

ENERGY Energy Efficiency & Renewable Energy

Biomass Econ 101: Measuring the Technological Improvements on Feedstocks Costs

Bioenergy 2015: A Changing Market for Biofuels and Bioproducts June 23, 2015 Laurence Eaton

Research Economist

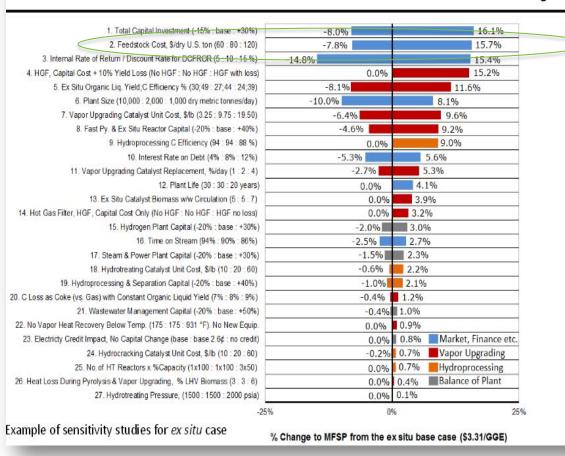
ORNL M&O Subcontractor to

DOE/BETO

1 | Bioenergy Technologies Office eere.energy.gov

Overview

- Why feedstocks?
- Review results of BT2
- Supply curve fundamentals
- Cost reductions through technological improvements
 - Economics of switchgrass
- Preview of BT16



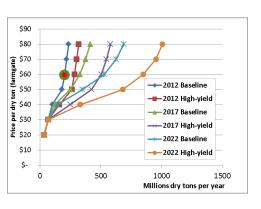
MFSP Sensitivity of Biomass Conversion

- Feedstock cost is 2nd largest source of cost variability in 2014 Thermochemical Minimum Fuel Selling Price (-7.8% to +15.7%)
- In Biochemical and
 Thermochemical process design cases (Technoeconomic Analysis), feedstocks costs consistently account for about 1/3 of Minimum Fuel Selling Price (MFSP)

Cost variability = RISK

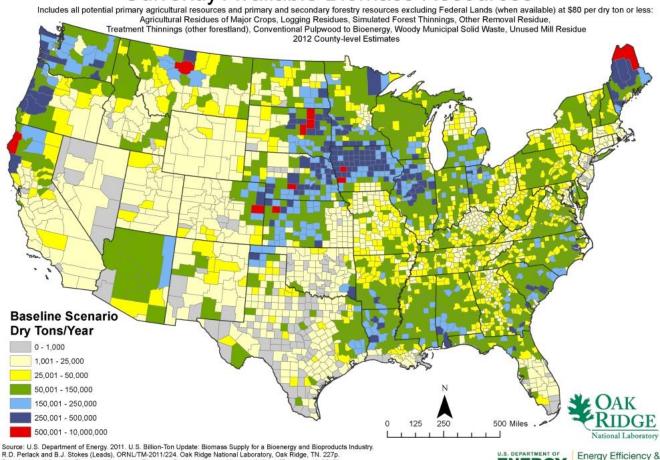
Relevance – Scenarios and Sensitivity

http://www.energy.gov/sites/prod/files/2015/04/f21/thermochemical_conversion_dutta_210302.pdf


BT2 Table ES-1: Current and Potentially Available Feedstocks

Feedstock	2012	2017	2022	2030
	Million dry tons			
Baseline scenario				
Forest resources currently used	129	182	210	226
Forest biomass & waste resource potential	97	98	100	102
Agricultural resources currently used	85	103	103	103
Agricultural biomass & waste resource potential	162	192	221	265
Energy crops ^a	0	101	282	400
Total currently used	214	284	312	328
Total potential resources	258	392	602	767
Total – baseline	473	676	914	1094
High-yield scenario (2%–4%) Forest resources currently used Forest biomass & waste	129	182	210	226
resource potential	97	98	100	102
Agricultural resources currently used	85	103	103	103
Agricultural biomass & waste resource potential ^b	244	310	346	404
Energy crops	0	139–180	410-564	540-799
Total currently used	214	284	312	328

