

# SEP Measurement & Verification Case Study Webinar



A member of the AstraZeneca Group

June 24, 2015 Paul Scheihing, U.S. DOE Advanced Manufacturing Office Wilbur Williams, MedImmune Randy Green & Bill Meffert, Georgia Institute of Technology



#### Strategic Energy Management Continuum

#### SEP

Verified energ, performance and ISO 50001

#### ISO 50001

Standard Energy Management System (EnMS) framework for global industrial operations

Foundational Energy Management (e.g., ENERGY STAR For Buildings & Plants)

- Verifies measured results internal credibility
- Rigorous third-party measurement and verification
- External stakeholder recognition of achievement
- Marginal effort beyond ISO 50001

- ISO standard for Energy Management Systems EnMS
- Similar framework to ISO 9001 and ISO 14001
- Certifiable EnMS, SEM program

- Transition from project to systematic approach
- Many utility SEM programs operate at this level





### ISO 50001: an ISO management system standard



Light blue text represents new data-driven sections in ISO 50001 that are not in ISO 9001 & ISO 14001





#### ISO 50001 & Superior Energy Performance®





#### ISO 50001

- Proven, <u>internationally recognized</u>, best practice in energy management <u>building upon other ISO standards</u>
- Requires energy performance improvement with <u>energy data &</u> <u>metrics</u>
- Relevance for global corporation deploying energy management & sustainability programs

- Builds on ISO 50001 with <u>specific energy</u>
  <u>performance improvement criteria</u>
- National program <u>accommodating</u> <u>diverse facilities</u>: sector, size, program maturity, etc.
- Transparency: Rigorous 3<sup>rd</sup> party verification that market can reward: supply chains, utilities, carbon trading





Superior Energy Performance<sup>®</sup> Certified Facilties 16 companies with 28 certified facilities















A member of the AstraZeneca Group











Superior Energy

erformance







#### Case Study Focused on Medimmune



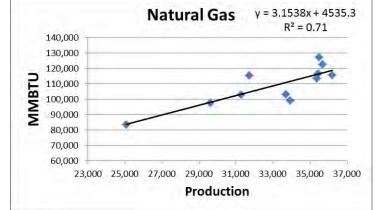


# Webinar and Case Study Purpose

- Share learnings from SEP pilots and provide continual education on measurement & verification (M&V) for SEP community – end users, utilities, auditors and others
- Communicate experience with handling non-routine M&V situations
- Bring "consistency" to SEP verification of energy performance
- Develop reference case studies
- Hear from SEP community on their M&V experiences






## **SEP Measurement & Verification**

### SEP energy performance is demonstrated by,

#### 1. Top-down, whole facility EnPI ("SEnPI")

$$SEnPI = \frac{BTU_{Tot \ actual}}{BTU_{Tot \ expected}}$$

Where 
$$BTU_{Tot expected} = f(X1, X2, ..., Xn)$$



#### 2. Bottom-up sanity check

Superior Energy Performance



## **MedImmune Background**

- Gaithersburg, MD is MedImmune HQ and primary R&D Facility
- Products: known for Synagis and FluMist
- Employment: 2,500 world-wide
- For the purpose of ISO/SEP Certification the boundary was traced around the One MedImmune Way address

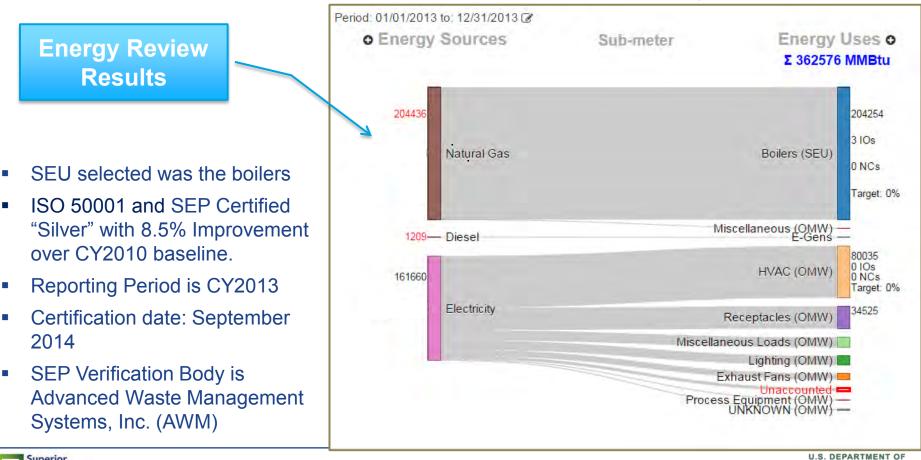


A member of the AstraZeneca Group



# Gaithersburg Campus - EnMS Scope and Boundary




- GBC has a total of nine (9) Buildings
- For the purpose of SEP and ISO 50001, the One MedImmune Way address will be defined as "The Scope"
- This address contains:
  - One (1) Building with 6 Areas known as OMW
  - Two (2) Parking Garages
  - Several Parking Lots
  - Loop Road
  - Open Spaces



