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Abstract 

Per- and polyfluoroalkyl substances (PFAS) were originally of interest and of use because the 
fluorocarbons do not readily oxidize (burn) nor undergo other chemical changes such as 
hydrolysis. As such, their use in industrial processes became widespread, finding utility from fire 
suppression systems to non-stick coating applications and surface treatments. Due to the 
chemical stability of the carbon-fluorine (C-F) bonds, however, these “forever chemicals” can 
also persist in both soil and water for decades, often leaching into the groundwater adjacent to 
sites where they were used, including Department of Energy (DOE) and Department of Defense 
(DoD) sites. Concerns regarding their toxicity have led to subsequent efforts to limit exposure, 
as this class of chemicals has been correlated with certain forms of cancer, with onset often 
arising decades after original exposure. Materials laden with PFAS now require management 
and remediation. Whether it be monitoring releases to the environment from existing PFAS 
sources, identifying PFAS in an environment, or verifying PFAS destruction products, it is crucial 
to be able to quickly understand the PFAS signatures that result from various sources for 
several reasons, among them: (1) identifying and discriminating among PFAS sources to ensure 
responsible environmental management (EM) decision making, (2) determining the baseline 
condition that will be used to determine ecological and human health effects attributed to on-site 
sources, and (3) efficient verification of environmental removal or remediation of PFAS. 

Given the environmental challenges associated with PFAS, a multi-organization team of experts 
from the Network of National Laboratories for Environmental Management and Stewardship 
(NNLEMS) was assembled to assess whether existing Artificial Intelligence/Machine Learning 
(AIML) approaches developed for other small molecule classes (as well as functional response 
data) can be successfully transferred to characterize PFAS. The team at Pacific Northwest 
National Laboratory (PNNL) (1) performed a survey of PNNL-developed AIML methods for small 
organic molecules identification, characterization and quantification from mass spectrometry 
(MS) data; (2) performed a survey of other relevant workflows that utilize multivariate signatures 
and features; (3) curated National Institute of Standards and Technology (NIST) PFAS MS 
datasets for AIML use; (4) retrained and tested existing AIML on curated NIST PFAS data. 
Proof-of-concept models were developed and optimized to predict high-resolution tandem mass 
spectra (MS2) detected from curated PFAS samples as belonging to either aqueous film 
forming foam (AFFF) and other commercial formulation (CF). The collection of models we 
applied range between 70% and 99% accuracy for these two classes of interest, but 
generalizability to environmental samples is yet to be studied. Our analysis demonstrated that 
non-linear dimensionality reduction techniques significantly outperform linear methods for PFAS 
class prediction, while systematic hyperparameter optimization and MLFlow experiment tracking 
established a robust framework for testing and evaluation. Though future work should continue 
to improve the AIML model, including investigation of generalizability, additional chemical 
complexity, and application to environmental samples; here, we advance toward a capability for 
automated PFAS contamination source identification in environmental samples.    

Along with the PNNL tasking to use AIML for PFAS identification and attribution, both Argonne 
National Laboratory (ANL) and Savannah River National Laboratory (SRNL) contributed 
significant results in data science PFAS research.  The goals of the ANL study were to (1) 
develop AI-assisted predictive models to estimate PFAS degradation potentials, using oxidation 
potential as an example, and (2) investigate their relationships with AFFF-sourced compounds 
and spectral data, specifically estimating reduction-oxidation (redox) potentials for individual 
PFAS compounds, and investigating the relationship of redox and oxidation potentials. The 
workflow included steps to (a) filter and clean 8214 PFAS spectra, (b) generate Morgan 
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fingerprint and chemical descriptors for the AI model, (c) estimate the redox potentials of PFAS 
molecules, and (d) perform a discrete Fourier transform (DFT) calculation for a random subset 
of 150 PFAS molecules. While this work and PNNL’s effort both saw success using a Random 
Forest model, different configurations of this AIML model architecture were used in the two 
efforts (Random Forest and RandomForestUMAP, for ANL and PNNL, respectively). This 
framework facilitated ANL’s ability to investigate the relationship of redox potential with various 
elements (e.g., N, O, S, Cl) that are contained in PFAS compounds, which can inform the 
prioritization and effectiveness with which these compounds can be degraded, thus facilitating 
remediation efforts from PFAS contamination. 

For SRNL, the project scope included: (1) Identifying mass spectrometry datasets specifically 
within SRNL and at the Savannah River Site (SRS) related to PFAS in the environment, (2) 
performing data “cleaning” and standardization as needed such that ML algorithms can be 
applied, and (3) performing exploratory data analysis that offers comparison to NIST datasets to 
be used by PNNL during Year 1 of the AI for PFAS project (henceforth, Year 1) to identify 
substantial data differences. SRNL succeeded in this and organized a dataset of environmental 
PFAS mass spectra (analyzed using a DART-AccuTOF MS instrument) from environmental 
samples that were collected at various locations around the SRS. The samples were collected 
from rivers or lakes in multiple different areas of the SRS, including the General Separations 
Area, near former reprocessing facilities, and the SRS D-Area, where there was a firefighting 
training facility.   

These capabilities represent advances in key elements in the environmental management of 
PFAS contamination. 
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Acronyms and Abbreviations 

3M Minnesota Mining and Manufacturing Company 

AFFF Aqueous film forming foam 

AIML Artificial Intelligence and Machine Learning 

ANL Argonne National Laboratory 

CA California 

CF Commercial formulation 

C-F Carbon-fluorine bond 

–COO⁻ Carboxylate 

d3 MEFOSAA N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic acid 

DART Direct analysis in real time 

DFT density functional theory 

DIMSpec Database Infrastructure for Mass Spectrometry 

DoD Department of Defense 

DOE U.S. Department of Energy 

ECF Electrochemical fluorination 

EM Environmental Management 

Eₒₓ Oxidation potential 

GFN2-xTB Geometry, Frequency, Non-covalent interactions, second-generation 

Extended Tight Binding 

GSA General Separations Area 

HDPE High density polyethylene 

ID Identification number 

IR Infrared 

IS Internal standard 

ITRC Interstate Technology Regulatory Council 

IUPAC International Union of Pure and Applied Chemistry 

LC Liquid chromatography 

LC-MS/MS Liquid chromatography-tandem mass spectrometry 

LDA Linear discriminant analysis 

LDA Linear discriminant analysis 

MPFOS Perfluorooctanesulfonic acid 13C4 

m/z Mass-to-charge ratio 

M2 PFOA Perfluorooctanoic acid 13C2 

MA Massachusetts 

MAE mean absolute error 

MEFOSAA N-Methylperfluorooctanesulfonamidoacetic acid 
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mL milliliter 

Mm millimeter 

MO Missouri 

MS Mass spectrum, or mass spectrometry 

MS2 Tandem mass spectra, or fragmentation spectra 

NC North Carolina 

NCI National Cancer Institute 

ng/L Nanograms per liter 

NIST National Institute of Standards and Technology 

NNLEMS Network of National Laboratories for Environmental Management 

Stewardship 

–OH Hydroxyl 

PB-X Pen Branch 

PCA Principal components analysis 

PCA Principal components analysis 

PFAA Perfluoroalkyl acids 

PFAS Per- and polyfluoroalkyl substances 

PFHxS Perfluorohexane sulfonic acid 

PFNA Perfluoro-n-nonanoic acid 

PFOA Perfluorooctanoic acid 

PFOS Perfluorooctane sulfonate 

PFPeA Perfluoro-n-pentanoic acid 

PFSA perfluoroalkyl sulfonic acids 

PNNL Pacific Northwest National Laboratory 

ppt Parts per trillion 

R² coefficient of determination 

RF Random forest 

rpm Revolutions per minute 

SMILES Simplified Molecular Input Line Entry System 

SMOTE Synthetic Minority Over-sampling TEchnique 

S–O Sulfur-Oxygen bond 

SRNL Savannah River National Laboratory 

SRS Savannah River Site 

TOF Time of flight 

UMAP Uniform manifold approximation and projection 

USEPA U.S. Environmental Protection Agency 

UTR Upper Three Runs 
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1.0 Introduction 

Per- and polyfluoroalkyl substances (PFAS) production was first established in the 1940s due to 
the chemicals having unique characteristics such as chemical stability, water and oil repellence, 
heat and oxidation resistance, and certain surfactant characteristics (Longendyke et al., 2022; 
Hughey et al., 2024). One of the largest direct uses of PFAS was by the military, as aqueous 
film-forming foams (AFFFs) — which contain PFAS — were found effective at extinguishing 
hydrocarbon fuel-based fires while also preventing reignition (Place and Field, 2012). There is 
widespread use in other mainstream consumer products such as food packaging, cosmetics, 
pesticides, paints, and cleaning products, to name just a few (Mahinroosta and Senevirathna, 
2020; Cahuas et al., 2022); this rapid onset of industrial and manufacturing processes 
subsequently led to major environmental PFAS contamination (air, soil, water sources, as well 
as bioaccumulation in animals/livestock) (Mahinroosta and Senevirathna, 2020). 

In recent years, the health effects of this previously unrestricted class of chemicals have 
become apparent. PFAS enter the human body through the digestive and respiratory systems 
as well as the skin (primarily through drinking water and food) (D’Hollander et al., 2010); they 
are not metabolized due to their strong carbon-fluorine and carbon-carbon bonds, and they 
demonstrate high absorption rates and low elimination rates, leading to accumulation in the 
body (Sznajder-Katarzynska et al., 2019). Blood serum samples taken from residents of all 
developed countries contain ppb levels of long chain perfluoroalkyl acids PFAAs, primarily 
perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS); the half-lives of these 
compounds in the human body are 2.1-8.5 y and 3.1-7.4 y, respectively (Goralczyk et al., 2015; 
Barzen-Hanson et al., 2017; Winquist et al., 2023). Historic use of PFAS and subsequent 
concerns regarding their carcinogenicity and toxicity have led to many efforts to limit exposure 
to these compounds (USEPA, 2024a; ITRC, 2023). The class of chemicals has been correlated 
to many forms of cancer, with onset often arising decades after original exposure (NCI, 2024). 
Some studies reveal an observed association between PFOA and kidney cancer (Winquist et 
al., 2023). Additional human adverse effects include hypertension (Pitter et al., 2020), 
hypercholesterolemia (Winquist and Steenland, 2014), developmental effects in children (Ames 
et al., 2025), decreased immune response to infection and vaccine (Bline, et al., 2024), and 
endocrine system interference (Ernst et al., 2019; Coperchini et al., 2021). 

