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Abstract

Per- and polyfluoroalkyl substances (PFAS) were originally of interest and of use because the
fluorocarbons do not readily oxidize (burn) nor undergo other chemical changes such as
hydrolysis. As such, their use in industrial processes became widespread, finding utility from fire
suppression systems to non-stick coating applications and surface treatments. Due to the
chemical stability of the carbon-fluorine (C-F) bonds, however, these “forever chemicals” can
also persist in both soil and water for decades, often leaching into the groundwater adjacent to
sites where they were used, including Department of Energy (DOE) and Department of Defense
(DoD) sites. Concerns regarding their toxicity have led to subsequent efforts to limit exposure,
as this class of chemicals has been correlated with certain forms of cancer, with onset often
arising decades after original exposure. Materials laden with PFAS now require management
and remediation. Whether it be monitoring releases to the environment from existing PFAS
sources, identifying PFAS in an environment, or verifying PFAS destruction products, it is crucial
to be able to quickly understand the PFAS signatures that result from various sources for
several reasons, among them: (1) identifying and discriminating among PFAS sources to ensure
responsible environmental management (EM) decision making, (2) determining the baseline
condition that will be used to determine ecological and human health effects attributed to on-site
sources, and (3) efficient verification of environmental removal or remediation of PFAS.

Given the environmental challenges associated with PFAS, a multi-organization team of experts
from the Network of National Laboratories for Environmental Management and Stewardship
(NNLEMS) was assembled to assess whether existing Artificial Intelligence/Machine Learning
(AIML) approaches developed for other small molecule classes (as well as functional response
data) can be successfully transferred to characterize PFAS. The team at Pacific Northwest
National Laboratory (PNNL) (1) performed a survey of PNNL-developed AIML methods for small
organic molecules identification, characterization and quantification from mass spectrometry
(MS) data; (2) performed a survey of other relevant workflows that utilize multivariate signatures
and features; (3) curated National Institute of Standards and Technology (NIST) PFAS MS
datasets for AIML use; (4) retrained and tested existing AIML on curated NIST PFAS data.
Proof-of-concept models were developed and optimized to predict high-resolution tandem mass
spectra (MS2) detected from curated PFAS samples as belonging to either aqueous film
forming foam (AFFF) and other commercial formulation (CF). The collection of models we
applied range between 70% and 99% accuracy for these two classes of interest, but
generalizability to environmental samples is yet to be studied. Our analysis demonstrated that
non-linear dimensionality reduction techniques significantly outperform linear methods for PFAS
class prediction, while systematic hyperparameter optimization and MLFlow experiment tracking
established a robust framework for testing and evaluation. Though future work should continue
to improve the AIML model, including investigation of generalizability, additional chemical
complexity, and application to environmental samples; here, we advance toward a capability for
automated PFAS contamination source identification in environmental samples.

Along with the PNNL tasking to use AIML for PFAS identification and attribution, both Argonne
National Laboratory (ANL) and Savannah River National Laboratory (SRNL) contributed
significant results in data science PFAS research. The goals of the ANL study were to (1)
develop Al-assisted predictive models to estimate PFAS degradation potentials, using oxidation
potential as an example, and (2) investigate their relationships with AFFF-sourced compounds
and spectral data, specifically estimating reduction-oxidation (redox) potentials for individual
PFAS compounds, and investigating the relationship of redox and oxidation potentials. The
workflow included steps to (a) filter and clean 8214 PFAS spectra, (b) generate Morgan
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fingerprint and chemical descriptors for the Al model, (c) estimate the redox potentials of PFAS
molecules, and (d) perform a discrete Fourier transform (DFT) calculation for a random subset
of 150 PFAS molecules. While this work and PNNL'’s effort both saw success using a Random
Forest model, different configurations of this AIML model architecture were used in the two
efforts (Random Forest and RandomForestUMAP, for ANL and PNNL, respectively). This
framework facilitated ANL'’s ability to investigate the relationship of redox potential with various
elements (e.g., N, O, S, CI) that are contained in PFAS compounds, which can inform the
prioritization and effectiveness with which these compounds can be degraded, thus facilitating
remediation efforts from PFAS contamination.

For SRNL, the project scope included: (1) Identifying mass spectrometry datasets specifically
within SRNL and at the Savannah River Site (SRS) related to PFAS in the environment, (2)
performing data “cleaning” and standardization as needed such that ML algorithms can be
applied, and (3) performing exploratory data analysis that offers comparison to NIST datasets to
be used by PNNL during Year 1 of the Al for PFAS project (henceforth, Year 1) to identify
substantial data differences. SRNL succeeded in this and organized a dataset of environmental
PFAS mass spectra (analyzed using a DART-AccuTOF MS instrument) from environmental
samples that were collected at various locations around the SRS. The samples were collected
from rivers or lakes in multiple different areas of the SRS, including the General Separations
Area, near former reprocessing facilities, and the SRS D-Area, where there was a firefighting
training facility.

These capabilities represent advances in key elements in the environmental management of
PFAS contamination.
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1.0 Introduction

Per- and polyfluoroalkyl substances (PFAS) production was first established in the 1940s due to
the chemicals having unique characteristics such as chemical stability, water and oil repellence,
heat and oxidation resistance, and certain surfactant characteristics (Longendyke et al., 2022;
Hughey et al., 2024). One of the largest direct uses of PFAS was by the military, as aqueous
film-forming foams (AFFFs) — which contain PFAS — were found effective at extinguishing
hydrocarbon fuel-based fires while also preventing reignition (Place and Field, 2012). There is
widespread use in other mainstream consumer products such as food packaging, cosmetics,
pesticides, paints, and cleaning products, to name just a few (Mahinroosta and Senevirathna,
2020; Cahuas et al., 2022); this rapid onset of industrial and manufacturing processes
subsequently led to major environmental PFAS contamination (air, soil, water sources, as well
as bioaccumulation in animals/livestock) (Mahinroosta and Senevirathna, 2020).

In recent years, the health effects of this previously unrestricted class of chemicals have
become apparent. PFAS enter the human body through the digestive and respiratory systems
as well as the skin (primarily through drinking water and food) (D’Hollander et al., 2010); they
are not metabolized due to their strong carbon-fluorine and carbon-carbon bonds, and they
demonstrate high absorption rates and low elimination rates, leading to accumulation in the
body (Sznajder-Katarzynska et al., 2019). Blood serum samples taken from residents of all
developed countries contain ppb levels of long chain perfluoroalkyl acids PFAAs, primarily
perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS); the half-lives of these
compounds in the human body are 2.1-8.5 y and 3.1-7.4 y, respectively (Goralczyk et al., 2015;
Barzen-Hanson et al., 2017; Winquist et al., 2023). Historic use of PFAS and subsequent
concerns regarding their carcinogenicity and toxicity have led to many efforts to limit exposure
to these compounds (USEPA, 2024a; ITRC, 2023). The class of chemicals has been correlated
to many forms of cancer, with onset often arising decades after original exposure (NCI, 2024).
Some studies reveal an observed association between PFOA and kidney cancer (Winquist et
al., 2023). Additional human adverse effects include hypertension (Pitter et al., 2020),
hypercholesterolemia (Winquist and Steenland, 2014), developmental effects in children (Ames
et al., 2025), decreased immune response to infection and vaccine (Bline, et al., 2024), and
endocrine system interference (Ernst et al., 2019; Coperchini et al., 2021).

PFAS were originally of interest and of use because the fluorocarbons do not oxidize (burn), nor
readily undergo other chemical changes such as hydrolysis. Due to the chemical stability of the
carbon-fluorine (C-F) bonds, however, these “forever chemicals” can persist in both soil and
water for decades, often leaching into the groundwater adjacent to sites where they were used,
including U.S. Department of Energy (DOE) sites. Materials laden with PFAS now require
management and remediation. Despite extensive research into alternatives, the approaches
most widely implemented for their removal include thermal treatment in soils (i.e., incineration)
and sorption mechanisms (e.g., granular activated carbon filtering, anion exchange, reverse
osmosis, and nanofiltration) for liquids. These approaches have yet to be specifically optimized
for PFAS-laden materials, however, and there remain many uncertainties as to the identity and
fate of many of the F-laden products after treatment (Singh et al., 2019; Qin et al., 2024). While
many byproducts are known, many are not, and these must also be identified to improve
understanding of PFAS impact. Common analytical methods to assess fluorocarbon generation
or detection both “in the wild” and during processes include liquid chromatography-mass
spectrometry (LC-MS) and infrared (IR) spectroscopy (USEPA, 2024b; Hughey et al., 2024;
Baker et al., 2024; Cui et al., 2024; Nahar et al., 2023). The IR and MS approaches, in
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particular, are useful as they can detect PFAS with high sensitivity at high sampling rates. PFAS
contamination is thus an acute challenge for environmental stewards.