#### MedImmune energy profile

#### Production and Related Equipment

- Phase 1 and 2 Investigational bio pharmaceutical products (lab equipment)
- Phase 3 Human Clinical Trial products (Small Scale Manufacturing)





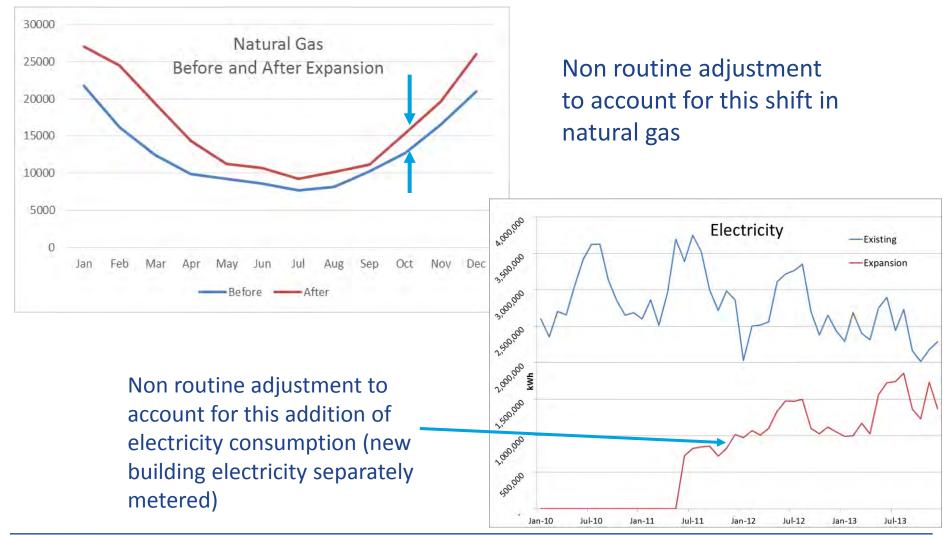
#### Facility Changes and Energy Impacts

- Baseline year, 2010, scope was 571,000 sq. ft.
- Mid 2011 occupied an additional 224,000 sq. ft. of production and laboratory space (LEED Gold)
  - Total scope now (2015) is 817,000 sq. ft.
  - Fully online September 2011
    - Electricity sub metered
    - Natural gas not sub metered

#### 2013, SEP Reporting Period

- +39% more area
- Total net energy consumption increased +49%
- Production increased, weather
- How can we compare energy performance in 2013 with 2010?




#### Non-routine adjustments (SEP Measurement & Verification Protocol - Section 2.6.7)

- Used for one-time changes between baseline and reporting period to,
  - o Otherwise constant conditions (e.g. production levels), or
  - Static factors (e.g. building area)
- Require "estimates" of adjustments for one-time affects or step changes
- Typically based on engineering analysis and calculations from observed, measured, or metered data
- Apply adjustment to either baseline or reporting period, as if the conditions or static factors were same in both periods
- Document method and rationale
- Included in the application to the SEP Administrator





#### The Case for a Non Routine Adjustment





# Two Considerations for applying the non-routine adjustment:

- 1. Adjust the Reporting Period to discount for the added facility
  - Added electricity is metered, natural gas is not
  - Would only require a calculated adjustment for natural gas
  - Issues with the Bottom Up Sanity Check
- 2. Adjust the Baseline Period to account for the facility addition
  - Required adjusting for both electricity and natural gas
  - Chosen largely due to the issues with the Bottom Up Sanity Check



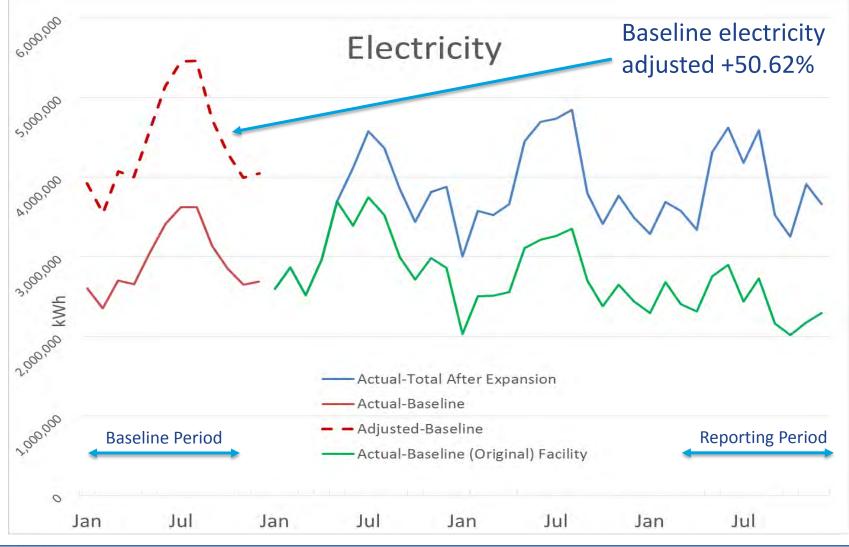


#### Adjustment Calculation

#### For electricity

- 2 years of metered data for the new facility
- Used to develop a ratio for the added electricity
- Baseline electricity consumption was adjusted +50.62%