PFAS were originally of interest and of use because the fluorocarbons do not oxidize (burn), nor 
readily undergo other chemical changes such as hydrolysis. Due to the chemical stability of the 
carbon-fluorine (C-F) bonds, however, these “forever chemicals” can persist in both soil and 
water for decades, often leaching into the groundwater adjacent to sites where they were used, 
including U.S. Department of Energy (DOE) sites. Materials laden with PFAS now require 
management and remediation. Despite extensive research into alternatives, the approaches 
most widely implemented for their removal include thermal treatment in soils (i.e., incineration) 
and sorption mechanisms (e.g., granular activated carbon filtering, anion exchange, reverse 
osmosis, and nanofiltration) for liquids. These approaches have yet to be specifically optimized 
for PFAS-laden materials, however, and there remain many uncertainties as to the identity and 
fate of many of the F-laden products after treatment (Singh et al., 2019; Qin et al., 2024). While 
many byproducts are known, many are not, and these must also be identified to improve 
understanding of PFAS impact. Common analytical methods to assess fluorocarbon generation 
or detection both “in the wild” and during processes include liquid chromatography-mass 
spectrometry (LC-MS) and infrared (IR) spectroscopy (USEPA, 2024b; Hughey et al., 2024; 
Baker et al., 2024; Cui et al., 2024; Nahar et al., 2023). The IR and MS approaches, in 
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particular, are useful as they can detect PFAS with high sensitivity at high sampling rates. PFAS 
contamination is thus an acute challenge for environmental stewards.  

Among the estimated 12,000 PFAS compounds that were in use and may still be in use today, a 
subset of less than 100 can be identified via analytical chemistry (ITRC, 2023; USEPA, 2024b). 
The remaining are considered potential emerging contaminants, and their impacts on 
ecosystems and human health are not yet fully known. Algorithms capable of detecting 
emerging contaminants with limited historical data or site knowledge are therefore of keen 
interest to the Environmental Management (EM) community. 

Whether it be monitoring releases to the environment from existing PFAS sources, identifying 
PFAS in an environment, or verifying PFAS destruction products, it is in all cases crucial to be 
able to quickly understand the PFAS signatures that result from various sources for several 
reasons, among them: (1) discriminating among PFAS sources to ensure responsible EM 
decision making, (2) determining the baseline condition that will be used to determine ecological 
and human health effects attributed to on-site sources, and (3) efficient verification of 
environmental removal or remediation of PFAS. 

With these considerations borne in mind in their responses to the PFAS problem, EM site 
managers at many facilities now seek to understand PFAS and its precursor chemical 
signatures, both to determine source attribution as well as to guide EM decision-making. To 
achieve such a goal, this report details how artificial intelligence and machine learning (AIML) 
techniques are utilized to successfully link chemical signatures of PFAS-containing compounds 
to source type via liquid chromatography with tandem mass spectrometry (LC-MS/MS) data 
using the National Institute of Standards and Technology (NIST) curated PFAS database within 
the Database Infrastructure for Mass Spectrometry (DIMSpec) Toolkit (Ragland and Place, 
2023) (henceforth, the NIST PFAS database). The NIST PFAS database contains “clean” 
spectra, that is, well-annotated data for which detected signatures have been assigned and 
verified as belonging to known PFAS from analysis of standards and certified reference material 
samples. Next steps to enable site managers’ decision-making are to account for PFAS sample 
complexity in the AIML model, investigate generalizability of such a model to similar datasets, 
and then determine how and how well AIML methods can successfully be applied to actual 
environmental samples.  

Of the various PFAS, PFOS and PFOA are the two most studied and toxic compounds 
contributing to PFAS contamination identified so far. They are a major source of PFAS 
contamination in the environment because of their widespread use in Class B AFFFs (aqueous 
film forming foams) used typically as fire or heat suppressants for flammable liquid fuel fires 
(ITRC, 2023). The 3M Company was the sole producer, via electrochemical fluorination (ECF), 
of PFOS-containing AFFF in use in the US between the mid-1960s and 1973 (ITRC, 2023). 
Commercial production ceased in 2002, but stockpile amounts may still be present at sites and 
fire departments across the country. Other AFFFs were produced via fluorotelomerization by 
different manufacturers (e.g., Angus, Buckeye, etc.) between the 1970s and 2016 (ITRC, 2023) 
and may contain PFOA. The 3M Company formulations are considered legacy AFFF, while 
other formulations may or may not be long chain legacy AFFF. In any case, AFFF is considered 
the primary source of environmental PFAS contamination and as such, the research efforts 
highlighted in this report focus predominantly on discriminating between 3M AFFF and other 
formulations. Future work will focus on PFAS source attribution in environmental samples, other 
PFAS source signatures, and algorithm development to detect emerging PFAS contaminants. 
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The larger effort was divided into separate research tasks executed by different DOE 
laboratories. Section 2 focuses on PNNL’s effort to develop an AIML capability to predict NIST-
curated mass spectra to relevant PFAS classes. Section 3 describes an effort by Argonne 
National Laboratory (ANL) to use AIML tools to help classify PFAS based on properties such as 
oxidation potentials. Section 4 summarizes Savannah River’s efforts to capture and analyze real 
mass spectral data from the SRNL site. And finally, Section 5 provides key learnings across all 
three efforts and recommendations to guide environmental management and decision-making 
by continuing to advance capabilities for detection and characterization of PFAS contamination 
using AIML tools. 
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2.0 AIML Model for PFAS Class Prediction from Mass 
Spectrometry Data 

To facilitate environmental management and guide decision-making where there is a need to 
identify sources of PFAS contamination, rapid methods of source determination (or attribution) 
are key. Adding to the complexity of the source attribution mission is that the formulations are 
often unknown, such that the individual chemicals—and combinations of chemicals—in these 
samples may not be fully elucidated. As such, it is critical to develop methods to determine 
PFAS source from the measured signatures of samples. To advance these aims, PNNL 
employed AIML techniques to demonstrate that chemical signatures from mass spectrometry 
data detected from these unknown formulations can be used to successfully distinguish PFAS-
containing samples by source type. 

Mass spectrometry provides rich analytical data representing chemical-specific signatures and 
its ability to detect broad classes of analytes with high sensitivity has led to widespread use in 
many chemical and biological applications, including the analysis of PFAS. AIML has also 
proven highly effective at learning and recognizing complex patterns in data without relying on 
human-enforced or conventionally applied rules for classification in numerous domains. As 
such, the application of AIML to better exploit the chemical signatures that we can obtain from 
mass spectrometry data of PFAS is ideal to tackle the complex problem of source determination 
of PFAS contamination. 

As a proof-of-concept, we trained and evaluated models to predict PFAS source or class (i.e., 
AFFF, commercial formulations (CF)) from curated PFAS samples using mass spectrometry 
features, which we describe in detail below. While AFFF was used for firefighting activities, CF 
are formulations containing PFAS or PFOAs used in other areas of manufacturing or industry 
Evaluation of different classification algorithms and parameter optimization showed that non-
linear dimension reduction using Uniform Manifold Approximation and Projection (UMAP) 
followed by Random Forest (RF) classifier was the most performant, demonstrating good 
accuracy to predicting mass spectra as originating from samples labeled as AFFF or CF. 
Further, the framework allows any misclassifications to be interrogated, thus providing a path for 
interpretability. Finally, the MLFlow framework established in this effort enables accessible, 
repeatable, and reproducible model development. This initial effort demonstrates the feasibility 
for AIML to begin to meet needs in environmental management of PFAS. Continued efforts to 
develop and improve upon AIML tools for PFAS class prediction will position us to better and 
more quickly address challenges with source determination of PFAS contamination.  

2.1 Approach 

We leveraged curated PFAS mass spectrometry data from the NIST PFAS database for model 
development, optimization, and evaluation. This section describes the rationale underlying the 
development and final selection of model architecture and parameters for classifying mass 
spectra as belonging to samples labeled as AFFF or CF. 

2.1.1 Curated PFAS Data for Model Development 

Data for this study come from the NIST DIMSpec Toolkit (Ragland and Place, 2023), which 
contains the NIST PFAS database—a SQLite database containing LC-MS/MS (also called MS2) 
spectra and corresponding metadata of PFAS. The database contains 104 samples, some of 
which are mixtures, resulting in representation of 131 unique chemical compounds with a total 
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of 7,194 high-resolution MS2 spectra. These spectra were collected using 12 different analytical 
methods, each employing fixed collision energies ranging from 15 to 60 volts, and include data 
acquired in both positive and negative ionization polarities. This database was developed to 
address critical challenges in identifying and categorizing PFAS in environmental samples, 
particularly using untargeted analysis approaches to characterize compounds without prior 
knowledge of which specific analytes might be present. 

Data within the NIST PFAS database are segmented into data tables interconnected by a series 
of data IDs that are grouped together into different data nodes. Data tables within the analyte 
node contain identifying information both at the compound level and at the fragments level of 
the data. Identification information typically includes connecting different types of IDs with one 
another and relevant metadata such as formulation, machine-readable chemical structure 
information in the form of Simplified Molecular Input Line Entry System (SMILES) strings, and 
chemical names utilizing the International Union of Pure and Applied Chemistry (IUPAC) 
naming convention. The data node contains the majority of the mass spectral data, software 
used to generate data, data collection parameters, and other measures of quality control.  