Among the estimated 12,000 PFAS compounds that were in use and may still be in use today, a
subset of less than 100 can be identified via analytical chemistry (ITRC, 2023; USEPA, 2024b).
The remaining are considered potential emerging contaminants, and their impacts on
ecosystems and human health are not yet fully known. Algorithms capable of detecting
emerging contaminants with limited historical data or site knowledge are therefore of keen
interest to the Environmental Management (EM) community.

Whether it be monitoring releases to the environment from existing PFAS sources, identifying
PFAS in an environment, or verifying PFAS destruction products, it is in all cases crucial to be
able to quickly understand the PFAS signatures that result from various sources for several
reasons, among them: (1) discriminating among PFAS sources to ensure responsible EM
decision making, (2) determining the baseline condition that will be used to determine ecological
and human health effects attributed to on-site sources, and (3) efficient verification of
environmental removal or remediation of PFAS.

With these considerations borne in mind in their responses to the PFAS problem, EM site
managers at many facilities now seek to understand PFAS and its precursor chemical
signatures, both to determine source attribution as well as to guide EM decision-making. To
achieve such a goal, this report details how artificial intelligence and machine learning (AIML)
techniques are utilized to successfully link chemical signatures of PFAS-containing compounds
to source type via liquid chromatography with tandem mass spectrometry (LC-MS/MS) data
using the National Institute of Standards and Technology (NIST) curated PFAS database within
the Database Infrastructure for Mass Spectrometry (DIMSpec) Toolkit (Ragland and Place,
2023) (henceforth, the NIST PFAS database). The NIST PFAS database contains “clean”
spectra, that is, well-annotated data for which detected signatures have been assigned and
verified as belonging to known PFAS from analysis of standards and certified reference material
samples. Next steps to enable site managers’ decision-making are to account for PFAS sample
complexity in the AIML model, investigate generalizability of such a model to similar datasets,
and then determine how and how well AIML methods can successfully be applied to actual
environmental samples.

Of the various PFAS, PFOS and PFOA are the two most studied and toxic compounds
contributing to PFAS contamination identified so far. They are a major source of PFAS
contamination in the environment because of their widespread use in Class B AFFFs (aqueous
film forming foams) used typically as fire or heat suppressants for flammable liquid fuel fires
(ITRC, 2023). The 3M Company was the sole producer, via electrochemical fluorination (ECF),
of PFOS-containing AFFF in use in the US between the mid-1960s and 1973 (ITRC, 2023).
Commercial production ceased in 2002, but stockpile amounts may still be present at sites and
fire departments across the country. Other AFFFs were produced via fluorotelomerization by
different manufacturers (e.g., Angus, Buckeye, etc.) between the 1970s and 2016 (ITRC, 2023)
and may contain PFOA. The 3M Company formulations are considered legacy AFFF, while
other formulations may or may not be long chain legacy AFFF. In any case, AFFF is considered
the primary source of environmental PFAS contamination and as such, the research efforts
highlighted in this report focus predominantly on discriminating between 3M AFFF and other
formulations. Future work will focus on PFAS source attribution in environmental samples, other
PFAS source signatures, and algorithm development to detect emerging PFAS contaminants.
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The larger effort was divided into separate research tasks executed by different DOE
laboratories. Section 2 focuses on PNNL's effort to develop an AIML capability to predict NIST-
curated mass spectra to relevant PFAS classes. Section 3 describes an effort by Argonne
National Laboratory (ANL) to use AIML tools to help classify PFAS based on properties such as
oxidation potentials. Section 4 summarizes Savannah River’s efforts to capture and analyze real
mass spectral data from the SRNL site. And finally, Section 5 provides key learnings across all
three efforts and recommendations to guide environmental management and decision-making
by continuing to advance capabilities for detection and characterization of PFAS contamination
using AIML tools.
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2.0 AIML Model for PFAS Class Prediction from Mass
Spectrometry Data

To facilitate environmental management and guide decision-making where there is a need to
identify sources of PFAS contamination, rapid methods of source determination (or attribution)
are key. Adding to the complexity of the source attribution mission is that the formulations are
often unknown, such that the individual chemicals—and combinations of chemicals—in these
samples may not be fully elucidated. As such, it is critical to develop methods to determine
PFAS source from the measured signatures of samples. To advance these aims, PNNL
employed AIML techniques to demonstrate that chemical signatures from mass spectrometry
data detected from these unknown formulations can be used to successfully distinguish PFAS-
containing samples by source type.

Mass spectrometry provides rich analytical data representing chemical-specific signatures and
its ability to detect broad classes of analytes with high sensitivity has led to widespread use in
many chemical and biological applications, including the analysis of PFAS. AIML has also
proven highly effective at learning and recognizing complex patterns in data without relying on
human-enforced or conventionally applied rules for classification in numerous domains. As
such, the application of AIML to better exploit the chemical signatures that we can obtain from
mass spectrometry data of PFAS is ideal to tackle the complex problem of source determination
of PFAS contamination.

As a proof-of-concept, we trained and evaluated models to predict PFAS source or class (i.e.,
AFFF, commercial formulations (CF)) from curated PFAS samples using mass spectrometry
features, which we describe in detail below. While AFFF was used for firefighting activities, CF
are formulations containing PFAS or PFOAs used in other areas of manufacturing or industry
Evaluation of different classification algorithms and parameter optimization showed that non-
linear dimension reduction using Uniform Manifold Approximation and Projection (UMAP)
followed by Random Forest (RF) classifier was the most performant, demonstrating good
accuracy to predicting mass spectra as originating from samples labeled as AFFF or CF.
Further, the framework allows any misclassifications to be interrogated, thus providing a path for
interpretability. Finally, the MLFlow framework established in this effort enables accessible,
repeatable, and reproducible model development. This initial effort demonstrates the feasibility
for AIML to begin to meet needs in environmental management of PFAS. Continued efforts to
develop and improve upon AIML tools for PFAS class prediction will position us to better and
more quickly address challenges with source determination of PFAS contamination.

2.1 Approach

We leveraged curated PFAS mass spectrometry data from the NIST PFAS database for model
development, optimization, and evaluation. This section describes the rationale underlying the
development and final selection of model architecture and parameters for classifying mass
spectra as belonging to samples labeled as AFFF or CF.

211 Curated PFAS Data for Model Development
Data for this study come from the NIST DIMSpec Toolkit (Ragland and Place, 2023), which
contains the NIST PFAS database—a SQLite database containing LC-MS/MS (also called MS2)

spectra and corresponding metadata of PFAS. The database contains 104 samples, some of
which are mixtures, resulting in representation of 131 unique chemical compounds with a total
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of 7,194 high-resolution MS2 spectra. These spectra were collected using 12 different analytical
methods, each employing fixed collision energies ranging from 15 to 60 volts, and include data
acquired in both positive and negative ionization polarities. This database was developed to
address critical challenges in identifying and categorizing PFAS in environmental samples,
particularly using untargeted analysis approaches to characterize compounds without prior
knowledge of which specific analytes might be present.

Data within the NIST PFAS database are segmented into data tables interconnected by a series
of data IDs that are grouped together into different data nodes. Data tables within the analyte
node contain identifying information both at the compound level and at the fragments level of
the data. Identification information typically includes connecting different types of IDs with one
another and relevant metadata such as formulation, machine-readable chemical structure
information in the form of Simplified Molecular Input Line Entry System (SMILES) strings, and
chemical names utilizing the International Union of Pure and Applied Chemistry (IUPAC)
naming convention. The data node contains the majority of the mass spectral data, software
used to generate data, data collection parameters, and other measures of quality control.

2.1.2 Data Extraction and Exploratory Data Analysis

Tables pertaining to peaks, samples, compounds, compound fragments, and other metadata
are extracted from the database and joined using a series of unique identifiers linking each table
as shown in Figure 1. Data are then filtered down to only include second stage mass
spectrometry information (i.e., MS2 spectra as opposed to the first stage mass spectrometry
information) since this type of information provides the level of specificity to identify PFAS
chemicals, similar to a fingerprint.

sample_class_name sample_description P d_name pound_formula precursor_mz measured_mz measured_intensity
agueous film-formin Perfluorooctanesulfonic [58.9345, 63.9666, [3.49499861983986,
a ¢ AFFFQ 3M 1998 AFFF " CBHF1703S 498.9316 63.9726, 63.9918, 7.05184967277006,
oam (AFFF) aci 690561, ... 4.5135022...
(59.0125, 82.9948, [5519.77734375,

analytical standard DTXSI;;SE‘E%& [pe”rr‘“;“:“l'ggr"’;s; C10H5F702S 320.9822 85.3011, 86.9409, 85761.6953125,

¥ 87.5749, ... 4692.6743164062...

Perfl . o [63.9673, 68.9989, [1.9181662465641,

commercial formulation ~ 3M FC-85 Formulation erfluerooctanesuon CBHF1703S 498931 69.0148, 69.0276, 12.2460759498445,
79.7099, ... 12.481794...

) [57.033, 59.0124, [6098.1328125,

analytical standard L C10H5F1502 440.9979 60.8866, 62.9874, 2124734765625,
677245, 6... 6214.5678710937...