Total potential	340	547-588	855-1009	1046-1305

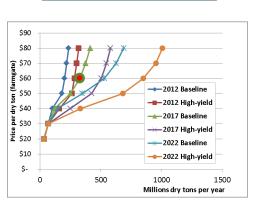

fficiency & ole Energy

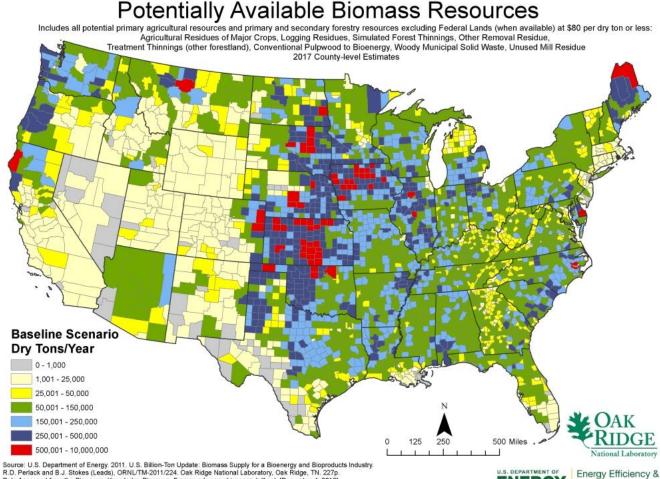
- 2012
- Baseline scenario
- \$60 dry ton⁻¹

201 x 10⁶ dt

Currently Available Biomass Resources

Data Accessed from the Bioenergy Knowledge Discovery Framework, www.bioenergykdf.net. [December 4, 2012].


Author: Laurence Eaton (eatonim@oml.gov)- December 4, 2012.

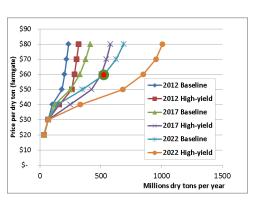


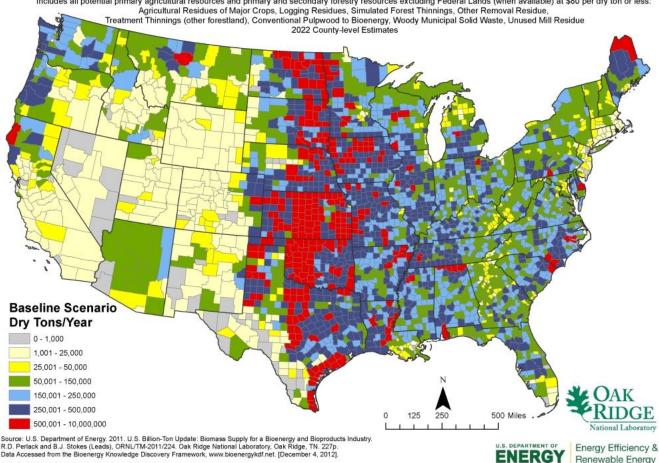
Renewable Energy

- · 2017
- Baseline scenario
- \$60 dry ton-1

 $327 \times 10^6 dt$

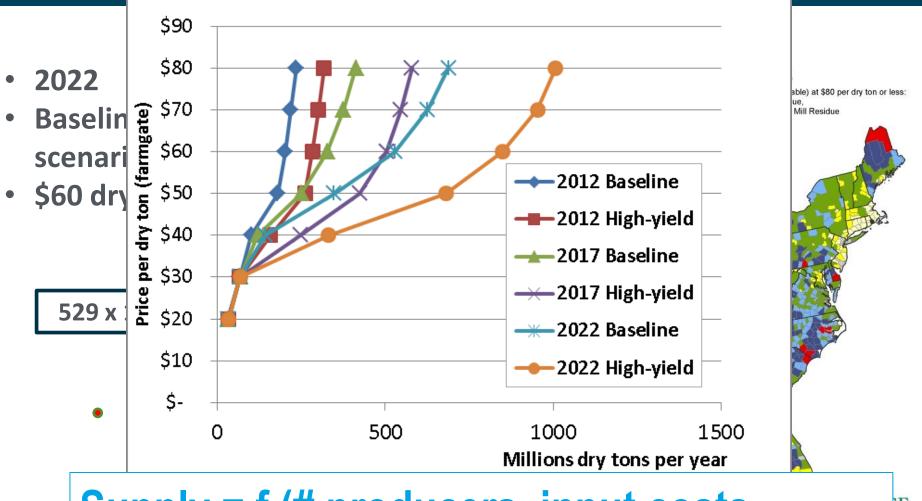
Data Accessed from the Bioenergy Knowledge Discovery Framework, www.bioenergykdf.net. [December 4, 2012].


Author: Laurence Eaton (eatonim@oml.gov)- December 4, 2012.


