	360	310	290	340	310
In-Region Production (+)	210	190	160	140	140	120	100
Net Receipts from Other Regions (+)	180	170	170	140	160	160	160
Imports (+)	80	70	100	80	60	60	50
Exports (-)	40	60	50	50	80	-	-
Stock Decrease (+) / Increase (-)	40		-20	-	10		_
Surplus (+) / Gap (-)	-	-	-			30	30

*Data through November 2011.

Notes: Projected consumption is based on data from EIA's Short-Term Energy Outlook. It includes a switch in consumption from heating oil to ULSD of an additional 70,000 bbl/d beginning in July 2012, based on New York's requirement that heating oil move to ULSD specifications. Projected production is based on assumed yields and the capacity of remaining refineries. Sunoco Philadelphia is assumed to close in July 2012. Projected imports are 3-year historical averages adjusted down by U.S. Virgin Islands contributions. Historical net receipts are estimated. Projected net receipts are 3-year historical averages. The Surplus/Gap indicates the under- or over-supply needed to meet consumption. Source: U.S. Energy Information Administration.

Energy Efficiency & Renewable Energy

Energy Efficiency & Renewable Energy

Bio-oils as a heating oil substitute may present a significant opportunity to solve a relevant problem, save consumers money... particularly in the Northeast

Biothermal leverages ongoing work in the OBP bio-oil production and upgrading CTGs, and other work in thermochemical including:

- Corrosion/material compatibility
- Feedstock logistics
 and pre-processing
- Densification
- Fast pyrolysis

Heating Oil Prices and Pyrolysis Oil Price Projections in 2011

Oil Type and Price

Biomass Derivatives Competitive with Heating Oil Costs

Transportation fuel Heat or electricity

U.S. DEPARTMENT OF

ENERGY

• Data are from literature, except heating oil is adjusted from 2011 winter average

Energy Efficiency &

Renewable Energy

- Fuel costs vary widely based on feedstock, location, and technology option
- Conditioned pyrolysis can be substituted for heating oil in NE
- Retail pellet costs are based on current prices in NE (~\$243/ton)
- Densifying biomass for heating (e.g. pyrolysis oil or pellets) can be a costcompetitive <u>feedstock</u> for residential heating system
- These are not "drop-in" fuels for current liquid handling/infrastructure/applications
- Logistics and supply chain considerations begin to predominate for residential biothermal
- What does a simple payback period look like for retrofit?

Fast Pyrolysis Waterfall – 2017

Supply chains costs associated with various grades of oil

	Product Fired in Boiler				
\$/gal	Fuel Oil	Heating Oil	Medium Grade	Low Grade	Pyrolysis Oil
Feedstock	0.36	0.31	0.27	0.24	0.22
Feedstock Logistics	0.7	0.67	0.58	0.52	0.47
Total Pyro, Stab. & Upgr.	1.5	1.42	1.26	1.03	0.4
Fuel Transportation	0.23	0.23	0.25	0.25	0.27
Storage	0	0	0.22	0.7	2.58
Modifications to Boiler	0	0	0.5	1.1	2.43
Total Cost	2.95	2.63	3.08	3.83	6.37

Logistics

Energy Efficiency & Renewable Energy

System Component	Options	Variables		
Biomass Production	Forestry residues Energy crops Felling Chipping Baling	Harvesting window (wood versus agric.) Production costs (location dependent)		
Pretreatment	Storage Chipping / Milling Drying Pelletizing	Equipment capacity Capital and O&M Energy consumption (power, fuel, heat)	Load factor Dry matter loss Moisture loss Particle Size	
Transport	Truck Train Ship	Transport distance Speed Capacity Product weight Product volume	Capital and O&M Fuel consumption Load factor Transfer time & costs	
Storage & Use	Bales versus Chips Covered or Tarpped	Capital and O&M	Decomposition	

Adapted from VTT Research Notes 2312

Quantity of biomass available in the NE states at various prices.

Cost (\$/ton)	Woody	Ag Residues	Urban Wood	MSW (tons)
	Biomass (tons)	(tons)	Waste (tons)	
10	0	0	0	0
20	784,800	0	752,600	1,301,200
30	3,350,200	0	1,886,300	1,471,600
40	4,072,900	248,200	2,446,900	1,558,700
50	4,583,600	530,600	3,762,400	1,730,200
60	4,961,400	737,700	3,762,400	1,730,200
70	5,430,000	838,000	3,762,400	1,730,200
80	6,205,300	909,000	3,762,400	1,730,200
90	7,030,400	961,900	3,762,400	1,730,200
100	7,894,600	1,031,400	3,762,400	1,730,200