Ref Standard Perfluoroh ttoni [54.5155, 57.1525, [4270.2607421875,

analytical standard elerence mﬁ'},;:s ertiuoronexanesu :2:; CBHF13038 398.9361 58,0998, 60.3781, 4434,08642578125,
62.6216, ... 5135.24023...

Figure 1. A subset of data extracted from multiple tables in the NIST PFAS database and
combined into a single dataset, where each row represents information on a single MS2
spectrum. The MS2 spectral information that represents measured signatures of PFAS
compounds is contained within the columns “measured_mz” and “measured_intensity”.

There are three classes of samples available in the NIST PFAS database as shown below in
Figure 2: (i) analytical standards are single compound PFAS references, (ii) the AFFF class
refers to Aqueous Film Forming Foam mixtures, mostly from the 3M company, and (iii)
commercial formulations (CF). We note that AFFF and CF are complex mixtures sharing many
underlying fluorinated substances.

On a more granular scale, the spectra in the database are derived from 18 discrete AFFF
samples, and 3 CF samples. Figure 2 displays the frequency of MS2 spectra occurring in each
specific formulation subtype, split across the two formulation categories. While there are fewer
CF sub types (boxed in red in the legend below), these constitute more MS2 spectra overall,

AIML Model for PFAS Class Prediction from Mass Spectrometry Data 5



PNNL-38833

leading to a balanced formulation dataset. Note, not all 18 AFFF subtypes are represented in
the plot. This is due to the automated preprocessing pipeline which removes spectra which do
not satisfy bare minimum requirements (i.e., enough samples per class for model training and
sufficient number of peaks per spectra). Based on this exploration, we focused on the
formulation classification (AFFF vs CF) problem in Year 1, refining models for formulation class
attribution (see Section 2.0), though we discuss exploratory data analysis on compound overlap
between manufacturers below.

Distribution of NIST Classes Distribution of Formulation Types

5613 -
N Sample Description

300 = 3M 1989 AFFF
S000 . 3M 1993a AFFF
m 3M 1993b AFFF
mm 3M 1998 AFFF
B 3M 2001 AFFF
200 B National Foam AFFF
B Angus AFFF
B Buckeye AFFF
150 3] 1988 AFFF
3 PFOS Technical Mixture|

100 mm AFFF Reserve Tank
- Ansul AFFF
= CF
1000 849 732 % Angus
M FC-95 Formulation
= 3M FC-129 Formulation
L [ ] - |
AFFF

5]
8

Frequency
=]
=3
o
Frequency

=}
8

0 0
analytical standard AFFF commercial formulation commercial formulation
NIST-Defined Classes Formulation Class

Figure 2. (A) Frequency of MS2 spectra in the NIST PFAS Database across each main class.
(B) Frequency of MS2 Spectra across each AFFF and CF subtype.

Given that the formulations in the database all contain PFAS, we expect there to be a high level
of overlap in the compounds represented in the dataset, which, in turn, raises the difficulty in
accurate source attribution. To understand the level of similarity between compounds in the
dataset, and where classifications might be particularly difficult, we computed a metric to
capture the percentage of overlap in compounds between each pair of formulations (Figure 3).
The overlap proportion is computed by finding the number of unique shared compounds across
the set of a pair of formulations and normalizing by the size of the more infrequently occurring
formulation type. This provides a metric that captures the proportion of compounds found in the
smaller class of compounds that are also found in the larger class. This metric is therefore
biased towards visualizing the potential difficulty in classifying formulations with less data, when
they share chemical similarities with overrepresented formulation types. Figure 3 visualizes this
compound overlap between each pair of the top 10 formulations in the database. Our
assumption is that spectra belonging to classes with higher compound overlap will be more
difficult to discriminate from one another with machine learning models. For instance, 3M 1993a
and 1993b are expected to be difficult to disentangle, whereas 3M 1988 has very little overlap
with other formulations, and will likely be classified separately more readily.
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Figure 3. Percentage of compound overlap between each formulation type, where values are
normalized by the minimum class size in each overlap pair.

2.1.3 Data Pre-Processing

After merging all relevant data tables by their appropriate unique identifiers, a series of
preprocessing steps are applied to standardize spectral information and prepare the dataset for
modeling. High-resolution mass spectrometry data such as that curated in the NIST PFAS
database are inherently variable in length and high in dimensionality, necessitating
transformation into fixed-length numeric encodings that can be ingested by machine learning
algorithms. The software developed on this project as part of the AIML framework (AI4PFAS) in
Python implements three such encoding strategies: intensity binning, Gaussian random
projection, and feature hashing.

In mass spectrometry, intensity binning typically partitions the continuous mass-to-charge (m/z)
axis into moderately sized intervals, summing measured intensities within each bin. This
produces a compact, fixed-length representation of each spectrum, with bin width chosen to
balance mass resolution and noise reduction. With the other two encoding strategies, Gaussian
random projection and feature hashing, the process begins with fine-grained intensity binning, in
which very small bin widths are applied to capture precise fragment m/z values. This produces
sparse, high-dimensional vectors that serve as input for dimension reduction. In the Gaussian
random projection approach, these high-dimensional vectors are multiplied by a randomly
generated Gaussian matrix to obtain lower-dimensional numeric vector representations of the
original data (Johnson and Lindenstrauss, 1984 and Li, et al., 2006). This method approximately
preserves pairwise distances between spectra. In the feature hashing approach, each fine-
grained bin index is mapped to a target bin using a deterministic hash function (e.g.,
MurmurHash3 (Appleby, 2015)). Intensities from bins mapping to the same target bin are
aggregated, producing a fixed-size representation that retains much of the spectra’s similarity
structure (Moody, 1988).
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Following application of one of these three encoding methods, each feature (i.e., column) in the
resulting matrix is scaled via normalization or standardization. This ensures that all features
contribute equally to the model, regardless of their original magnitude or units, while preserving
within-feature variance.

214 Model Pipelines

There are four model pipelines currently implemented. Each is made up of a dimension
reduction model followed by a classifier (Figure 4), meaning the workflow first transforms the
high-dimensional input data into a lower-dimensional representation that preserves essential
structure, and then applies a classification algorithm to assign labels based on that reduced
representation. The dimension reduction techniques implemented are principal components
analysis (PCA) and UMAP, while the classifiers include linear discriminant analysis (LDA),
logistic regression (Log), and RF. We tested several combinations of dimension reduction +
classifiers, resulting in the final set of 4 models: 1) PCA+Log; 2) UMAP+Log; 3) UMAP+LDA,; 4)
UMAP+REF.

1. Dimensionality reduction 2. Classification

Logistic Regression Example

Figure 4. Schematic of model pipeline. A dimension reduction model is followed by a
classification model.

PCA is a linear dimension reduction technique that transforms the data into a new, orthogonal
coordinate system where each axis is a different linear combination of the original data. The first
principal component captures the largest proportion of variability in the original data, with
additional principal components capturing subsequently less. The number of components
selected for classification is determined by the desired proportion of total variance preserved. In
contrast, UMAP is a non-linear dimension reduction technique that constructs topographical
representations of the data such that the loops, voids, and connectedness are preserved
(Mclnnes, et al., 2018). From a high-dimension graphical representation of the data, a
simplified, low-dimension version of the graph is created such that relationships between
features of the data are preserved while minimizing the total number of variables in the data.

For classifiers, LDA finds a linear combination of features to separate between two or more
classes is optimized to increase separability between classes while minimizing the variability
within classes. Logistic regression uses linear combinations of data to model the log odds of an
event. The response variable is typically binary, in this case whether the PFAS compound is
considered AFFF or CF. An RF model calculates a collection of decision trees and votes on the
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best subset or combination of data allow for classification. Under this algorithm, decision trees
refer to a classification method where random subsets or features of the data are iteratively
divided to find the optimal split of the data by using metrics such as the mean square error to
quantify the amount of information retained after each data split.

2.1.5 Hyperparameter Optimization

During the initial phase of the study, we manually selected key settings—known as
hyperparameters—that govern both data preprocessing and model training. These choices were
informed by early experimental results. Based on these initial experiments, we observed that the
model that combines UMAP and RF outperformed the others in terms of accuracy and recall.
We therefore chose to focus on this model moving forward and employed a Bayesian
hyperparameter optimization strategy that helped us select the most effective combination of
hyperparameters for each classification problem. Table 1 includes two sets of optimized
hyperparameters found for each classification problem.

2.2 Results & Discussion

Here, we examine model performance to predict mass spectra detected from PFAS samples as
belonging to PFAS sources of interest at various levels of granularity. In this framework, models
developed to predict these classes are a step towards providing a capability to rapidly determine
PFAS contamination source from measured chemical signatures.