2.1.2 Data Extraction and Exploratory Data Analysis 

Tables pertaining to peaks, samples, compounds, compound fragments, and other metadata 
are extracted from the database and joined using a series of unique identifiers linking each table 
as shown in Figure 1. Data are then filtered down to only include second stage mass 
spectrometry information (i.e., MS2 spectra as opposed to the first stage mass spectrometry 
information) since this type of information provides the level of specificity to identify PFAS 
chemicals, similar to a fingerprint.  

 
Figure 1. A subset of data extracted from multiple tables in the NIST PFAS database and 
combined into a single dataset, where each row represents information on a single MS2 
spectrum. The MS2 spectral information that represents measured signatures of PFAS 
compounds is contained within the columns “measured_mz” and “measured_intensity”. 

There are three classes of samples available in the NIST PFAS database as shown below in 
Figure 2: (i) analytical standards are single compound PFAS references, (ii) the AFFF class 
refers to Aqueous Film Forming Foam mixtures, mostly from the 3M company, and (iii) 
commercial formulations (CF). We note that AFFF and CF are complex mixtures sharing many 
underlying fluorinated substances.  

On a more granular scale, the spectra in the database are derived from 18 discrete AFFF 
samples, and 3 CF samples. Figure 2 displays the frequency of MS2 spectra occurring in each 
specific formulation subtype, split across the two formulation categories. While there are fewer 
CF sub types (boxed in red in the legend below), these constitute more MS2 spectra overall, 
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leading to a balanced formulation dataset. Note, not all 18 AFFF subtypes are represented in 
the plot. This is due to the automated preprocessing pipeline which removes spectra which do 
not satisfy bare minimum requirements (i.e., enough samples per class for model training and 
sufficient number of peaks per spectra). Based on this exploration, we focused on the 
formulation classification (AFFF vs CF) problem in Year 1, refining models for formulation class 
attribution (see Section 2.0), though we discuss exploratory data analysis on compound overlap 
between manufacturers below. 
 

 
Figure 2. (A) Frequency of MS2 spectra in the NIST PFAS Database across each main class. 
(B) Frequency of MS2 Spectra across each AFFF and CF subtype. 

Given that the formulations in the database all contain PFAS, we expect there to be a high level 
of overlap in the compounds represented in the dataset, which, in turn, raises the difficulty in 
accurate source attribution. To understand the level of similarity between compounds in the 
dataset, and where classifications might be particularly difficult, we computed a metric to 
capture the percentage of overlap in compounds between each pair of formulations (Figure 3). 
The overlap proportion is computed by finding the number of unique shared compounds across 
the set of a pair of formulations and normalizing by the size of the more infrequently occurring 
formulation type. This provides a metric that captures the proportion of compounds found in the 
smaller class of compounds that are also found in the larger class. This metric is therefore 
biased towards visualizing the potential difficulty in classifying formulations with less data, when 
they share chemical similarities with overrepresented formulation types. Figure 3 visualizes this 
compound overlap between each pair of the top 10 formulations in the database. Our 
assumption is that spectra belonging to classes with higher compound overlap will be more 
difficult to discriminate from one another with machine learning models. For instance, 3M 1993a 
and 1993b are expected to be difficult to disentangle, whereas 3M 1988 has very little overlap 
with other formulations, and will likely be classified separately more readily. 
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Figure 3. Percentage of compound overlap between each formulation type, where values are 
normalized by the minimum class size in each overlap pair.  

2.1.3 Data Pre-Processing 

After merging all relevant data tables by their appropriate unique identifiers, a series of 
preprocessing steps are applied to standardize spectral information and prepare the dataset for 
modeling. High-resolution mass spectrometry data such as that curated in the NIST PFAS 
database are inherently variable in length and high in dimensionality, necessitating 
transformation into fixed‐length numeric encodings that can be ingested by machine learning 
algorithms. The software developed on this project as part of the AIML framework (AI4PFAS) in 
Python implements three such encoding strategies: intensity binning, Gaussian random 
projection, and feature hashing. 

In mass spectrometry, intensity binning typically partitions the continuous mass‐to‐charge (m/z) 
axis into moderately sized intervals, summing measured intensities within each bin. This 
produces a compact, fixed-length representation of each spectrum, with bin width chosen to 
balance mass resolution and noise reduction. With the other two encoding strategies, Gaussian 
random projection and feature hashing, the process begins with fine-grained intensity binning, in 
which very small bin widths are applied to capture precise fragment m/z values. This produces 
sparse, high-dimensional vectors that serve as input for dimension reduction. In the Gaussian 
random projection approach, these high-dimensional vectors are multiplied by a randomly 
generated Gaussian matrix to obtain lower-dimensional numeric vector representations of the 
original data (Johnson and Lindenstrauss, 1984 and Li, et al., 2006). This method approximately 
preserves pairwise distances between spectra. In the feature hashing approach, each fine-
grained bin index is mapped to a target bin using a deterministic hash function (e.g., 
MurmurHash3 (Appleby, 2015)). Intensities from bins mapping to the same target bin are 
aggregated, producing a fixed-size representation that retains much of the spectra’s similarity 
structure (Moody, 1988). 
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Following application of one of these three encoding methods, each feature (i.e., column) in the 
resulting matrix is scaled via normalization or standardization. This ensures that all features 
contribute equally to the model, regardless of their original magnitude or units, while preserving 
within-feature variance. 

2.1.4 Model Pipelines  

There are four model pipelines currently implemented. Each is made up of a dimension 
reduction model followed by a classifier (Figure 4), meaning the workflow first transforms the 
high-dimensional input data into a lower-dimensional representation that preserves essential 
structure, and then applies a classification algorithm to assign labels based on that reduced 
representation. The dimension reduction techniques implemented are principal components 
analysis (PCA) and UMAP, while the classifiers include linear discriminant analysis (LDA), 
logistic regression (Log), and RF. We tested several combinations of dimension reduction + 
classifiers, resulting in the final set of 4 models: 1) PCA+Log; 2) UMAP+Log; 3) UMAP+LDA; 4) 
UMAP+RF.  
 

 
Figure 4. Schematic of model pipeline. A dimension reduction model is followed by a 
classification model. 

PCA is a linear dimension reduction technique that transforms the data into a new, orthogonal 
coordinate system where each axis is a different linear combination of the original data. The first 
principal component captures the largest proportion of variability in the original data, with 
additional principal components capturing subsequently less. The number of components 
selected for classification is determined by the desired proportion of total variance preserved. In 
contrast, UMAP is a non-linear dimension reduction technique that constructs topographical 
representations of the data such that the loops, voids, and connectedness are preserved 
(McInnes, et al., 2018). From a high-dimension graphical representation of the data, a 
simplified, low-dimension version of the graph is created such that relationships between 
features of the data are preserved while minimizing the total number of variables in the data. 

For classifiers, LDA finds a linear combination of features to separate between two or more 
classes is optimized to increase separability between classes while minimizing the variability 
within classes. Logistic regression uses linear combinations of data to model the log odds of an 
event. The response variable is typically binary, in this case whether the PFAS compound is 
considered AFFF or CF. An RF model calculates a collection of decision trees and votes on the 
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best subset or combination of data allow for classification. Under this algorithm, decision trees 
refer to a classification method where random subsets or features of the data are iteratively 
divided to find the optimal split of the data by using metrics such as the mean square error to 
quantify the amount of information retained after each data split.  

2.1.5 Hyperparameter Optimization 

During the initial phase of the study, we manually selected key settings—known as 
hyperparameters—that govern both data preprocessing and model training. These choices were 
informed by early experimental results. Based on these initial experiments, we observed that the 
model that combines UMAP and RF outperformed the others in terms of accuracy and recall. 
We therefore chose to focus on this model moving forward and employed a Bayesian 
hyperparameter optimization strategy that helped us select the most effective combination of 
hyperparameters for each classification problem. Table 1 includes two sets of optimized 
hyperparameters found for each classification problem. 

2.2 Results & Discussion 

Here, we examine model performance to predict mass spectra detected from PFAS samples as 
belonging to PFAS sources of interest at various levels of granularity. In this framework, models 
developed to predict these classes are a step towards providing a capability to rapidly determine 
PFAS contamination source from measured chemical signatures. 

In the exploratory phase of the study, we evaluated a range of model pipelines combining 
different dimension reduction techniques and classifiers. Pipelines using UMAP consistently and 
significantly outperformed those using PCA. While PCA is a linear method that captures 
variance across features, it often fails to preserve complex, non-linear structures in the data. In 
contrast, UMAP is a non-linear technique that better maintains the local and global structure of 
the data in a lower-dimensional space. This capability made UMAP particularly well-suited to the 
spectra dataset, which likely contains non-linear relationships among features relevant to class 
separation. 