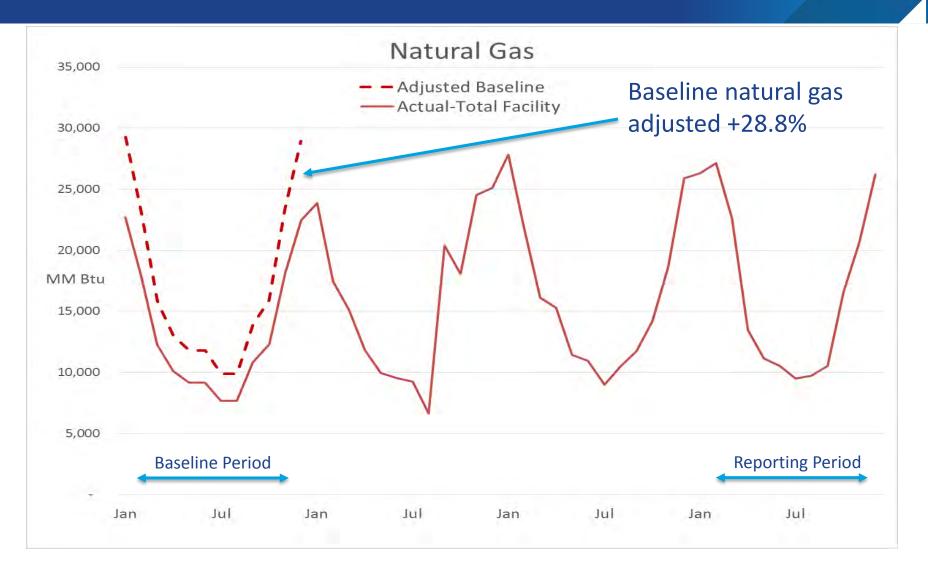
#### For natural gas


- Used the 2 years of data prior to the expansion
- Developed a ratio based on the 2 years after the expansion
- Baseline natural gas consumption was adjusted +28.8%

#### Production variables

 Baseline production variables were adjusted to account for added capacity

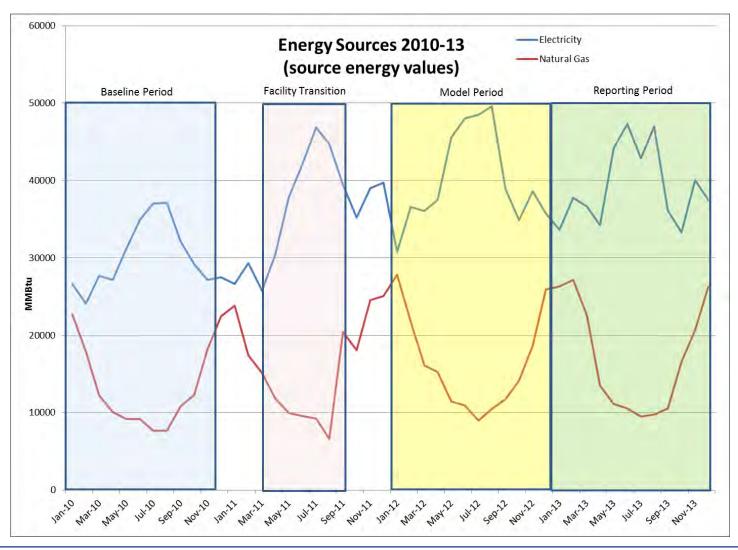



#### Non Routine Adjustment








#### Non Routine Adjustment







#### SEnPI Modeling & Non Routine Adjustment







#### Model Results with Adjustment

#### SEnPI Chaining Model (Model Year 2012)

|                             | 2010     | 2011     | 2012         | 2013     |
|-----------------------------|----------|----------|--------------|----------|
| elec mmbtu                  | 545,107  | 512,914  | 480,825      | 470,538  |
| ng mmbtu                    | 206,564  | 214,134  | 193,224      | 204,436  |
| TOTAL (MMBtu)               | 751,671  | 727,049  | 674,049      | 674,974  |
|                             | _        |          |              |          |
| Adjustment Method           | Chaining | Chaining | Model Year ( | Chaining |
| Modeled elec mmbtu          | 487,206  | 482,260  | 480,825      | 472,367  |
| Modeled ng mmbtu            | 204,261  | 200,371  | 193,224      | 206,532  |
| Total of Modeled Values     | 691,467  | 682,630  | 674,049      | 678,899  |
| SEnPI Cumulative            | 0.920    | 0.939    | 1.000        | 0.915    |
| Cumulative Improvement (%)  | 0.00%    | 1.90%    | 8.01%        | 8.54%    |
| Annual Improvement (%)      | 0.00%    | 1.90%    | 6.11%        | 0.53%    |
| Annual Savings (MMBtu/year) | 0        | 15,785   | 60,204       | 3,925    |