In the exploratory phase of the study, we evaluated a range of model pipelines combining
different dimension reduction techniques and classifiers. Pipelines using UMAP consistently and
significantly outperformed those using PCA. While PCA is a linear method that captures
variance across features, it often fails to preserve complex, non-linear structures in the data. In
contrast, UMAP is a non-linear technique that better maintains the local and global structure of
the data in a lower-dimensional space. This capability made UMAP particularly well-suited to the
spectra dataset, which likely contains non-linear relationships among features relevant to class
separation.

Given these observations, we chose to focus exclusively on UMAP-based pipelines for all
subsequent modeling. Further experimentation revealed that, among various classifiers, RF and
LDA models achieved the highest performance for formulation class attribution, though RF
demonstrated a minimal edge. As a result, we selected the UMAP + RF (henceforth,
RandomForestUMAP) pipeline for more in-depth Bayesian hyperparameter optimization.

Table 1 includes parameter combinations for three models examined in this effort that
demonstrate the range of performance levels that could be achieved for the spectrum to
formulation class problem; two using RandomForestUMAP and one
LinearDiscriminantAnalysisUMAP. We discuss the performance of these three models in further
detail in Section 2.2.1.
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Table 1.0ptimized Hyperparameter Values for Formulation Class Attribution

Hyperparameter

Description

RandomForestUMAP

(with sample
metadata)

RandomForestUMAP
(spectral signature only)

LinearDiscriminant
AnalysisUMAP

Add precursor mz
feature

Whether to include
the precursor m/z
value as an
additional feature in
the encoded
spectra
representation

False

False

False

Add fluorination
feature

Whether to include
a categorical
feature indicating
the fluorination
process used for
AFFF spectra
(electrochemical
fluorination, or
fluorotelomerization

True

False

False

Top Peak Count

Number of highest-
intensity peaks
selected from each
spectrum before
applying the
encoding method

10

10

10

Encoding Type

Method used to
encode MS2
spectra into
numerical features.
Options: Intensity
binning, Gaussian
Random
Projections,
Feature Hashing

Intensity binning

Intensity binning

Intensity binning

Bin Size

Width of each bin
in m/z units, used
only when using
intensity binning

22

22

22

Encoding Dim

Dimensionality of
encoded features —
only used when not
encoding type is
not intensity
binning

None

None

None

Scaler Type

Feature scaling
method applied
before modeling.
Options: minmax
scaling or standard
scaling

minmax

minmax

minmax

Class balancing

Class balancing
technique applied
to the training data.
Options: SMOTE,
SMOTE Tomek, or
down sampling

SMOTE

SMOTE

SMOTE

N components

Number of
dimensions in the
UMAP embedding.

min_dist

UMAP
hyperparameter
controlling how
closely points are
packed together in
the embedding
space in [0.1, 1]
range (smaller

0.1

0.1

0.1
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RandomForestUMAP
(with sample RandomForestUMAP LinearDiscriminant
Hyperparameter Description metadata) (spectral signature only) AnalysisUMAP
values preserve
more local
structure)
model Type of model RandomForestUMAP RandomForestUMAP LinearDiscriminant
applied to the AnalysisUMAP
encoded spectra
n_estimators Number of decision | 371 371
trees in the
Random Forest
model
max_depth Maximum depth of None None
the decision trees.
max_features Number of features | log2 log2
considered when
looking for the best
splitin each tree
min_samples_leaf Minimum number 2 2
of samples
required to be ata
leaf node
min_samples_split Minimum number 5 5
of samples
required to split an
internal node

One of the hyperparameters that we investigated during the model optimization stage was class
balancing (see Table 1 for optimized setting). Class balancing addresses one of the key
challenges with dataset readiness for AIML and is one of the methods that can help mitigate
model bias in class prediction—by ensuring that the dataset has equal or close to equal
representation among the class labels on which the model is trained to predict. Class imbalance
within the dataset (i.e., when a class is more highly represented compared to the others or a
class is only represented by few examples) can create bias within the model to favor prediction
to the class that is most represented, given the large number of examples the model has for
learning. Additionally, for the class that is least represented, the model may learn the
underrepresented class extremely well (i.e., as if the model has memorized the examples), but
that can result in the model’s inability to generalize outside the dataset used for its training.
Additionally, application of appropriate class balancing strategies can be challenging when data
for AIML model development are scarce. We applied and examined relevant class balancing
methods here, including Synthetic Minority Over-sampling TEchnique (SMOTE) (Chawla et al.,
2002; Blagus and Lusa, 2013), SMOTE with Tomek links (SMOTE-Tomek) (Batista et al., 2004;
Zeng et al., 2016), and down-sampling (Lemaitre et al., 2017). These approaches represent
different ways to address class imbalance in a dataset.

SMOTE provides a way to oversample the class that is least represented by generating
synthetic data via interpolation to achieve class balance (Chawla et al., 2002; Blagus and Lusa,
2013). By utilizing interpolation and creating new examples rather than oversampling the
existing examples in the smaller, underrepresented class, SMOTE overcomes the minority class
overfitting issue (i.e., the model learns the few examples in the minority class extremely well and
cannot generalize) that is common to the more conventional random oversampling method.
Alternatively, SMOTE can be combined with Tomek links, a data cleaning method that reduces
noise and creates better distinction between two classes by removing examples (down-
sampling) from both classes when these examples lie at the boundary between the two classes
(Batista et al., 2004; Zeng et al., 2016). The SMOTE-Tomek approach thus mitigates potential
overfitting via oversampling while enhancing the distinction between two classes for model
prediction. And finally, class balance with random down-sampling using the Imbalanced Learn
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Python package selects examples from the most-represented class without replacement to
include in the model’s training (Lemaitre et al., 2017) such that the number of examples among
the classes are equal. However, the random sampling is performed without accounting for any
underlying structure within the dataset, such as similarity among examples, and random
elimination of samples can potentially remove useful information for prediction to the majority
class distinct from the smaller classes.

In the AFFF versus CF classification problem, we have 526 spectra measured from samples
that belong to the AFFF class and 550 spectra from samples belonging to the CF class, that
meet the top peak count parameter criteria. While the numbers of spectra between the two
classes do not differ drastically, class balance should still be implemented to mitigate any
potential bias that could arise to prefer prediction to the majority CF class. With the
RandomForestUMAP configuration in general, the SMOTE over-sampling approach yielded
some of the more performant models.

2.21 Formulation Class Attribution

We compare the performance of three AIML models that represent the range of prediction
accuracy for the formulation class problem in Sections 2.2.1.1 — 2.2.1.3 below. All utilize UMAP
as the dimension reduction technique and demonstrate the effects of using a different ML
algorithm (e.g., LDA, RF) and selection of different features (spectral signatures vs. spectra and
sample metadata). Section 2.2.1.4 discusses the benefits and disadvantages of each and
comments on why we may choose one or the other, depending on the intended use case.
Figure 5 below provides an overview of each model's performance (for a select set of
hyperparameters) that will be discussed in greater detail in Sections 2.2.1.1 —2.2.1.3.

1 O RandomForestUMAP

L] LinearDiscriminantAnalysisUMAP

0.95

0.9

test_accuracy
o
@
[}

0.8 -

0.75 .

0.7
RandomForestUMAP LinearDiscriminantAnalysisUMAP

model

Figure 5. Boxplot comparing performance of models with different architectures and
hyperparameters. Note the two distributions with the RandomForestUMAP model, where the
higher test set accuracy values correspond to inclusion of sample metadata as a feature in the
model and the lower test set accuracy range utilizes spectral information only.
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Though not the most performant model, we selected the RandomForestUMARP architecture that
uses spectral signatures only (80.6% accuracy representing better than modest performance)
on which to continue development and improve upon, and on which to investigate

generalizability to other datasets. We discuss our rationale for selecting this model in Section
221.4.

2211 Linear Discriminant Analysis as Classifier

One of the classifiers that we investigated in Year 1 was a simple LDA. Figure 6 displays the
performance of a representative model using the LinearDiscriminantAnalysisUMAP
configuration as a confusion matrix, where we achieve a test set accuracy of 80.1%, one of the
more performant models utilizing LDA as the classifier. A confusion matrix is a table that
compares the model’s predictions (columns) against the true labels (rows). Correct predictions
appear along the diagonal from the top left to the bottom right—these are cases where the
predicted and actual categories match. Off-diagonal entries represent misclassifications, where
the model assigned a spectrum to the wrong category. The closer all values are to the diagonal
and the fewer entries there are elsewhere, the better the model’s performance.

aqueous film-forming foam (AFFF)

True label

50

r 40
commercial formulation

30

Predicted label

Figure 6. Confusion matrix for one of the most performant LinearDiscriminantAnalysisUMAP
models using spectral signatures only as features for model training.

Here, we observe that there are misclassifications for both classes. While 85 of the 216 mass
spectra from the test set were correctly predicted as detected in samples from the AFFF class,
21 were misclassified as CF, and 22 spectra from CF samples were misclassified as detected in
AFFF samples. This indicates that while the model has learned some mass spectral features
that can distinguish between the AFFF and CF classes, the model is still making mistakes and
the set of mass spectral features used to train the model does not enable complete distinction
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between the two PFAS classes of interest. We examine approaches to allow us to gain more
insight into misclassifications in the next two sections that discuss predictions with the
RandomForestUMAP model.