Given these observations, we chose to focus exclusively on UMAP-based pipelines for all 
subsequent modeling. Further experimentation revealed that, among various classifiers, RF and 
LDA models achieved the highest performance for formulation class attribution, though RF 
demonstrated a minimal edge. As a result, we selected the UMAP + RF (henceforth, 
RandomForestUMAP) pipeline for more in-depth Bayesian hyperparameter optimization. 
Table 1 includes parameter combinations for three models examined in this effort that 
demonstrate the range of performance levels that could be achieved for the spectrum to 
formulation class problem; two using RandomForestUMAP and one 
LinearDiscriminantAnalysisUMAP. We discuss the performance of these three models in further 
detail in Section 2.2.1. 
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Table 1.Optimized Hyperparameter Values for Formulation Class Attribution 

Hyperparameter Description 

RandomForestUMAP 
(with sample 

metadata) 
RandomForestUMAP 

(spectral signature only) 
LinearDiscriminant

AnalysisUMAP 

Add precursor mz 
feature 

Whether to include 
the precursor m/z 
value as an 
additional feature in 
the encoded 
spectra 
representation 

False False  False 

Add fluorination 
feature 

Whether to include 
a categorical 
feature indicating 
the fluorination 
process used for 
AFFF spectra 
(electrochemical 
fluorination, or 
fluorotelomerization 

True False False 

Top Peak Count Number of highest-
intensity peaks 
selected from each 
spectrum before 
applying the 
encoding method 

10 10 10 

Encoding Type Method used to 
encode MS2 
spectra into 
numerical features. 
Options: Intensity 
binning, Gaussian 
Random 
Projections, 
Feature Hashing 

Intensity binning Intensity binning Intensity binning 

Bin Size  Width of each bin 
in m/z units, used 
only when using 
intensity binning 

22 22 22 

Encoding Dim Dimensionality of 
encoded features – 
only used when not 
encoding type is 
not intensity 
binning 

None None None 

Scaler Type   Feature scaling 
method applied 
before modeling. 
Options: minmax 
scaling or standard 
scaling 

minmax minmax minmax 

Class balancing Class balancing 
technique applied 
to the training data. 
Options: SMOTE, 
SMOTE Tomek, or 
down sampling 

SMOTE SMOTE SMOTE 

N components Number of 
dimensions in the 
UMAP embedding. 

2 2 2 

min_dist UMAP 
hyperparameter 
controlling how 
closely points are 
packed together in 
the embedding 
space in [0.1, 1] 
range (smaller 

0.1 0.1 0.1 
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Hyperparameter Description 

RandomForestUMAP 
(with sample 

metadata) 
RandomForestUMAP 

(spectral signature only) 
LinearDiscriminant

AnalysisUMAP 

values preserve 
more local 
structure) 

model Type of model 
applied to the 
encoded spectra 

RandomForestUMAP RandomForestUMAP LinearDiscriminant 
AnalysisUMAP 

n_estimators Number of decision 
trees in the 
Random Forest 
model 

371 371 -- 

max_depth Maximum depth of 
the decision trees. 

None None -- 

max_features Number of features 
considered when 
looking for the best 
split in each tree 

log2 log2 -- 

min_samples_leaf Minimum number 
of samples 
required to be at a 
leaf node 

2 2 -- 

min_samples_split Minimum number 
of samples 
required to split an 
internal node 

5 5 -- 

One of the hyperparameters that we investigated during the model optimization stage was class 
balancing (see Table 1 for optimized setting). Class balancing addresses one of the key 
challenges with dataset readiness for AIML and is one of the methods that can help mitigate 
model bias in class prediction—by ensuring that the dataset has equal or close to equal 
representation among the class labels on which the model is trained to predict. Class imbalance 
within the dataset (i.e., when a class is more highly represented compared to the others or a 
class is only represented by few examples) can create bias within the model to favor prediction 
to the class that is most represented, given the large number of examples the model has for 
learning. Additionally, for the class that is least represented, the model may learn the 
underrepresented class extremely well (i.e., as if the model has memorized the examples), but 
that can result in the model’s inability to generalize outside the dataset used for its training. 
Additionally, application of appropriate class balancing strategies can be challenging when data 
for AIML model development are scarce. We applied and examined relevant class balancing 
methods here, including Synthetic Minority Over-sampling TEchnique (SMOTE) (Chawla et al., 
2002; Blagus and Lusa, 2013), SMOTE with Tomek links (SMOTE-Tomek) (Batista et al., 2004; 
Zeng et al., 2016), and down-sampling (Lemaître et al., 2017). These approaches represent 
different ways to address class imbalance in a dataset. 

SMOTE provides a way to oversample the class that is least represented by generating 
synthetic data via interpolation to achieve class balance (Chawla et al., 2002; Blagus and Lusa, 
2013). By utilizing interpolation and creating new examples rather than oversampling the 
existing examples in the smaller, underrepresented class, SMOTE overcomes the minority class 
overfitting issue (i.e., the model learns the few examples in the minority class extremely well and 
cannot generalize) that is common to the more conventional random oversampling method. 
Alternatively, SMOTE can be combined with Tomek links, a data cleaning method that reduces 
noise and creates better distinction between two classes by removing examples (down-
sampling) from both classes when these examples lie at the boundary between the two classes 
(Batista et al., 2004; Zeng et al., 2016). The SMOTE-Tomek approach thus mitigates potential 
overfitting via oversampling while enhancing the distinction between two classes for model 
prediction. And finally, class balance with random down-sampling using the Imbalanced Learn 
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Python package selects examples from the most-represented class without replacement to 
include in the model’s training (Lemaître et al., 2017) such that the number of examples among 
the classes are equal. However, the random sampling is performed without accounting for any 
underlying structure within the dataset, such as similarity among examples, and random 
elimination of samples can potentially remove useful information for prediction to the majority 
class distinct from the smaller classes.  

In the AFFF versus CF classification problem, we have 526 spectra measured from samples 
that belong to the AFFF class and 550 spectra from samples belonging to the CF class, that 
meet the top peak count parameter criteria. While the numbers of spectra between the two 
classes do not differ drastically, class balance should still be implemented to mitigate any 
potential bias that could arise to prefer prediction to the majority CF class. With the 
RandomForestUMAP configuration in general, the SMOTE over-sampling approach yielded 
some of the more performant models. 

2.2.1 Formulation Class Attribution  

We compare the performance of three AIML models that represent the range of prediction 
accuracy for the formulation class problem in Sections 2.2.1.1 – 2.2.1.3 below. All utilize UMAP 
as the dimension reduction technique and demonstrate the effects of using a different ML 
algorithm (e.g., LDA, RF) and selection of different features (spectral signatures vs. spectra and 
sample metadata). Section 2.2.1.4 discusses the benefits and disadvantages of each and 
comments on why we may choose one or the other, depending on the intended use case. 
Figure 5 below provides an overview of each model’s performance (for a select set of 
hyperparameters) that will be discussed in greater detail in Sections 2.2.1.1 – 2.2.1.3.  

 
Figure 5. Boxplot comparing performance of models with different architectures and 
hyperparameters. Note the two distributions with the RandomForestUMAP model, where the 
higher test set accuracy values correspond to inclusion of sample metadata as a feature in the 
model and the lower test set accuracy range utilizes spectral information only. 
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Though not the most performant model, we selected the RandomForestUMAP architecture that 
uses spectral signatures only (80.6% accuracy representing better than modest performance) 
on which to continue development and improve upon, and on which to investigate 
generalizability to other datasets. We discuss our rationale for selecting this model in Section 
2.2.1.4.  

2.2.1.1 Linear Discriminant Analysis as Classifier 

One of the classifiers that we investigated in Year 1 was a simple LDA. Figure 6 displays the 
performance of a representative model using the LinearDiscriminantAnalysisUMAP 
configuration as a confusion matrix, where we achieve a test set accuracy of 80.1%, one of the 
more performant models utilizing LDA as the classifier. A confusion matrix is a table that 
compares the model’s predictions (columns) against the true labels (rows). Correct predictions 
appear along the diagonal from the top left to the bottom right—these are cases where the 
predicted and actual categories match. Off-diagonal entries represent misclassifications, where 
the model assigned a spectrum to the wrong category. The closer all values are to the diagonal 
and the fewer entries there are elsewhere, the better the model’s performance. 

 
Figure 6. Confusion matrix for one of the most performant LinearDiscriminantAnalysisUMAP 
models using spectral signatures only as features for model training. 

Here, we observe that there are misclassifications for both classes. While 85 of the 216 mass 
spectra from the test set were correctly predicted as detected in samples from the AFFF class, 
21 were misclassified as CF, and 22 spectra from CF samples were misclassified as detected in 
AFFF samples. This indicates that while the model has learned some mass spectral features 
that can distinguish between the AFFF and CF classes, the model is still making mistakes and 
the set of mass spectral features used to train the model does not enable complete distinction 
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between the two PFAS classes of interest. We examine approaches to allow us to gain more 
insight into misclassifications in the next two sections that discuss predictions with the 
RandomForestUMAP model.  

2.2.1.2 RandomForestUMAP: Using Spectral Signatures Only 

When we move from the LinearDiscriminantAnalysisUMAP model to RandomForestUMAP, we 
observe a slight increase in prediction accuracy for the test set (average of 76.8% accuracy 
compared to 76.4%). The confusion matrix in Figure 7 below indicates that misclassifications 
still occur in both classes with a different model architecture, though where misclassifications lie 
differs. 

 
Figure 7. Confusion matrix for the RandomForestUMAP model using spectral signatures only as 
features for model training. 

Interestingly, when we compare the confusion matrices between the RandomForestUMAP 
model to the LinearDiscriminantAnalysis model in Section 2.2.1.1, we see that fewer 
misclassifications occur for the CF class (91 as opposed to 88 correct predictions; Figure 7 and 
Figure 6, respectively). We can further identify and investigate the spectra that were 
misclassified to gain a better understanding of the model’s decisions in predicting the two PFAS 
classes. 

Because each model includes a dimension reduction step before classification, we can visualize 
how the originally high-dimensional spectral data are transformed and arranged in a lower-
dimensional space prior to applying the classifier. This visualization reveals clusters of similar 
spectra and can provide insight into why a model might misclassify certain samples. Figure 8 
below shows the reduced components from the same RandomForestUMAP model featured in 
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Figure 7, visualized as a scatter plot. Each data point, representing an MS2 spectrum in the test 
set, is labeled with its true PFAS class label in the figure. Further, we display the model’s 
decision boundary in predicting to AFFF or CF with the light red/blue contours along with the 
black line. In this case, all spectra appearing below the decision boundary on UMAP2 space 
and to the bottom right on UMAP1 space classified as CF, while all above and top left were 
classified as AFFF. 

 
Figure 8. UMAP embedding visualizing the transformation of each MS2 spectrum in the test set 
in two dimensional UMAP space before classification. The light red/blue contours along with the 
black line represent the RandomForestUMAP’s decision boundary for class prediction to the 
AFFF and CF classes. 