Renewable Energy

- 2022
- Baseline scenario
- \$60 dry ton⁻¹

529 x 10⁶ dt


Data Accessed from the Bioenergy Knowledge Discovery Framework, www.bioenergykdf.net. [December 4, 2012].

Author: Laurence Eaton (eatonim@oml.gov)- December 4, 2012.

Renewable Energy

cy &

Supply = f (# producers, input costs, machinery, expected yield and technological improvements, etc)

Factors to improve economics of perennial crops

- Improved yield
 - Increased establishment success, quicker stand maturity
 - Better varieties for site conditions
 - Reduced yield variability between dry/wet years
- Reduced need for herbicides and nutrients
- Reduced harvest costs (DOE High-tonnage Logistics Project and Project 1.2.3.1 Supply Chain Analysis)

Switchgrass production example

Reference Case

- 10-year rotation length
- Yield at 33% of maturity in year 1, 66% in year 2, and 100% in years 3-
- Discount rate 6.5%
- Switchgrass follows soybeans and is established using no-till methods
- Costs include establishment, maintenance, and harvest

Improved Cases

- 1) Yield at 50% of maturity in year 1, 75% in year 2, and 100% in years 3-10
- 2) Reduced harvest and on-farm transport cost of \$4/dt

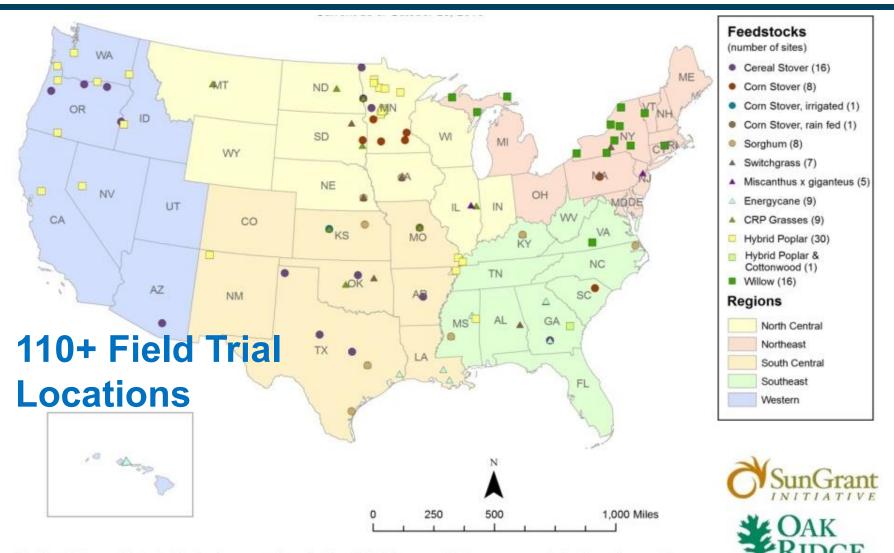
Example Scenario of Cost Impacts of Switchgrass Improvements

Scenario	Average Cost of Production	Cost Reduction
Reference*	\$ 55.06	
1) Increased Maturity	\$ 53.06	-3.6%
2) Reduced Harvest Cost**	\$ 52.75	-4.2%
1+2) Increased Maturity and Improved Harvest	\$ 50.66	-8.0%

^{*} Production budgets include land rental rate of \$77/acre for improved pasture in Iowa; Mature yield of 6 dry tons/acre; Cost assumptions from Iowa State "Estimated Cost of Establishment and Production of 'Liberty' Switchgrass," May 2015 (File A1-29)

^{**} Demonstrated \$4/dry ton by TennEra High-tonnage Logistics Project validated by ORNL 1.2.3.1 Supply Chain Analysis Project

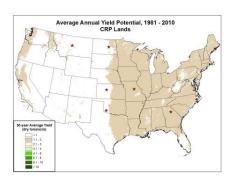
Example Scenario of Cost Impacts of Switchgrass Improvements

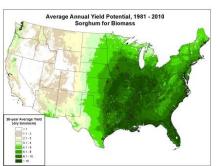

Scenario	Average Cost of Production	Cost Reduction
Reference*	\$ 55.06	
1) Increased Maturity	\$ 53.06	-3.6%
2) Reduced Harvest Cost**	\$ 52.75	-4.2%
1+2) Increased Maturity and		
Improved Harvest	\$ 50.66	-8.0%
1 + 2 + Increased Yield (7 dry		
tons/acre)	\$ 42.81	-22.2%