2.21.2 RandomForestUMAP: Using Spectral Signatures Only

When we move from the LinearDiscriminantAnalysisUMAP model to RandomForestUMAP, we
observe a slight increase in prediction accuracy for the test set (average of 76.8% accuracy
compared to 76.4%). The confusion matrix in Figure 7 below indicates that misclassifications
still occur in both classes with a different model architecture, though where misclassifications lie
differs.

0

80

aqueous film-forming foam (AFFF)

True label

50

a0

commercial formulation

30

20

Predicted label

Figure 7. Confusion matrix for the RandomForestUMAP model using spectral signatures only as
features for model training.

Interestingly, when we compare the confusion matrices between the RandomForestUMAP
model to the LinearDiscriminantAnalysis model in Section 2.2.1.1, we see that fewer
misclassifications occur for the CF class (91 as opposed to 88 correct predictions; Figure 7 and
Figure 6, respectively). We can further identify and investigate the spectra that were
misclassified to gain a better understanding of the model’s decisions in predicting the two PFAS
classes.

Because each model includes a dimension reduction step before classification, we can visualize
how the originally high-dimensional spectral data are transformed and arranged in a lower-
dimensional space prior to applying the classifier. This visualization reveals clusters of similar
spectra and can provide insight into why a model might misclassify certain samples. Figure 8
below shows the reduced components from the same RandomForestUMAP model featured in
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Figure 7, visualized as a scatter plot. Each data point, representing an MS2 spectrum in the test
set, is labeled with its true PFAS class label in the figure. Further, we display the model’s
decision boundary in predicting to AFFF or CF with the light red/blue contours along with the
black line. In this case, all spectra appearing below the decision boundary on UMAP2 space
and to the bottom right on UMAP1 space classified as CF, while all above and top left were
classified as AFFF.
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Figure 8. UMAP embedding visualizing the transformation of each MS2 spectrum in the test set
in two dimensional UMAP space before classification. The light red/blue contours along with the
black line represent the RandomForestUMAP’s decision boundary for class prediction to the
AFFF and CF classes.

Most notable when looking at Figure 8 with respect to misclassifications is that the misclassified
points often lie near, if not on top of, correctly predicted points, meaning the transformed
spectral features of misclassified spectra appear extremely similar to those of the correctly
classified spectra. While the source of these misclassifications can be difficult to determine with
complete certainty, we can consider what UMAP does and the nature of mass spectra. UMAP
groups samples based on the similarity of their spectral features, patterns of peaks and
intensities that correspond to different chemical components. If two spectra have patterns which
more closely resemble those of another class, UMAP will place them nearer to that class in the
reduced space.

For example, in the center cluster in Figure 8 (coordinates UMAP1 10.3-10.7, UMAP2 6.8-7.3),
we see 6 data points—corresponding to spectra misclassified as CF—that lie on top of a single
correctly classified spectrum belonging to the CF class. In examining the compounds that are
associated with these spectra, we observe that all (including the lone correctly classified
spectrum) represent the PFAS compound PFOS, detected in the following AFFF samples: 3M
1993a, 3M 1993b, 3M 2001, and 3M 1998; whereas the correctly predicted spectrum was
detected in the 3M FC-129 Formulation sample. PFOS is a well-characterized PFAS from the
perfluoroalkyl sulfonate chemical family.
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Figure 9 displays most of the spectra in question, with the top left spectrum correctly predicted
as originating from a CF sample. Given that these mass spectra are measurements of the same
compound PFQOS, albeit in different samples, the high degree of similarity in fragment peak
patterns is not surprising. Of note among the mass spectra associated with the AFFF samples is
the range in fragment intensities, particularly in the lower m/z region between m/z 100 and m/z
250, relative to the base peak at m/z 498.932, where we observe slightly higher intensities in
this region for the 3M 2001 AFFF sample but lower abundance of these fragments are typical
among the other AFFF samples. The spectrum belonging to the CF sample contains few peaks
compared to the other AFFF spectra for PFOS. However, the fragment peaks that are present in
the CF spectrum match those of the highly abundant fragment peaks in the spectra from AFFF
samples. From comparing fragmentation pattern similarity and visualizing the clustering in
UMAP embedding space, we can infer that one or more of the peaks at m/z 79.96, m/z 98.96,
and m/z 498.93 may be important for the model to predict these spectra as belonging to AFFF

samples.
3M FC-129 Formulation 3M 2001 AFFF
750 A
1000 -
500 A
500 A
250 A
0 l 1 T T T 0 L II T T T
3M 1993a AFFF 3M 2001 AFFF
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o
= 2004 250 A
0 I II A T I T T La 0 | lI I A T II 1 T T
3M 1998 AFFF 3M 1993b AFFF
1000 - 2000
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m/z

Figure 9. Mass spectra corresponding to a cluster of data points that were predicted to belong to
CF samples, when most of these spectra were detected in AFFF samples. All spectra are
measurements of PFOS. Note the spectra in red were misclassified as belonging to CF
samples.
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When examining misclassifications to the AFFF class, we similarly observe spectra of another
perfluoroalkyl sulfonate—perfluorohexane sulfonic acid (PFHxS)—detected from both AFFF and
CF samples. Here, this cluster of data points lies just above the decision boundary (Figure 8;
coordinates UMAP1 12.8-13.3, UMAP2 14.7-15.7). As a perfluoroalkyl sulfonate, PFHxS shares
core substructural components to PFOS, but with two fewer carbons to create the perfluoroalkyl
backbone.

Two CF spectra belong to the 3M PFOS Technical Mixture, while the correctly predicted spectra
for the AFFF class belong to 3M 1989, 3M 1993a, 3M 1993b, 3M 1998, and AFFF Reserve
Tank samples. The mass spectra for this cluster of data points are shown in Figure 10. Note the
few fragment ions in spectra belonging to CF samples (m/z 79.96, 98.96, and 399.13) are also
present in AFFF samples and represent the most abundant peaks in these spectra. We also
note that two of the more abundant fragment ions at m/z 79.96 and m/z 98.96 are shared
between PFHxS and PFOS, and spectra for these two compounds are detected in both AFFF
and CF samples, which complicates the distinction between the two PFAS classes when solely
considering spectra representing singular compounds.

AFFF Reserve Tank 3M 1993a AFFF
2000 A
500 A
1000 A
| 250 A
0 II - T T 0 1 II I 1 et T
3M 1989 AFFF 3M 1998 AFFF
2000 A 500 4
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Figure 10. Mass spectra corresponding to a cluster of data points that were predicted to belong
to AFFF samples, but two spectra were detected in CF samples (spectra in blue). All spectra
are measurements of PFHxS. Note the spectra in blue were misclassified as belonging to AFFF
samples.
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In probing the misclassifications to the two PFAS classes, we observe that the UMAP clusters
spectra with very similar fragmentation patterns (very likely belonging to the same compound) to
the same embedding space, giving us confidence that the UMAP is utilizing and honing in on
certain spectral features. This suggests that the misclassification may not necessarily be a
classification model failure but rather a reflection of inherent signature similarities between the
chemicals detected in these particular AFFF formulations and those detected in the CFs in this
dataset. PFAS class prediction is complicated by different mixtures of PFAS compounds such
that the same compound may be found in different samples, whether they be AFFF or CF. It is
the unique formulations of these mixtures (chemical identities and abundance), that can be
indicative of the various PFAS sample classes as opposed to individual chemicals alone. As
such, we need to account for the chemical complexity and thus, signature complexity, that
mixtures bring to the PFAS class prediction problem.

Despite the misclassifications, the ability to predict PFAS class with an accuracy of 80% using
spectral signatures alone demonstrates the power of and art-of-the-possible using AIML tools,
and applicability to the PFAS source attribution mission space.

Overall, these observations demonstrate some of the challenges that come with characterizing
and differentiating among PFAS source types. Misclassifications, which we observed above
owing to shared chemical components, as well as within class clustering, provide an opportunity
to identify model enhancements—such as the need to account for additional chemical
composition complexity—and discover emerging contaminant signatures.

2.21.3 Most Performant Model: Inclusion of Sample Metadata

Finally, we examine model performance when we include a feature derived from sample
metadata in training the model. While we demonstrate 80% accuracy as the most performant,
representing better than modest performance, with the RandomForestUMAP trained solely on
spectral information, we investigated whether model performance could be further improved
with additional features, such as incorporating different features derived from sample metadata.
Here, we describe a configuration where the model learns the same spectral features as the
model described in Section 2.2.1.2, but additionally includes a feature describing the fluorination
process of the PFAS sample. Feature selection is a key part of model optimization and can
substantially affect model performance.