Most notable when looking at Figure 8 with respect to misclassifications is that the misclassified 
points often lie near, if not on top of, correctly predicted points, meaning the transformed 
spectral features of misclassified spectra appear extremely similar to those of the correctly 
classified spectra. While the source of these misclassifications can be difficult to determine with 
complete certainty, we can consider what UMAP does and the nature of mass spectra. UMAP 
groups samples based on the similarity of their spectral features, patterns of peaks and 
intensities that correspond to different chemical components. If two spectra have patterns which 
more closely resemble those of another class, UMAP will place them nearer to that class in the 
reduced space. 

For example, in the center cluster in Figure 8 (coordinates UMAP1 10.3-10.7, UMAP2 6.8-7.3), 
we see 6 data points—corresponding to spectra misclassified as CF—that lie on top of a single 
correctly classified spectrum belonging to the CF class. In examining the compounds that are 
associated with these spectra, we observe that all (including the lone correctly classified 
spectrum) represent the PFAS compound PFOS, detected in the following AFFF samples: 3M 
1993a, 3M 1993b, 3M 2001, and 3M 1998; whereas the correctly predicted spectrum was 
detected in the 3M FC-129 Formulation sample. PFOS is a well-characterized PFAS from the 
perfluoroalkyl sulfonate chemical family. 
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Figure 9 displays most of the spectra in question, with the top left spectrum correctly predicted 

as originating from a CF sample. Given that these mass spectra are measurements of the same 

compound PFOS, albeit in different samples, the high degree of similarity in fragment peak 

patterns is not surprising. Of note among the mass spectra associated with the AFFF samples is 

the range in fragment intensities, particularly in the lower m/z region between m/z 100 and m/z 

250, relative to the base peak at m/z 498.932, where we observe slightly higher intensities in 

this region for the 3M 2001 AFFF sample but lower abundance of these fragments are typical 

among the other AFFF samples. The spectrum belonging to the CF sample contains few peaks 

compared to the other AFFF spectra for PFOS. However, the fragment peaks that are present in 

the CF spectrum match those of the highly abundant fragment peaks in the spectra from AFFF 

samples. From comparing fragmentation pattern similarity and visualizing the clustering in 

UMAP embedding space, we can infer that one or more of the peaks at m/z 79.96, m/z 98.96, 

and m/z 498.93 may be important for the model to predict these spectra as belonging to AFFF 

samples. 

 
Figure 9. Mass spectra corresponding to a cluster of data points that were predicted to belong to 
CF samples, when most of these spectra were detected in AFFF samples. All spectra are 
measurements of PFOS. Note the spectra in red were misclassified as belonging to CF 
samples.  
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When examining misclassifications to the AFFF class, we similarly observe spectra of another 
perfluoroalkyl sulfonate—perfluorohexane sulfonic acid (PFHxS)—detected from both AFFF and 
CF samples. Here, this cluster of data points lies just above the decision boundary (Figure 8; 
coordinates UMAP1 12.8-13.3, UMAP2 14.7-15.7). As a perfluoroalkyl sulfonate, PFHxS shares 
core substructural components to PFOS, but with two fewer carbons to create the perfluoroalkyl 
backbone.  

Two CF spectra belong to the 3M PFOS Technical Mixture, while the correctly predicted spectra 
for the AFFF class belong to 3M 1989, 3M 1993a, 3M 1993b, 3M 1998, and AFFF Reserve 
Tank samples. The mass spectra for this cluster of data points are shown in Figure 10. Note the 
few fragment ions in spectra belonging to CF samples (m/z 79.96, 98.96, and 399.13) are also 
present in AFFF samples and represent the most abundant peaks in these spectra. We also 
note that two of the more abundant fragment ions at m/z 79.96 and m/z 98.96 are shared 
between PFHxS and PFOS, and spectra for these two compounds are detected in both AFFF 
and CF samples, which complicates the distinction between the two PFAS classes when solely 
considering spectra representing singular compounds.  

 
Figure 10. Mass spectra corresponding to a cluster of data points that were predicted to belong 
to AFFF samples, but two spectra were detected in CF samples (spectra in blue). All spectra 
are measurements of PFHxS. Note the spectra in blue were misclassified as belonging to AFFF 
samples. 
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In probing the misclassifications to the two PFAS classes, we observe that the UMAP clusters 
spectra with very similar fragmentation patterns (very likely belonging to the same compound) to 
the same embedding space, giving us confidence that the UMAP is utilizing and honing in on 
certain spectral features. This suggests that the misclassification may not necessarily be a 
classification model failure but rather a reflection of inherent signature similarities between the 
chemicals detected in these particular AFFF formulations and those detected in the CFs in this 
dataset. PFAS class prediction is complicated by different mixtures of PFAS compounds such 
that the same compound may be found in different samples, whether they be AFFF or CF. It is 
the unique formulations of these mixtures (chemical identities and abundance), that can be 
indicative of the various PFAS sample classes as opposed to individual chemicals alone. As 
such, we need to account for the chemical complexity and thus, signature complexity, that 
mixtures bring to the PFAS class prediction problem.  

Despite the misclassifications, the ability to predict PFAS class with an accuracy of 80% using 
spectral signatures alone demonstrates the power of and art-of-the-possible using AIML tools, 
and applicability to the PFAS source attribution mission space. 

Overall, these observations demonstrate some of the challenges that come with characterizing 
and differentiating among PFAS source types. Misclassifications, which we observed above 
owing to shared chemical components, as well as within class clustering, provide an opportunity 
to identify model enhancements—such as the need to account for additional chemical 
composition complexity—and discover emerging contaminant signatures. 

2.2.1.3 Most Performant Model: Inclusion of Sample Metadata 

Finally, we examine model performance when we include a feature derived from sample 
metadata in training the model. While we demonstrate 80% accuracy as the most performant, 
representing better than modest performance, with the RandomForestUMAP trained solely on 
spectral information, we investigated whether model performance could be further improved 
with additional features, such as incorporating different features derived from sample metadata. 
Here, we describe a configuration where the model learns the same spectral features as the 
model described in Section 2.2.1.2, but additionally includes a feature describing the fluorination 
process of the PFAS sample. Feature selection is a key part of model optimization and can 
substantially affect model performance. 

On average, the RandomForestUMAP model that includes fluorination process as a feature 
boasts excellent performance, achieving near 100% accuracy. Figure 11 displays the confusion 
matrix for one of the most performant models in such a configuration. In this run, only two 
spectra were misclassified out of a total of 880 MS2 spectra. Nearly every spectrum lies on the 
diagonal, indicating that the model is making highly accurate predictions, with only two spectra 
detected from AFFF samples misclassified as originating from commercial formulations.  

This high level of accuracy indicates that the inclusion of the fluorination process metadata 
value as a feature in the model substantially boosts model performance, jumping from 80% to 
99% accuracy on the test set data. 
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Figure 11. Confusion matrix for one of the highest performing formulation classification models. 
Here, only two out of a total 880 spectra were misclassified. 

Figure 12 shows the reduced components from the same RandomForestUMAP model featured 
in the Figure 11, visualized as a scatter plot. Each data point, representing an MS2 spectrum in 
the test set, is labeled with its true PFAS class label in the figure. In this case, all spectra 
appearing on the right classified as CF, while all to the left were classified as AFFF. 

In the UMAP projection in Figure 12, we note some within-class clustering of the spectra of 
compounds detected in CF samples into three major clusters. In particular, the larger cluster of 
spectra from CF samples belongs to perfluoroalkyl sulfonates (e.g., perfluorodecane sulfonic 
acid, perfluoroheptane sulfonic acid) detected in FC-95 and PFOS technical mixture, which are 
consistent with chemicals listed in products that include these specific formulations. For 
example, potassium perfluorooctane sulfonate (a chemical that belongs to the perfluoroalkyl 
sulfonate family) is listed as the main ingredient in FC-95 (brand name FLUORAD Brand 
Fluorochemical Surfactant) and is used in products like Scotchgard (3M Canada Company 
2015; Renner 2006). 

Two misclassifications within the large CF cluster can also be observed (Figure 12), where two 
red data points from spectra detected in AFFF samples are centered within the blue CF cluster. 
Investigation into the chemical identities of these misclassified AFFF-detected spectra provided 
critical insights into the model's behavior and the underlying chemical realities. These two 
spectra (belonging to the same compound, 6:2 fluorotelomer thia propanoamido dimethyl ethyl 
sulfonate, from the Angus AFFF sample) exhibited high similarity in UMAP-encoded space to 
those belonging to compounds detected in CF samples—specifically to the perfluoroalkyl 
sulfonates. The compound in question shares many substructural features with compounds 
from its spectral neighbors detected in CF samples within the UMAP space.  
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Figure 12. Visualization of reduced dimensionality components of a high performing formulation 
classification model, with true PFAS class labels indicated (red = AFFF; blue = CF). It is visually 
apparent why the classifier misclassified two AFFFs as CFs, given that the UMAP 
dimensionality reduction placed these spectra closer to other CF spectra. 

Interestingly, we also observed that the vast majority of spectra in the lower left cluster—
correctly classified as detected in AFFF samples (Figure 12)—also belong to perfluoroalkyl 
sulfonates (e.g., PFOS, perfluoroheptane sulfonic acid (PFHpS)), similar to the compounds in 
the large CF cluster that are correctly predicted as detected in CF samples. While these spectra 
belong to compounds that are highly structurally similar, the dimension reduction step via UMAP 
has focused on key features (i.e., spectral fragments and/or the metadata feature) that 
distinguish the spectra detected in AFFF samples from those detected in CF samples. Further 
investigation in identifying these spectral fragments and relationship with the metadata feature 
will yield insight into the important features used by the model to differentiate between AFFF 
and CF classifications and aid in development of a more complex model that includes 
signatures from mixtures of chemicals.  