From DOE EnPI Tool ver 4.1.19

|             |                                                                 |                              | Variable p- |        |        |             |               |
|-------------|-----------------------------------------------------------------|------------------------------|-------------|--------|--------|-------------|---------------|
|             | Model Number                                                    | Model is Appropriate for SEP | Variables   | Values | R2     | Adjusted R2 | Model p-Value |
|             |                                                                 | 5 TRUE                       | HDD         | 0.1104 | 0.8228 | 0.7835      | 0.0004        |
| Electricity |                                                                 |                              | CDD         | 0.0158 |        |             |               |
| /           | Formula: Electricity = (-6.63 * [HDD]) + (26.32* [CDD]) + 39796 |                              |             |        |        |             |               |

| Natural gas | Model Number                                 | Model is Appropriate for SEP | Variables | Variable p-Values | R2     | Adjusted R2 | Model p-Value |
|-------------|----------------------------------------------|------------------------------|-----------|-------------------|--------|-------------|---------------|
|             | 1                                            | <u>1</u> TRUE                | HDD       | 0.0000            | 0.9254 | 0.9180      | 0.0000        |
|             | Formula: Natural gas = (17.6 * [HDD]) + 9989 |                              |           |                   |        |             |               |



#### **Other Performance considerations**

#### Bottom-up sanity check showed 9.24% improvement

|                                |                                             | Implementatio     | Bottom Up Check               |                |                     |  |
|--------------------------------|---------------------------------------------|-------------------|-------------------------------|----------------|---------------------|--|
|                                | Project Title                               | n Date<br>(Q#/Yr) | Electric<br>(Source)<br>MMBTU | N.Gas<br>MMBTU | Total<br>MMBTU      |  |
| ngs Expected<br>by 2011        | OMW Exterior Lighting Retrofit              | Q1/2011           | 2,778                         | 0              | 2,778               |  |
| Savings<br>by 2                | OMW Interior Lighting<br>Replacement to LED | Q1/2011           | 4,451                         | 0              | 4,451               |  |
| Savings<br>Expected by<br>2012 | Lab CFH Face Velocity Reduction             | Q3/2012           | 0                             | 0              | 0                   |  |
|                                | Area 6 LEED Building Design<br>Elements     | Q4/2011           | 19,567                        | 25,738         | 45,305              |  |
|                                | Drive Belt Replacement Strategy             | Q1/2012           | 1,290                         | 0              | 1,290               |  |
|                                | Compressor Sequencer Install                | Q1/2012           | 519                           | 0              | 519                 |  |
|                                | Area 4 High-bay Lighting Retrofit           | Q3/2012           | 710                           | 0              | 710                 |  |
| aving<br>pecte<br>/ 201        | Area 4 Condensate Tie-In                    | Q2/2013           | 0                             | 0              | 0                   |  |
|                                | <b>·</b> · · ·                              | 31/2013           | 339                           | 0              | 339                 |  |
|                                | Boiler Operation Optimization               | Q1/2013           | 0                             | 14,059         | 14,059              |  |
| c                              |                                             | TOTALS            | 29,654                        | 39,797         | 69,451 <del>-</del> |  |
| Superior<br>Energy             |                                             |                   |                               |                | ENERG               |  |



#### **Other Performance considerations**

- LEED Design construction impact
- Bottom-up sanity check provides validation for the SEnPI performance calculation
- Not uncommon for SEP certified organizations to use non-routine adjustments to handle changes over the 3 year achievement period
- Two week offset between utility data and weather data calendar periods
- Better to use point source for weather data than regional averages – more granularity the better



#### **Closing Comments**

- SEP M&V protocol properly applied is robust enough to handle the variation that occurs in manufacturing environment
- EnPI Tool facilitates linear regression analysis
- Non-routine adjustments have been successfully applied for several SEP certified facilities
- Next webinar in two months week of August 31
- MedImmune case study will be on SEP website soon
- Further training is included in CP EnMS and SEP PV Training <u>http://energy.gov/eere/amo/become-energy-management-professional</u>







# energy.gov/isosep

# Please subscribe on SEP homepage for SEP updates