On average, the RandomForestUMAP model that includes fluorination process as a feature
boasts excellent performance, achieving near 100% accuracy. Figure 11 displays the confusion
matrix for one of the most performant models in such a configuration. In this run, only two
spectra were misclassified out of a total of 880 MS2 spectra. Nearly every spectrum lies on the
diagonal, indicating that the model is making highly accurate predictions, with only two spectra
detected from AFFF samples misclassified as originating from commercial formulations.

This high level of accuracy indicates that the inclusion of the fluorination process metadata

value as a feature in the model substantially boosts model performance, jumping from 80% to
99% accuracy on the test set data.
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Figure 11. Confusion matrix for one of the highest performing formulation classification models.
Here, only two out of a total 880 spectra were misclassified.

Figure 12 shows the reduced components from the same RandomForestUMAP model featured
in the Figure 11, visualized as a scatter plot. Each data point, representing an MS2 spectrum in
the test set, is labeled with its true PFAS class label in the figure. In this case, all spectra
appearing on the right classified as CF, while all to the left were classified as AFFF.

In the UMAP projection in Figure 12, we note some within-class clustering of the spectra of
compounds detected in CF samples into three major clusters. In particular, the larger cluster of
spectra from CF samples belongs to perfluoroalkyl sulfonates (e.g., perfluorodecane sulfonic
acid, perfluoroheptane sulfonic acid) detected in FC-95 and PFOS technical mixture, which are
consistent with chemicals listed in products that include these specific formulations. For
example, potassium perfluorooctane sulfonate (a chemical that belongs to the perfluoroalkyl
sulfonate family) is listed as the main ingredient in FC-95 (brand name FLUORAD Brand
Fluorochemical Surfactant) and is used in products like Scotchgard (3M Canada Company
2015; Renner 2006).

Two misclassifications within the large CF cluster can also be observed (Figure 12), where two
red data points from spectra detected in AFFF samples are centered within the blue CF cluster.
Investigation into the chemical identities of these misclassified AFFF-detected spectra provided
critical insights into the model's behavior and the underlying chemical realities. These two
spectra (belonging to the same compound, 6:2 fluorotelomer thia propanoamido dimethyl ethyl
sulfonate, from the Angus AFFF sample) exhibited high similarity in UMAP-encoded space to
those belonging to compounds detected in CF samples—specifically to the perfluoroalkyl
sulfonates. The compound in question shares many substructural features with compounds
from its spectral neighbors detected in CF samples within the UMAP space.

AIML Model for PFAS Class Prediction from Mass Spectrometry Data 19



PNNL-38833

15 Class Labels
. s CF (test)
F S . \ )
- ole l‘ e’ s AFFF (test)
Pare IH'.I;‘. - *
€ *%tf e
L T
10 s A
:?‘\ .
[ ]
% 5
o
0
_5 ‘e
=2
-5 0 5 10 15 20

UMAP1

Figure 12. Visualization of reduced dimensionality components of a high performing formulation
classification model, with true PFAS class labels indicated (red = AFFF; blue = CF). It is visually
apparent why the classifier misclassified two AFFFs as CFs, given that the UMAP
dimensionality reduction placed these spectra closer to other CF spectra.

Interestingly, we also observed that the vast majority of spectra in the lower left cluster—
correctly classified as detected in AFFF samples (Figure 12)—also belong to perfluoroalkyl
sulfonates (e.g., PFOS, perfluoroheptane sulfonic acid (PFHpS)), similar to the compounds in
the large CF cluster that are correctly predicted as detected in CF samples. While these spectra
belong to compounds that are highly structurally similar, the dimension reduction step via UMAP
has focused on key features (i.e., spectral fragments and/or the metadata feature) that
distinguish the spectra detected in AFFF samples from those detected in CF samples. Further
investigation in identifying these spectral fragments and relationship with the metadata feature
will yield insight into the important features used by the model to differentiate between AFFF
and CF classifications and aid in development of a more complex model that includes
signatures from mixtures of chemicals.

When we compare this RandomForestUMAP configuration to the one using spectral signatures
only, it behooves us to understand the influence of the fluorination process on the model’s
decisions, which manifests in the substantial increase in prediction accuracy. As such, we
examine the relationship between this feature and the PFAS classes. Table 2 below tabulates
the number of MS2 spectra detected in samples that belong to either the AFFF or CF classes
(total spectra and test set spectra) and further delineated by fluorination process. Note that the
two fluorination processes, electrochemical fluorination and fluorotelomerization, are only
associated with AFFF samples, and remain unknown for all the CF samples, and for a handful
of spectra belonging to AFFF samples. This means that all the spectra detected in CF samples
are associated with a single, unique encoding of fluorination process (in this case, NA is as
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important as an actual fluorination process), which is different from the two fluorination
processes that are only associated with AFFF samples. This clear distinction between the AFFF
and CF classes is very likely being exploited by the model, resulting in near-perfect prediction
accuracy.

Table 2. Count of MS2 spectra belonging to samples by PFAS class and delineated by
fluorination process

PFAS class Fluorination process Total spectra Test set spectra
AFFF Electrochemical fluorination 415 80
AFFF Fluorotelomerization 105 24
AFFF -- 6 2
CF -- 550 110

2.21.4 Model Assessment

While it is obvious that we can achieve superb prediction accuracy (99%) when sample
metadata such as fluorination process is included as a feature the model trains on, we prefer
the model described in Section 2.2.1.2 that demonstrates better than modest performance at
80% accuracy. This is because the model that only trains on spectral signatures is likely to be
more generalizable in deployment to predict other unknown samples that may or may not
contain PFAS.

In the spectral-signature only model, LC-MS/MS spectral signatures, when processed and
analyzed by AIML algorithms, contain distinctive information to begin to differentiate between
the PFAS source types of interest when we consider the spectrum to PFAS class problem. This
type of capability is vital for environmental management as it provides a data-driven method for
source attribution, which is often a complex and resource-intensive task, especially in the face
of unknown chemical compositions in these samples.

We recognize the value of including sample metadata and see the clear benefits of augmenting
spectral features with metadata features in AIML models, but caution against including features
that may not be able to be derived from unknown samples to be predicted in model deployment.
In our test case with including fluorination process, many elements of how each PFAS sample
was produced and the chemical compositions in each sample were known and accessible in the
NIST PFAS database. However, much of this information will not be available for environmental
samples, which is the intended use case for our fully developed model. Alternatively, metadata
that could be derived from environmental samples, such as sampling location, topologies, etc.,
could be useful for model predictions and should be investigated for their utility during model
refinement.

This proof-of-concept effort demonstrates the promise of AIML in exploiting chemical
signatures—in particular mass spectral signatures—for distinguishing among PFAS sources
when only signature information is available. To offer a more generalizable model that can
distinguish among other PFAS sources and formulations in the face of novel contaminant
signatures that continue to emerge, further model enhancements are needed to consider the
signatures of chemical combinations that contribute to the various formulations. While our
developed model demonstrated that individual chemical signatures can be associated with
certain PFAS source types, we also recognize that different PFAS source types may share
some of the same chemicals (and contain some of the same signatures), but combinations of
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individual signatures representing their full chemical compositions can provide enhanced
differentiation. As such, to capture the diversity of chemical compositions that could be found
and continue to emerge among PFAS sources, and enable their differentiation, we are currently
developing a more robust model that will account for the co-occurrence of combinations of these
chemicals and their larger families and will investigate the generalizability of such a model to
different datasets.

2.2.2 Model Tracking and Comparison with MLFlow

Model development for source attribution requires systematic exploration of many
hyperparameters and modeling approaches, often across distinct classification problems.
Without a structured tracking system, comparing results and drawing conclusions about model
performance quickly becomes cumbersome. To address this, we integrated the project’s
modeling framework with MLFlow, an open-source platform designed for managing the end-to-
end machine learning lifecycle. During the R&D phase, MLFlow has enabled the team to record
every model training run—including data inputs, hyperparameter settings, performance metrics,
and artifacts—within a unified interface. This functionality allows efficient comparison across
experiments, facilitates reproducibility, and helps identify the most promising model
configurations for further development.

MLFlow will provide a foundation for long-term model management. By maintaining a
transparent record of model provenance and decision history, the client will be able to track how
the best-performing models were derived, revisit earlier approaches if needed, and deploy final
models with confidence. In this way, the integration of MLFlow not only accelerates research
progress but also ensures that the modeling products delivered are transparent, reproducible,
and maintainable beyond the initial project phase. Refer to Figure 13, Figure 14, and Figure 15
for images of experiment and results tracking using the MLFlow dashboard.

ml C 220.0 Experiments Models € GitHub Docs
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Figure 13. MLFlow Experiments Landing Page, used to track and organize all models run on a
specific classification problem type.
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Figure 14. Box plots can be visualized across hyperparameters. The dashboard can also
display scatterplots and can be used to explore the relationship between any hyperparameter
selection and performance metric.
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Figure 15. Hyperparameters and results are logged for each model. This includes metadata that
can be used to easily locate where the model is stored on your system, to facilitate follow-on
research with the best performing models.
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2.3 Conclusions for PFAS Source Attribution

This study successfully demonstrates the feasibility of AIML techniques to link chemical
signatures to PFAS sources and provide attribution indications without the need for a priori
chemical identification. We investigated a variety of different model architectures and
configurations that range in performance to develop and optimize a model for PFAS class
prediction using mass spectral information. By applying a pipeline involving UMAP for
dimension reduction and an RF classifier using solely LC-MS/MS data from the NIST PFAS
database, we achieved 80% accuracy in distinguishing signatures detected in AFFF samples
from those detected in other commercial PFAS-containing formulations.