When we compare this RandomForestUMAP configuration to the one using spectral signatures 
only, it behooves us to understand the influence of the fluorination process on the model’s 
decisions, which manifests in the substantial increase in prediction accuracy. As such, we 
examine the relationship between this feature and the PFAS classes. Table 2 below tabulates 
the number of MS2 spectra detected in samples that belong to either the AFFF or CF classes 
(total spectra and test set spectra) and further delineated by fluorination process. Note that the 
two fluorination processes, electrochemical fluorination and fluorotelomerization, are only 
associated with AFFF samples, and remain unknown for all the CF samples, and for a handful 
of spectra belonging to AFFF samples. This means that all the spectra detected in CF samples 
are associated with a single, unique encoding of fluorination process (in this case, NA is as 
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important as an actual fluorination process), which is different from the two fluorination 
processes that are only associated with AFFF samples. This clear distinction between the AFFF 
and CF classes is very likely being exploited by the model, resulting in near-perfect prediction 
accuracy. 

Table 2. Count of MS2 spectra belonging to samples by PFAS class and delineated by 
fluorination process 

PFAS class Fluorination process Total spectra Test set spectra 

AFFF Electrochemical fluorination 415 80 

AFFF Fluorotelomerization 105 24 

AFFF -- 6 2 

CF -- 550 110 

2.2.1.4 Model Assessment 

While it is obvious that we can achieve superb prediction accuracy (99%) when sample 
metadata such as fluorination process is included as a feature the model trains on, we prefer 
the model described in Section 2.2.1.2 that demonstrates better than modest performance at 
80% accuracy. This is because the model that only trains on spectral signatures is likely to be 
more generalizable in deployment to predict other unknown samples that may or may not 
contain PFAS. 

In the spectral-signature only model, LC-MS/MS spectral signatures, when processed and 
analyzed by AIML algorithms, contain distinctive information to begin to differentiate between 
the PFAS source types of interest when we consider the spectrum to PFAS class problem. This 
type of capability is vital for environmental management as it provides a data-driven method for 
source attribution, which is often a complex and resource-intensive task, especially in the face 
of unknown chemical compositions in these samples. 

We recognize the value of including sample metadata and see the clear benefits of augmenting 
spectral features with metadata features in AIML models, but caution against including features 
that may not be able to be derived from unknown samples to be predicted in model deployment. 
In our test case with including fluorination process, many elements of how each PFAS sample 
was produced and the chemical compositions in each sample were known and accessible in the 
NIST PFAS database. However, much of this information will not be available for environmental 
samples, which is the intended use case for our fully developed model. Alternatively, metadata 
that could be derived from environmental samples, such as sampling location, topologies, etc., 
could be useful for model predictions and should be investigated for their utility during model 
refinement. 

This proof-of-concept effort demonstrates the promise of AIML in exploiting chemical 
signatures—in particular mass spectral signatures—for distinguishing among PFAS sources 
when only signature information is available. To offer a more generalizable model that can 
distinguish among other PFAS sources and formulations in the face of novel contaminant 
signatures that continue to emerge, further model enhancements are needed to consider the 
signatures of chemical combinations that contribute to the various formulations. While our 
developed model demonstrated that individual chemical signatures can be associated with 
certain PFAS source types, we also recognize that different PFAS source types may share 
some of the same chemicals (and contain some of the same signatures), but combinations of 
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individual signatures representing their full chemical compositions can provide enhanced 
differentiation. As such, to capture the diversity of chemical compositions that could be found 
and continue to emerge among PFAS sources, and enable their differentiation, we are currently 
developing a more robust model that will account for the co-occurrence of combinations of these 
chemicals and their larger families and will investigate the generalizability of such a model to 
different datasets.  

2.2.2 Model Tracking and Comparison with MLFlow 

Model development for source attribution requires systematic exploration of many 
hyperparameters and modeling approaches, often across distinct classification problems. 
Without a structured tracking system, comparing results and drawing conclusions about model 
performance quickly becomes cumbersome. To address this, we integrated the project’s 
modeling framework with MLFlow, an open-source platform designed for managing the end-to-
end machine learning lifecycle. During the R&D phase, MLFlow has enabled the team to record 
every model training run—including data inputs, hyperparameter settings, performance metrics, 
and artifacts—within a unified interface. This functionality allows efficient comparison across 
experiments, facilitates reproducibility, and helps identify the most promising model 
configurations for further development. 

MLFlow will provide a foundation for long-term model management. By maintaining a 
transparent record of model provenance and decision history, the client will be able to track how 
the best-performing models were derived, revisit earlier approaches if needed, and deploy final 
models with confidence. In this way, the integration of MLFlow not only accelerates research 
progress but also ensures that the modeling products delivered are transparent, reproducible, 
and maintainable beyond the initial project phase. Refer to Figure 13, Figure 14, and Figure 15 
for images of experiment and results tracking using the MLFlow dashboard. 
 

 

Figure 13. MLFlow Experiments Landing Page, used to track and organize all models run on a 
specific classification problem type. 
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Figure 14. Box plots can be visualized across hyperparameters. The dashboard can also 
display scatterplots and can be used to explore the relationship between any hyperparameter 
selection and performance metric. 

 

Figure 15. Hyperparameters and results are logged for each model. This includes metadata that 
can be used to easily locate where the model is stored on your system, to facilitate follow-on 
research with the best performing models. 
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2.3 Conclusions for PFAS Source Attribution 

This study successfully demonstrates the feasibility of AIML techniques to link chemical 
signatures to PFAS sources and provide attribution indications without the need for a priori 
chemical identification. We investigated a variety of different model architectures and 
configurations that range in performance to develop and optimize a model for PFAS class 
prediction using mass spectral information. By applying a pipeline involving UMAP for 
dimension reduction and an RF classifier using solely LC-MS/MS data from the NIST PFAS 
database, we achieved 80% accuracy in distinguishing signatures detected in AFFF samples 
from those detected in other commercial PFAS-containing formulations. 

The good classification performance, coupled with the ability to analyze misclassified samples 
that revealed underlying chemical similarities to CFs, is indicative of the model's ability to 
discern distinct spectral patterns that can begin to be linked to source origin, as well as the 
model’s inherent interpretability. The integration of MLFlow for experiment tracking established 
a robust framework for systematic model development and comparison, ensuring accessibility 
and reproducibility in AIML model development. Overall, this capability is critical to facilitate 
responsible environmental management. 

This work provides a robust proof-of-concept for AIML as a tool in the ongoing effort to manage 
PFAS contamination. Future work will involve applying and further refining these AIML 
algorithms to account for challenges with and generalizability to chemical mixtures, as well as 
complex environmental samples, moving from the controlled environment of clean spectra to the 
challenging realities of contaminated sites. Ultimately, we aim to develop AIML-driven 
approaches that enhance our ability to discern emerging contaminant signatures and rapidly 
and accurately identify PFAS sources. Additional work is being done to determine model 
generalizability, including modeling with environmental samples, which will lead to more 
informed and effective environmental protection decisions. 
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3.0 Large-Scale Computational Screening and Machine 
Learning Prediction of PFAS Degradation Potentials 

Conventional remediation relies predominantly on sorptive technologies (granular activated 
carbon, ion-exchange resins) that concentrate rather than destroy contaminants. Destructive 
approaches – high-temperature incineration (>1000 °C), plasma-based methods, photochemical 
processes, sonolysis, and electrochemical oxidation – offer pathways to mineralization but 
remain energy-intensive, costly, or sensitive to water-matrix effects (Cleston and Charles, 2024; 
Li et al. 2025; Sidnell et al., 2022; Kim et al., 2024). Importantly, more than 12,000 PFAS 
structures are now registered (USEPA, 2023) displaying enormous structural diversity (chain 
length, functional groups, branching, and charge state). This heterogeneity translates into widely 
varying thermodynamic stability and degradation behavior, making universal treatment protocols 
elusive. 

The feasibility of many destructive methods (plasma, photochemical, sonolysis, UV, 
electrochemical oxidation) hinges on the oxidation potential of each PFAS congener; 
compounds with lower potentials are thermodynamically easier to degrade. However, 
experimental measurement of oxidation potentials for thousands of PFAS is impractical, and 
high-level quantum chemical calculations are computationally prohibitive at this scale. 

In this study, we combine semiempirical quantum chemistry, density functional theory (DFT), 
and machine learning to enable rapid, accurate prediction of PFAS oxidation potentials across 
chemical space. Starting from the EPA PFAS Master List, we curate a dataset of 8214 unique 
PFAS molecules (PFAS-8k), compute their adiabatic oxidation potentials in aqueous solution 
using a computationally efficient two-tier protocol, analyze structure–property trends, and train a 
high-performing Random Forest model capable of instant predictions for new structures. This 
workflow provides the first broad thermodynamic map of PFAS oxidative degradability and 
identifies structural motifs that render certain congeners significantly more vulnerable to 
electrochemical treatment. 

3.1 Methods 

Our approach integrates three hierarchical levels to balance accuracy and throughput: (1) Data 
preprocessing through filtering to generate 8214 unique PFAS molecules; (2) Large-scale 
screening of 8,214 PFAS using the semiempirical GFN2-xTB method to estimate oxidation 
potential; (3) High-accuracy benchmark calculations on a representative 600-molecule subset 
using full DFT geometry optimization and frequency calculations; and (4) a Machine-learning 
surrogate model trained on Morgan fingerprints to deliver oxidation-potential predictions for any 
PFAS structures. 

