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QUICK OVERVIEW

Basic challenges

Key structural factors
Potential solutions

Creep-fatigue

Stress relaxation Everything fails
Metal thermal properties |eventually

Thicker is not better

Lower inlet/outlet

temperature
Circumferential versus | oot aiming, reflectors,
axial thermal gradients | _,\ities

Strength decrease in y/y’

Ni-based alloys Structural health

monitoring (digital twin)
New materials (ceramics, = .}
cermets, HEAs) - LAl
NREL/TP-5500-57625

Caveats: focus here on structural damage (versus environmental) and on tubular receiver designs
Many of these lessons-learned apply to other types of designs, but coolant compatibility is a key factor in
selecting a receiver material
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BASIC CHALLENGES




CREEP-FATIGUE IS THE DOMINANT FAILURE MECHANISM FOR

HIGH TEMPERATURE RECEIVERS

Fatigue versus creep-fatigue for Alloy
740H (1% strain range)
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Cycles to failure
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At high temperatures the
combination of creep and fatigue is
much more damaging than each
individually:
« Fatigue: failure under cyclic load
» Creep: failure under steady load
» Creep-fatigue: combination of
cyclic load + holds at steady
conditions
Designing to the fatigue diagram
can underpredict life by an order
of magnitude
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CREEP AND STRESS RELAXATION OCCUR AT HIGH
TEMPERATURES, REQUIRING TIME-DEPENDENT ANALYSIS

= Material deforms over time even at fixed
load (creep deformation)

» Structural analysis must be

_C_:U transient/time-dependent (or at least
Q account for creep)
g ~ Thermal s Creep relaxes high stresses — both a
o stress material and a structural effect
= = We worry about two “types” of stresses:
= | — Stress from pressure: can’t be
% 7 relaxed
(0] — Thermal stress: can relax away with
= Pressure time
@ [ st
SUess » Creep deformation can be a good thing if
> you believe damage ~ stress!

Time at fixed conditions
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METAL AND WORKING FLUID THERMAL PROPERTIES CONTROL
THE MAGNITUDE OF THE THERMAL STRESS FOR FIXED FLUX
Increasing the following does what to the thermal stress?

Increases Decreases
thermal stress |thermal stress
 Thermal  Thermal
expansion conductivity
coefficient
* Thickness Increasing convection with
e Elastic stiffness the fluid decreases the
maximum metal temperature
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KEY OBSERVATIONS ON STRUCTURAL DESIGN




EVERYTHING FAILS EVENTUALLY
Key difference from low temperature design

A740H, 820° C, 20 MPa internal pressure, 1 in = Low temperature design' structure

radius tube _ _
designed to withstand the load
200000+ » High temperature design: structure

designed to resist the load for a certain

» 1500007 period of time

§ 100000- = Example: creep life at fixed temperature

o ‘ = Subtle point about Section I/VIII ASME

~  50000- _ design: typically assume 100,000 hour

Uneconomic . . .
properties but do not explicitly consider
0 a design life
0.1 0.2 0.3

Thickness ratio (thickness/radius)
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THICKER IS NOT BETTER

ACreep-fatigue Primary load « Unlike low temperature design
based on pressure only you can’t
design your way out by increasing
the section thickness

« Two competing design limits:

* Pressure: increasing
thickness improves creep
rupture/plastic collapse

 Thermal stress: decreasing
thickness improves
fatigue/creep-fatigue

Target life

Maximum life

Section thickness
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CIRCUMFERENTIAL THERMAL GRADIENTS ARE WORSE THAN NET
THERMAL EXPANSION

| |
|

Circumferential

bending
Caused by: flux
distribution
Could be alleviated
by: ??

Net axial expansion -

Caused by: net tube

temperature increase Cp—

Could be alleviated by: d—

bellows

Maximum incident flux

In our experience circumferential bending is much more challenging
10  than net tube expansion Argonne &



THE STRENGTH OF NI-BASED ALLOYS DROPS OFF PAST ~775°C

Shift in precipitation kinetics significantly reduces y’ phase nucleation and growth
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Change associated with shift from work hardening to
perfectly-plastic behavior
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Design fatigue cycles at 0.25% strain range,

A740H
I
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Design fatigue cycles at 0.25% strain range,
AB17
704 C 871C 950 C
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POTENTIAL SOLUTIONS




ACCEPT A LOWER OUTLET TEMPERATURE OR USE A “BETTER”
WORKING FLUID
Not an ideal solution, but certainly feasible

Reference A740H salt receiver as a function of Reference A740H salt receiver as a function of
outlet temperature (fixed flux, 1D analysis) working fluid convective heat transfer coefficient
(fixed flux, 1D analysis)
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DISTRIBUTE THE DAMAGE MORE UNIFORMLY
Repair and replace tubes, structural health monitoring

Tube damage fraction at end of life
1 * Peak damage occurs only in
0.9 a limited number of tubes in
08 the receiver
0.7 * Remaining tubes have
0.6 substantial residual life

+ Take advantage of that:

0.5 :

* Monitor development
0.4 :

of damage in tubes
03 * Repair/replace when
0.2 I I I I required
0.1 . :
iE I I Design changes to

accommodate this strategy?
Panel 1 Panel 2 Panel 3 Panel4 Panel 5 Panel 6 Panel 7 Panel 8 Panel 9 . v
* In situ health monitoring

mTube 1 mTube 2 (digital twin)?

o
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DISTRIBUTE THE FLUX MORE UNIFORMLY
Cavities, reflectors, dynamic aiming

Temperature Max. = 796°C
Von Mises Max. =175 MPa
stress Location: OD

Case:1

*  Maximum circumferential flux
variation (e.g. a typical external
receiver)

*  Creep-fatigue life = 61 days

Max. = 125 MPa
Location: OD

Case:2

*  Reduced circumferential flux variation (e.g. a
cavity receiver, an external receiver with
reflectors at the back of the tubes)

*  Creep-fatigue life = 377 days
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Max. =117 MPa
Location: ID
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Case:3

No circumferential flux variation
(e.g. an ideal cavity receiver)
Creep-fatigue life = 4877 days
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USE NEW MATERIALS WITH BETTER CREEP/CREEP-FATIGUE
RESISTANCE AT TEMPERATURE

10
» Ceramic based-materials maintain creep 10
strength to much high temperatures, when = 1084
compared to Ni-based superalloys =
» Creep strength fairly well established ; 106
(albeit at higher temperatures) c
» Creep-fatigue (or fatigue) strength less 104
studied L
* There are other candidate metallic material % 102-
systems: >
« HEAs - 104 = = MAX phase
 ODS alloys
» Co superalloys T - - -
» Substantial practical challenges: 700 800 9000 1000
- Forming (AM?) Temperature (° C)
« Joining Projected creep-rupture comparison
« Thermal properties (for some ceramics) between Ni-based Alloy 740H and
 Additional challenge: design practices for non- MAX phase material

ductile materials 16 Argonne &
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