The good classification performance, coupled with the ability to analyze misclassified samples
that revealed underlying chemical similarities to CFs, is indicative of the model's ability to
discern distinct spectral patterns that can begin to be linked to source origin, as well as the
model’s inherent interpretability. The integration of MLFlow for experiment tracking established
a robust framework for systematic model development and comparison, ensuring accessibility
and reproducibility in AIML model development. Overall, this capability is critical to facilitate
responsible environmental management.

This work provides a robust proof-of-concept for AIML as a tool in the ongoing effort to manage
PFAS contamination. Future work will involve applying and further refining these AIML
algorithms to account for challenges with and generalizability to chemical mixtures, as well as
complex environmental samples, moving from the controlled environment of clean spectra to the
challenging realities of contaminated sites. Ultimately, we aim to develop AIML-driven
approaches that enhance our ability to discern emerging contaminant signatures and rapidly
and accurately identify PFAS sources. Additional work is being done to determine model
generalizability, including modeling with environmental samples, which will lead to more
informed and effective environmental protection decisions.
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3.0 Large-Scale Computational Screening and Machine
Learning Prediction of PFAS Degradation Potentials

Conventional remediation relies predominantly on sorptive technologies (granular activated
carbon, ion-exchange resins) that concentrate rather than destroy contaminants. Destructive
approaches — high-temperature incineration (>1000 °C), plasma-based methods, photochemical
processes, sonolysis, and electrochemical oxidation — offer pathways to mineralization but
remain energy-intensive, costly, or sensitive to water-matrix effects (Cleston and Charles, 2024;
Li et al. 2025; Sidnell et al., 2022; Kim et al., 2024). Importantly, more than 12,000 PFAS
structures are now registered (USEPA, 2023) displaying enormous structural diversity (chain
length, functional groups, branching, and charge state). This heterogeneity translates into widely
varying thermodynamic stability and degradation behavior, making universal treatment protocols
elusive.

The feasibility of many destructive methods (plasma, photochemical, sonolysis, UV,
electrochemical oxidation) hinges on the oxidation potential of each PFAS congener;
compounds with lower potentials are thermodynamically easier to degrade. However,
experimental measurement of oxidation potentials for thousands of PFAS is impractical, and
high-level quantum chemical calculations are computationally prohibitive at this scale.

In this study, we combine semiempirical quantum chemistry, density functional theory (DFT),
and machine learning to enable rapid, accurate prediction of PFAS oxidation potentials across
chemical space. Starting from the EPA PFAS Master List, we curate a dataset of 8214 unique
PFAS molecules (PFAS-8k), compute their adiabatic oxidation potentials in aqueous solution
using a computationally efficient two-tier protocol, analyze structure—property trends, and train a
high-performing Random Forest model capable of instant predictions for new structures. This
workflow provides the first broad thermodynamic map of PFAS oxidative degradability and
identifies structural motifs that render certain congeners significantly more vulnerable to
electrochemical treatment.

3.1 Methods

Our approach integrates three hierarchical levels to balance accuracy and throughput: (1) Data
preprocessing through filtering to generate 8214 unique PFAS molecules; (2) Large-scale
screening of 8,214 PFAS using the semiempirical GFN2-xTB method to estimate oxidation
potential; (3) High-accuracy benchmark calculations on a representative 600-molecule subset
using full DFT geometry optimization and frequency calculations; and (4) a Machine-learning
surrogate model trained on Morgan fingerprints to deliver oxidation-potential predictions for any
PFAS structures.

3.11 Data Curation and Chemical Space

PFAS structures and SMILES strings were retrieved from the EPA CompTox Chemicals
Dashboard PFAS Master List (USEPA, 2023). Inorganic species, fragments, and molecules
containing heavy metals were removed using RDKit filters. After deduplication and
canonicalization, 8,214 unique organic PFAS remained (denoted PFAS-8k). The dataset spans
perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonic acids (PFSAs), fluorotelomers,
sulfonamides, ether-PFAS (e.g., GenX), and numerous emerging structures with aromatic,
hydroxyl, or charged functional groups.
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3.1.2 Quantum Chemical Calculations

All quantum chemical calculations were performed using xTB and Gaussian 16. For the full
PFAS-8k dataset, molecular geometries were first optimized at the GFN2-xTB level (Bannwarth
et al., 2019), followed by DFT single-point energy calculations in implicit water dielectric using
the CPCM model at the wB97X-D/6-31+G(d) level of theory (Chai and Head-Gordon, 2008).
The oxidation potentials were calculated as the energy difference between the neutral and
cationic states and referenced to the Li/Li* electrode potential taken from literature (Eq. 1). We
benchmarked the xTB protocol against full wB97X-D/6-31+G(d) optimizations for a 600-
molecule subset and found that xTB reproduces DFT oxidation potentials with small systematic
errors, supporting its use as a surrogate method for large-scale PFAS screening.
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Benchmarking showed that the xTB—DFT single-point protocol reproduces full-DFT oxidation
potentials with a mean absolute error of only ~0.2 V, justifying its use for large-scale screening
(Figure 16).

XTB method gives good results

XxTB: “Cheap” QM
calculation
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xTB geom + DFT sp
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Figure 16. Two-tier quantum-chemical workflow for PFAS oxidation potentials. The left panel
shows the use of xTB to screen ~8,000 PFAS structures and the selection of a 600-molecule
subset for full WB97X-D/6-31+G(d) optimizations. The right panel compares oxidation potentials
from xTB and DFT, showing that the low-cost protocol closely reproduces the high-level results.

3.1.3 Machine Learning

Molecular structures were represented by Morgan fingerprints, which were generated from
SMILES strings (radius = 2, nBits = 2048). A Random Forest regression model was trained to
predict oxidation potentials using these fingerprints as input features. The model consisted of
100 estimators and default hyperparameters. The dataset was randomly split into 80 % training
and 20 % testing subsets. Model performance was evaluated using the mean absolute error
(MAE) and coefficient of determination (R?).
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3.2 Results and Discussion
3.21 Distribution of Oxidation Potentials

Computed oxidation potentials for the PFAS-8k dataset range from approximately -2 V to +10 V
vs Li/Li*, with the majority of neutral and cationic species falling between 5 and 9 V (Figure 17).
This pattern reflects the high oxidative stability of typical PFAS compounds, driven by strong C—
F bonds and the electron-withdrawing nature of fluorine. A small but significant tail at lower
potentials (<4 V) contains anionic species and molecules bearing polar/charged headgroups
that are thermodynamically far more susceptible to electrochemical oxidation.
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Figure 17. The computed oxidation potentials for the PFAS-8k dataset span a broad range from
4V to about 10 V vs Li/Li*. The distribution is unimodal, with most molecules clustered between
5V and 9V, and a maximum around 6—7 V.

3.2.2 Influence of Molecular Charge

Neutral PFAS molecules (n = 7730) and cationic species (n = 333) exhibit similar distributions
centered around 7 V over the range of 5-9 V. In sharp contrast, anionic species (n = 132: -1
charged; n = 3: -2 charged) are shifted to dramatically lower potentials with most values
between 0 and 7 V, and the rare -2 species lie almost entirely below 0 V (Figure 15). This
charge-dependent shift indicates that anionic PFAS are thermodynamically easier to oxidize
than their neutral or cationic counterparts.
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Figure 18. Oxidation potential distribution by molecular charge (non-neutral only).
3.2.3 Functional-Group and Compositional Effects

Analysis of functional group effects (Figure 19) reveals clear links between local chemistry and
oxidation potential. Sulfonic and sulfonamide groups show a modest but systematic decrease in
Eox. These motifs often carry or stabilize negative charge through S—O bonding, which
delocalizes the hole after oxidation and lowers the required potential. Carboxylate (-COO~) and
hydroxyl (-OH) groups show a similar trend. Their polarity and ability to form hydrogen bonds
with the solvent stabilize oxidized states and shift Eox to lower values. In our dataset these
motifs cluster toward the low end of the redox distribution, indicating that oxidation tends to
occur in the polar headgroup rather than along the perfluorinated tail. Aromatic rings also
reduce Eox, consistent with 1r-electron delocalization that spreads positive charge over a larger
conjugated framework.