3.1.1 Data Curation and Chemical Space 

PFAS structures and SMILES strings were retrieved from the EPA CompTox Chemicals 
Dashboard PFAS Master List (USEPA, 2023). Inorganic species, fragments, and molecules 
containing heavy metals were removed using RDKit filters. After deduplication and 
canonicalization, 8,214 unique organic PFAS remained (denoted PFAS-8k). The dataset spans 
perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), fluorotelomers, 
sulfonamides, ether-PFAS (e.g., GenX), and numerous emerging structures with aromatic, 
hydroxyl, or charged functional groups. 
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3.1.2 Quantum Chemical Calculations  

All quantum chemical calculations were performed using xTB and Gaussian 16. For the full 
PFAS-8k dataset, molecular geometries were first optimized at the GFN2-xTB level (Bannwarth 
et al., 2019), followed by DFT single-point energy calculations in implicit water dielectric using 
the CPCM model at the ωB97X-D/6-31+G(d) level of theory (Chai and Head-Gordon, 2008). 
The oxidation potentials were calculated as the energy difference between the neutral and 
cationic states and referenced to the Li/Li⁺ electrode potential taken from literature (Eq. 1). We 
benchmarked the xTB protocol against full ωB97X-D/6-31+G(d) optimizations for a 600-
molecule subset and found that xTB reproduces DFT oxidation potentials with small systematic 
errors, supporting its use as a surrogate method for large-scale PFAS screening. 

 

Benchmarking showed that the xTB→DFT single-point protocol reproduces full-DFT oxidation 
potentials with a mean absolute error of only ~0.2 V, justifying its use for large-scale screening 
(Figure 16). 

 
Figure 16. Two-tier quantum-chemical workflow for PFAS oxidation potentials. The left panel 
shows the use of xTB to screen ~8,000 PFAS structures and the selection of a 600-molecule 
subset for full ωB97X-D/6-31+G(d) optimizations. The right panel compares oxidation potentials 
from xTB and DFT, showing that the low-cost protocol closely reproduces the high-level results. 

3.1.3 Machine Learning  

Molecular structures were represented by Morgan fingerprints, which were generated from 
SMILES strings (radius = 2, nBits = 2048). A Random Forest regression model was trained to 
predict oxidation potentials using these fingerprints as input features. The model consisted of 
100 estimators and default hyperparameters. The dataset was randomly split into 80 % training 
and 20 % testing subsets. Model performance was evaluated using the mean absolute error 
(MAE) and coefficient of determination (R²). 
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3.2 Results and Discussion 

3.2.1 Distribution of Oxidation Potentials  

Computed oxidation potentials for the PFAS-8k dataset range from approximately −2 V to +10 V 
vs Li/Li⁺, with the majority of neutral and cationic species falling between 5 and 9 V (Figure 17). 
This pattern reflects the high oxidative stability of typical PFAS compounds, driven by strong C–
F bonds and the electron-withdrawing nature of fluorine. A small but significant tail at lower 
potentials (<4 V) contains anionic species and molecules bearing polar/charged headgroups 
that are thermodynamically far more susceptible to electrochemical oxidation. 

 
Figure 17. The computed oxidation potentials for the PFAS-8k dataset span a broad range from 
4 V to about 10 V vs Li/Li⁺. The distribution is unimodal, with most molecules clustered between 
5 V and 9 V, and a maximum around 6–7 V. 

3.2.2 Influence of Molecular Charge  

Neutral PFAS molecules (n = 7730) and cationic species (n = 333) exhibit similar distributions 
centered around 7 V over the range of 5-9 V. In sharp contrast, anionic species (n = 132: −1 
charged; n = 3: −2 charged) are shifted to dramatically lower potentials with most values 
between 0 and 7 V, and the rare −2 species lie almost entirely below 0 V (Figure 15). This 
charge-dependent shift indicates that anionic PFAS are thermodynamically easier to oxidize 
than their neutral or cationic counterparts. 
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Figure 18. Oxidation potential distribution by molecular charge (non-neutral only). 

3.2.3 Functional-Group and Compositional Effects  

Analysis of functional group effects (Figure 19) reveals clear links between local chemistry and 
oxidation potential. Sulfonic and sulfonamide groups show a modest but systematic decrease in 
Eₒₓ. These motifs often carry or stabilize negative charge through S–O bonding, which 
delocalizes the hole after oxidation and lowers the required potential. Carboxylate (–COO⁻) and 
hydroxyl (–OH) groups show a similar trend. Their polarity and ability to form hydrogen bonds 
with the solvent stabilize oxidized states and shift Eₒₓ to lower values. In our dataset these 
motifs cluster toward the low end of the redox distribution, indicating that oxidation tends to 
occur in the polar headgroup rather than along the perfluorinated tail. Aromatic rings also 
reduce Eₒₓ, consistent with π-electron delocalization that spreads positive charge over a larger 
conjugated framework. 

In contrast, increasing the number of fluorine atoms leads to higher oxidation potentials. 
Molecules with many C–F bonds are more electron poor and have very strong C–F interactions, 
so removing an electron becomes energetically expensive. This trend tracks closely with 
molecular weight, since heavier PFAS usually have longer perfluoroalkyl chains and higher F 
content. Together, these patterns show how electron-withdrawing fluorinated backbones raise 
Eₒₓ, while charge-stabilizing headgroups and conjugated units pull it down. They provide a 
chemically intuitive map between PFAS composition and oxidative stability that we later use as 
interpretable descriptors in our machine learning models. 
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Figure 19. Functional group and composition effects on PFAS oxidation potentials. Box plots 
show how sulfonic, sulfonamide, carboxylate, hydroxyl, and aromatic motifs shift the Eₒₓ 
distribution relative to molecules that lack these groups. The line plot on the right summarizes 
the monotonic increase of average oxidation potential with fluorine atom count. 

3.2.4 Machine Learning Performance  

The Random Forest model trained on Morgan fingerprints (radius 2, 2048 bits) achieved high 
predictive accuracy, with MAE = 0.23 V and R² = 0.91 on a 20% test set. The parity plot 
(Figure 20) shows that most points lie close to the 1:1 line, which indicates that the model 
reproduces oxidation potentials across the full range of values. Performance is stable from low 
to high potentials, suggesting that the fingerprint representation captures the structural patterns 
that control redox stability. A small number of outliers occur at the lowest potentials (around 2 
V), where the data are sparse and include anionic species. Overall, these results show that a 
relatively simple Random Forest model can learn PFAS redox trends from molecular fingerprints 
without more complex feature engineering.  
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Figure 20. Random Forest regression Parity plot showing strong agreement between predicted 
and DFT-calculated oxidation potentials (MAE = 0.23 V, R2 = 0.91). 

3.3 Conclusions for PFAS Degradation Potentials 

We have established the first comprehensive thermodynamic map of electrochemical oxidation 
potentials for over 8,200 environmentally relevant PFAS using a hierarchical quantum-chemical 
workflow validated against high-level DFT. Key findings include:  

1. Most legacy PFAS require oxidation potentials >6 V vs Li/Li⁺, explaining their resistance to 
conventional electrochemical treatment.  

2. Anionic and polar-headgroup-containing PFAS exhibit lower potentials, identifying them as 
priority targets for advanced destructive technologies.  

3. A simple Random Forest model trained on Morgan fingerprints predicts oxidation potentials 
with minimal errors, enabling instantaneous screening of new or untested PFAS structures.   

The framework presented here is general and readily extendable to other degradation metrics 
(e.g., C–F bond dissociation energies, adsorption free energies on electrode surfaces) and 
emerging contaminants. The results may also provide some insights for evaluating 
transformation of PFAS precursors in subsurface environment. 
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4.0 SRNL Sampling on the Savannah River Site 

The ability to detect emerging PFAS contaminants algorithmically from mass spectra is driven 
by the breadth of data that is available for training ML algorithms. That is to say, robustness in 
the algorithmic approach is gained when algorithms are exposed to different sites, with different 
levels of exposure, and different compounds. Furthermore, variations in the analytical methods 
enable different resolutions or capabilities. While there is an existing standard approach for 
PFAS sampling and analysis in EPA 1633, the method can be expensive and laborious to 
execute, potentially serving as a limiter in the realm of data collection. Hence, the ability to 
leverage information provided from other data sources that include different analytical 
techniques is further enabling for ML algorithms. As part of this effort, the team thus sought to 
identify existing environmental sampling datasets that begin to capture these variations. SRNL 
internally funded a seedling effort in FY23 titled “Rapid Screening for PFAS”, which produced 
one such data set that the team has repurposed in the AI for PFAS (henceforth, AI4PFAS) effort 
for preliminary exploratory data analysis that may guide future efforts. In particular, the team 
sought to use knowledge of site history, coupled with historical groundwater monitoring, to guide 
targeted PFAS sampling that could help characterize “high”, “medium”, and “low/no” exposure 
signals that would be expected. The sampling approach and analysis will be presented in the 
following subsections. 

4.1 Sampling 

Samples for this project were collected on the DOE’s Savannah River Site (SRS). The current 
level of PFAS contamination is not yet well characterized for the SRS, though knowledge of the 
site’s activities, as well as historical groundwater monitoring and sampling programs, can inform 
the extent to which various regions of the site have been exposed to PFAS. In the “Rapid 
Screening for PFAS” effort, this historical knowledge guided the selection of locations for 
additional, more targeted PFAS sampling. Approximate regions of the SRS having locations 
with presumed “high”, “medium”, or “low/no” historical exposure to PFAS were selected and are 
shown in Figure 21. Regarding presumed “high” exposure areas, D-area is home to a firefighter 
training facility and has a known existing plume of legacy PFAS contamination. For sampling 
locations not in D-Area, previous exposures were estimated based on the positioning in their 
drainage basin and proximity to potential PFAS sources. Referencing Figure 21, the General 
Separations Area (GSA) on the SRS is a centralized location of facilities where many of the 
site’s legacy/ongoing DOE operations occurred. While there were firefighter training activities 
that occurred in GSA, they were not to the extent of those that occurred in D-Area. Hence, 
downstream locations (Pen Branch and L-Lake) are presumed to have moderate to low levels of 
exposure based both on distance from potential sources and the level of activities that occurred.  
Finally, the Upper Three Runs region of sampling is situated upstream of both D-Area and the 
GSA and was therefore presumed to have “low/no” prior exposure, serving as background for 
the site. 