^{**} Demonstrated \$4/dry ton by TennEra High-tonnage Logistics Project validated by ORNL 1.2.3.1 Supply Chain Analysis Project

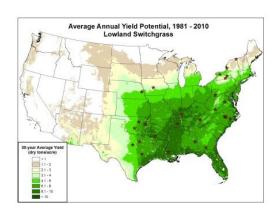
^{*} Production budgets include land rental rate of \$77/acre for improved pasture in Iowa; Mature yield of 6 dry tons/acre; Cost assumptions from Iowa State "Estimated Cost of Establishment and Production of 'Liberty' Switchgrass," May 2015 (File A1-29)

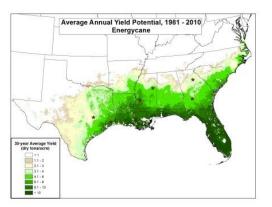
SGI Regional Feedstock Partnership Field Trial Network

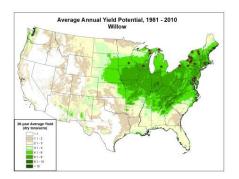

Disclaimer: This map is intended for visual representation only. Many field trials occur within the same research location and may not be indicated on the map. Users of this information should contact the Department of Energy Golden Field Office for additional data information.

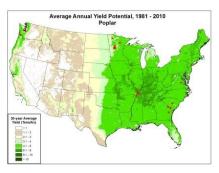


National Laboratory


Enhanced Energy Crop Potential Yield


Herbaceous Energy Crops







Woody Crops

Manuscript in preparation by SGI Field Trial and Resource Assessment Teams

Credit: Oregon State University PRISM Climate Group

High-Level Goals of 2016 Billion-Ton Report (BT16)

- Assess current demand of commercial biomassto-energy feedstocks
- State-of-science biomass potential supply to 2040
 - Agricultural, forestry, algal, and waste resources
 - From farm to roadside to regional delivery points
- Environmental sustainability analysis of potential supply

Genera Energy/UT-Knoxville Bioenergy Field Day, 2013. Credit: Laurence Eaton

Photo Credit: Sapphire Energy (http://zebrapartners.net/sapphiremedia/Green-Crude-Farm-2013.html)

Major Differences: Three National Assessments

Purpose of the 2016 Billion-Ton **Update**

- Evaluate biomass resource potential
- Improve and expand upon the previous studies
 - Greater detail of dedicated energy crop systems; revised **BMP**
 - Include algae resources
 - Analysis of regional transportation costs
 - Volume 2 will feature risk assessment and environmental sustainability analysis covering air quality impacts, greenhouse gases, and water quality

2005 BTS	2011 Update	2016 Update
National estimates – no spatial information	County-level with aggregation to state, regional and national levels	County-level with regional analysis of potential delivered supply
No cost analyses – just quantities	Supply curves by feedstock and county – farmgate/forest landing	More detailed costing analysis to provide cost of production along supply chain to new facilities
No explicit land use change modeling	Land use change modeled for energy crops	LUC modeled and accessed for soil carbon impacts
Long-term, inexact time horizon (2005; ~2025 & 2040-50)	2012 – 2030 timeline (annual)	2016 – 2040 timeline (annual)
2005 USDA agricultural projections; 2000 forestry RPA/TPO	2010 USDA agricultural projections; 2010 FIA inventory; 2007 forestry RPA/TPO	2015 USDA agricultural projections; 2012 USDA Census
Crop residue removal sustainability addressed from national perspective; erosion only	Crop residue removal sustainability modeled at soil level (wind & water erosion, soil C)	Crop residue considered in scenario of integrated landscape management
Erosion constraints to forest residue collection	Greater erosion plus wetness constraints to forest residue collection	Volume 2 will feature robust analysis of environmental sustainability

Collaborators

Hybrid Poplar Stand in Oregon Photo Credit: Laurence Eaton and Mike Halbelib

- Lead organization: ORNL
- Sustainability analysis led by national labs: ANL, INL, NREL, ORNL

Thank you!

Laurence Eaton
laurence.eaton@ee.doe.gov

References

- U.S. Department of Energy and U.S. Department of Agriculture. 2005. **Biomass as a feedstock for a bioenergy and bioproducts industry: The technical feasibility of a billion-ton annual supply.** DOE/GO-102005-2135 ORNL/TM-2005/66.
- U.S. Department of Energy. 2011. **U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry**. R.D. Perlack and B.J. Stokes (Leads), ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p.
- U.S. Department of Energy. 2015. Multi-year Program Plan.