Coupling knowledge of the site history with site sampling, two sites were selected with no 
presumed previous exposure to PFAS (Upper Three Runs [UTR] and PB-X [Pen Branch]), four 
sites were selected with presumed low or moderate exposure (PBr [Pen Branch], L-Lake, 
DSWM12 [D-Area], DSWM4A [D-Area]), and one site was selected which was known to have 
high exposure (DSWM11 [D-Area]). Samples were collected using an extendable pole arm 
sampler designed to hold single use 1-liter high density polyethylene (HDPE) bottles. Unlined 
HDPE bottles were used to avoid a PFAS background from sampling equipment. Prior to 
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sampling, all HDPE bottles were rinsed three times with water from the sampling location. 
Samples were stored refrigerated until spiking and analysis were completed. 
 

 
Figure 21. Approximate regions on the Savannah River Site targeted for sampling during the 
“Rapid Screening for PFAS” effort. 

4.2 Sample Preparation and Instrument Analysis 

Samples were analyzed with and without the addition of PFAS standards as a means to identify 
the PFAS signatures that are present in the mass spectra. To perform spiking, per- and 
polyfluoroalkyl substance (PFAS) standards were purchased as methanolic solutions from 
Wellington Laboratories (Ontario, CA), shown in Figure 22. M2 PFOA, d3 MEFOSAA, and 
MPFOS were added to all samples at the 100 ng/L level.  Additional native PFAS were added in 
varying concentrations of 0 ng/L, 10 ng/L, 30 ng/L, 100 ng/L, 300 ng/L, and 1000 ng/L. 
Additional dilutions of these standards were completed in methanol (Chromosolv, Honeywell 
International, Charlotte, NC). Octadecylamine (Sigma Aldrich, >99%, Burlington, MA) was used 
as the adsorbent and was applied to borosilicate glass melting point tubes (Kimble, Vineland, 
NJ) by first dissolving in hexane (Chromosolv, Honeywell International, Charlotte, NC). Plastic 
products used for this work including 2 mL vials (Thermo Scientific, Waltham, MA), pipette tips 
(Eppendorf EP tips, Hamburg, Germany), 15 mL polypropylene centrifuge tubes (Falcon, Irvin, 
CA), and one-liter Nalgene bottles (Thermo Scientific, Waltham, MA) were selected based on 
their known low PFAS background. Deionized water was from an ultrapure water system 
(Supelco, Bellefonte, PA). FomblinY (HVAC 16/6, Sigma-Aldrich, St. Louise, MO) was used for 
mass calibration of the mass spectrometer (MS). 
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Figure 22. Native PFAS standards and mass labeled internal standards added to the 
environmental samples from the SRS, along with the indicative mass to charge ratio (m/z) that 
would be seen in the mass spectra. 

To prepare adsorbent probes for concentrating samples, octadecylamine was first dissolved to 
its solubility limit in hexane. After dissolving octadecylamine, glass melting point tubes were 
submerged closed-side down into the octadecylamine-hexane solution for 30-seconds. After this 
the adsorbent probe was lifted, and the probe was dried. This was repeated for a total of two 
layers of adsorbent on the probe.  

Samples were prepared including spikes of native PFAS compounds and internal standards as 
needed in 10 mL volumes in 15 mL polypropylene centrifuge tubes. Methanol in the mixture was 
< 0.5% by volume. Each sample was vortexed after spiking to ensure homogeneity. One 
adsorbent probe was added per sample and then the system was gently shaken (300 rpm) for 
1-hour at room temperature to adsorb PFAS from the sample. To avoid temperature impacts, 
unknown and calibration samples were prepared and analyzed together in the same batch. 

Samples were analyzed using direct analysis in real time (DART) coupled with high-resolution 
time-of-flight (TOF) MS. Helium was used as the ionization gas and the sample was analyzed in 
negative ionization mode. The DART source was set to 550 ˚C and was positioned 14 mm from 
the inlet to the AccuTOF. The AccuTOF was set to scan from 100-1500 m/z. The MS was mass 
calibrated at the end of each analytical run using FomblinY.  In total, 64 mass spectra from the 
“Rapid Screening for PFAS” effort were provided for preliminary exploratory data analysis in the 
AI4PFAS effort.   
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4.3 Exploratory Data Analysis 

Figure 23 shows the mass spectra of sampled water from all locations. There are notable 
similarities between the spectra for DSWM4A (D-Area), DSWM11 (D-Area), L-Lake, Pen Branch 
(PBr) and Upper Three Runs (UTR). In contrast, the spectra for DSWM12 and Pen Branch 
(PBx) show greater differences in the general profile, while still having visually similar groupings 
of high intensity peaks. DSWM4A, DSWM11, and DSWM12 all reside in the same area of the 
site (D-Area).  However, DSWM4A and DSWM11 were sampled from a drainage ditch, whereas 
DSWM12 was sampled from a pond.  Hence, the differences in the spectra likely arise from the 
differences in the overall content of organic matter present in the samples at different locations, 
illustrating the complexity of real environmental samples. UTR, being upstream of most site 
facilities, is the likely best representative of an environmental background for samples from the 
region without impacts from the site.  
 

 
Figure 23. Mass spectra of sampled water without any spiking from all locations. Multiple 
measurements on the same plot indicates instrumental analysis of the same aqueous sample. 
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Figure 24. Overlapping mass spectra without spiking from all sites. Multiple measurements on 
the same plot indicates instrumental analysis of the same sample across different days. 

 

Spiking with the native PFAS standards from Figure 22 was performed in different 
concentrations to further identify and quantify the peaks of interest in the environmental 
samples. In general, the higher the concentration added, the higher intensity of those 
peaks.(Note: the current scope in AI4PFAS is not to be quantitative but rather characterize the 
challenges with real environmental samples – a separate publication is in progress with 
quantitative analysis). Figure 25 shows the mass spectra for DSWM11 with and without the 
addition of native PFAS, while Figure 26 focused on the m/z for PFNA. While the m/z for PFNA 
cannot be clearly detected against nearby peaks, in the sample with only mass labeled internal 
standards added, the m/z for PFNA is clearly seen after the native PFAS are spiked into the 
sample, as would be expected to be seen in a sample collected from an area with PFNA 
contamination. In Figure 27, it is shown that the natural site water does not have a background 
of the mass labeled internal standards d3 MEFOSAA. This is as anticipated. These zoomed-in 
views demonstrate the importance of looking closely at the specific mass spectral signatures for 
these PFAS, as similar m/z can be present at higher abundances, as well as the potential 
quantitative capabilities enabled by spiking the samples at different concentrations. Additional 
work is in progress to fully review samples for these PFAS signatures. 
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Figure 25. PFAS mass spectra for DSWM11 and PBx locations with and without spiking. “IS” 
appended to the name indicates only the mass labeled internal standards (M2PFOA, d3 
MEFOSAA, and M PFOS) are added to the sample at a concentration of 100 ng/L, and “Xppt” 
indicates the full suite of native PFAS standards from Figure 22 have been added. 
 

 
Figure 26. Zoomed in mass spectra for DSWM11 with and without spiking showing PFNA. “IS” 
appended to the name indicated only the mass labeled internal standards were added while 
300 ppt indicates the full suite of native PFAS standards were added. 
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Figure 27. Zoomed in mass spectra for DSWM11 with and without spiking showing d3 
MEFOSAA. 

Figure 28 and Figure 29 show the zoomed in mass spectra for deionized water and the PBx 
location, respectively, with the different levels of spiking. Zooming in around the m/z for PFPeA 
shows that the compound was readily detected in de-ionized water but proved difficult to 
disambiguate in natural waters due to the presence of other ionic compounds. Notably, even 
higher concentration spikes did not aid in disambiguating the presence of PFPeA. Hence, such 
challenges with the detection of PFAS compounds must be accounted for both in the 
characterization approaches and the data analytics pipelines for real environmental samples. 
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Figure 28. Zoomed in mass spectra for de-ionized water with and without spiking showing 
PFPeA. “IS” appended to the name indicates only M2PFOA, d3 MEFOSAA, and MPFOS are 
added to the sample at a concentration of 100 ng/L, and “300 ppt” indicates the full suite of 
PFAS standards from Figure 22 have been added. 
 

 
Figure 29. Zoomed in mass spectra for PBx with and without spiking showing PFPeA. “IS” 
appended to the name indicates only M2PFOA, d3 MEFOSAA, and M PFOS are added to the 
sample at a concentration of 100 ng/L, and “300 ppt” indicates the full suite of PFAS standards 
from Figure 22 have been added. 
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5.0 Concluding Remarks and Future Work 

The three efforts undertaken by the individual laboratories represent capabilities that advance 
key elements of environmental management for PFAS contamination, from optimal sampling 
(SRNL); to rapid detection, characterization, and source attribution (PNNL); and finally, 
strategies for effective remediation (ANL). Leveraging analytical capabilities and AIML tools, 
together, they have the potential to serve as a basis for the next-generation strategy in 
monitoring and verification of PFAS contamination.  

Understanding the challenges that different complex matrices present to the detection of PFAS 
can guide environmental sampling and inform sample preparation strategies to maximize the 
detectability of potential PFAS. The ability to rapidly detect and characterize environmental 
samples to various PFAS classes will enable us to attribute PFAS contamination source. And 
once PFAS class from environmental samples is determined and unknown chemicals that are 
potentially PFAS are characterized, having a predictive capability to better understand their 
physicochemical properties with an eye towards identifying the most effective methods for 
degrading and transforming these chemicals would facilitate remediation efforts.  

Continued efforts to advance these nascent capabilities will enable us to be informed and 
strategic to not only address current EM and remediation efforts, but to also remain prepared for 
the challenges that emerging contaminants and other unknown chemicals bring. While these 
capabilities were developed and evaluated for PFAS, the methodologies can generalize to other 
chemical classes that may be of interest to environmental management. 
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