In contrast, increasing the number of fluorine atoms leads to higher oxidation potentials.
Molecules with many C—F bonds are more electron poor and have very strong C—F interactions,
so removing an electron becomes energetically expensive. This trend tracks closely with
molecular weight, since heavier PFAS usually have longer perfluoroalkyl chains and higher F
content. Together, these patterns show how electron-withdrawing fluorinated backbones raise
Eox, While charge-stabilizing headgroups and conjugated units pull it down. They provide a
chemically intuitive map between PFAS composition and oxidative stability that we later use as
interpretable descriptors in our machine learning models.
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Effect of Sulfonic Group on Oxidation Potential Effect of Aromatic Conjugation on Oxidation Potential Effect of Fluorine Count on Oxldation Potential
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Figure 19. Functional group and composition effects on PFAS oxidation potentials. Box plots
show how sulfonic, sulfonamide, carboxylate, hydroxyl, and aromatic motifs shift the Eox
distribution relative to molecules that lack these groups. The line plot on the right summarizes
the monotonic increase of average oxidation potential with fluorine atom count.

3.24 Machine Learning Performance

The Random Forest model trained on Morgan fingerprints (radius 2, 2048 bits) achieved high
predictive accuracy, with MAE = 0.23 V and R? = 0.91 on a 20% test set. The parity plot

(Figure 20) shows that most points lie close to the 1:1 line, which indicates that the model
reproduces oxidation potentials across the full range of values. Performance is stable from low
to high potentials, suggesting that the fingerprint representation captures the structural patterns
that control redox stability. A small number of outliers occur at the lowest potentials (around 2
V), where the data are sparse and include anionic species. Overall, these results show that a
relatively simple Random Forest model can learn PFAS redox trends from molecular fingerprints
without more complex feature engineering.
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Figure 20. Random Forest regression Parity plot showing strong agreement between predicted
and DFT-calculated oxidation potentials (MAE = 0.23 V, R? = 0.91).

3.3 Conclusions for PFAS Degradation Potentials

We have established the first comprehensive thermodynamic map of electrochemical oxidation
potentials for over 8,200 environmentally relevant PFAS using a hierarchical quantum-chemical
workflow validated against high-level DFT. Key findings include:

1. Most legacy PFAS require oxidation potentials >6 V vs Li/Li*, explaining their resistance to
conventional electrochemical treatment.

2. Anionic and polar-headgroup-containing PFAS exhibit lower potentials, identifying them as
priority targets for advanced destructive technologies.

3. A simple Random Forest model trained on Morgan fingerprints predicts oxidation potentials
with minimal errors, enabling instantaneous screening of new or untested PFAS structures.

The framework presented here is general and readily extendable to other degradation metrics
(e.g., C—F bond dissociation energies, adsorption free energies on electrode surfaces) and
emerging contaminants. The results may also provide some insights for evaluating
transformation of PFAS precursors in subsurface environment.
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4.0 SRNL Sampling on the Savannah River Site

The ability to detect emerging PFAS contaminants algorithmically from mass spectra is driven
by the breadth of data that is available for training ML algorithms. That is to say, robustness in
the algorithmic approach is gained when algorithms are exposed to different sites, with different
levels of exposure, and different compounds. Furthermore, variations in the analytical methods
enable different resolutions or capabilities. While there is an existing standard approach for
PFAS sampling and analysis in EPA 1633, the method can be expensive and laborious to
execute, potentially serving as a limiter in the realm of data collection. Hence, the ability to
leverage information provided from other data sources that include different analytical
techniques is further enabling for ML algorithms. As part of this effort, the team thus sought to
identify existing environmental sampling datasets that begin to capture these variations. SRNL
internally funded a seedling effort in FY23 titled “Rapid Screening for PFAS”, which produced
one such data set that the team has repurposed in the Al for PFAS (henceforth, AI4PFAS) effort
for preliminary exploratory data analysis that may guide future efforts. In particular, the team
sought to use knowledge of site history, coupled with historical groundwater monitoring, to guide
targeted PFAS sampling that could help characterize “high”, “medium”, and “low/no” exposure
signals that would be expected. The sampling approach and analysis will be presented in the
following subsections.

4.1 Sampling

Samples for this project were collected on the DOE’s Savannah River Site (SRS). The current
level of PFAS contamination is not yet well characterized for the SRS, though knowledge of the
site’s activities, as well as historical groundwater monitoring and sampling programs, can inform
the extent to which various regions of the site have been exposed to PFAS. In the “Rapid
Screening for PFAS” effort, this historical knowledge guided the selection of locations for
additional, more targeted PFAS sampling. Approximate regions of the SRS having locations
with presumed “high”, “medium”, or “low/no” historical exposure to PFAS were selected and are
shown in Figure 21. Regarding presumed “high” exposure areas, D-area is home to a firefighter
training facility and has a known existing plume of legacy PFAS contamination. For sampling
locations not in D-Area, previous exposures were estimated based on the positioning in their
drainage basin and proximity to potential PFAS sources. Referencing Figure 21, the General
Separations Area (GSA) on the SRS is a centralized location of facilities where many of the
site’s legacy/ongoing DOE operations occurred. While there were firefighter training activities
that occurred in GSA, they were not to the extent of those that occurred in D-Area. Hence,
downstream locations (Pen Branch and L-Lake) are presumed to have moderate to low levels of
exposure based both on distance from potential sources and the level of activities that occurred.
Finally, the Upper Three Runs region of sampling is situated upstream of both D-Area and the
GSA and was therefore presumed to have “low/no” prior exposure, serving as background for
the site.

Coupling knowledge of the site history with site sampling, two sites were selected with no
presumed previous exposure to PFAS (Upper Three Runs [UTR] and PB-X [Pen Branch]), four
sites were selected with presumed low or moderate exposure (PBr [Pen Branch], L-Lake,
DSWM12 [D-Area], DSWM4A [D-Area)), and one site was selected which was known to have
high exposure (DSWM11 [D-Area]). Samples were collected using an extendable pole arm
sampler designed to hold single use 1-liter high density polyethylene (HDPE) bottles. Unlined
HDPE bottles were used to avoid a PFAS background from sampling equipment. Prior to
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sampling, all HDPE bottles were rinsed three times with water from the sampling location.
Samples were stored refrigerated until spiking and analysis were completed.

Figure 21. Approximate regions on the Savannah River Site argeted for sampling during the
“Rapid Screening for PFAS” effort.

4.2 Sample Preparation and Instrument Analysis

Samples were analyzed with and without the addition of PFAS standards as a means to identify
the PFAS signatures that are present in the mass spectra. To perform spiking, per- and
polyfluoroalkyl substance (PFAS) standards were purchased as methanolic solutions from
Wellington Laboratories (Ontario, CA), shown in Figure 22. M2 PFOA, d3 MEFOSAA, and
MPFOS were added to all samples at the 100 ng/L level. Additional native PFAS were added in
varying concentrations of 0 ng/L, 10 ng/L, 30 ng/L, 100 ng/L, 300 ng/L, and 1000 ng/L.
Additional dilutions of these standards were completed in methanol (Chromosolv, Honeywell
International, Charlotte, NC). Octadecylamine (Sigma Aldrich, >99%, Burlington, MA) was used
as the adsorbent and was applied to borosilicate glass melting point tubes (Kimble, Vineland,
NJ) by first dissolving in hexane (Chromosolv, Honeywell International, Charlotte, NC). Plastic
products used for this work including 2 mL vials (Thermo Scientific, Waltham, MA), pipette tips
(Eppendorf EP tips, Hamburg, Germany), 15 mL polypropylene centrifuge tubes (Falcon, Irvin,
CA), and one-liter Nalgene bottles (Thermo Scientific, Waltham, MA) were selected based on
their known low PFAS background. Deionized water was from an ultrapure water system
(Supelco, Bellefonte, PA). FomblinY (HVAC 16/6, Sigma-Aldrich, St. Louise, MO) was used for
mass calibration of the mass spectrometer (MS).
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A B C D E

1 Negative lonization Indicative m/z
2 formula for acid MW of compound

3 | Perfluoro-n-butanoic acid C4HF702 PFBA 215986476 212 9792
4 Perfluoro-n-pentanoic acid CSHF202 PFPeA 263.983282 262976
5 | Perflupro-n-hexanoic acid CEHF1102 PFHxA 313.980088 312.9728
& Perfluoro-n-heptanoic acid C7HF1302 PFHpA 363.976894 362.9696
7 | Perflugro-n-octanoic acid CEBHF1502 PFOA 413.9737 412.9664
8 | Perfluprg-n-nonanoic acid C9HF1702 PEMA 463.970506 462.9632
9 | Perfluoro-n-decanoic acid C10HF1902 PFDA 513.967312 51296
10

11 Potassium perfluoro-1-butanesulfonate CAHFS035 L-PFBS 209 950269 298,943
12 Sodium perfluoro-1-hexanesulfonate CEHF13035 L-PFHxS. 399 943881 388.9366
13 |Sodium perfluoro-1-octanesulfonate CBHF17035 L-PFOS 4989 937493 428.9302
14

15 2,3,3,3-Tetrafluoro-2-{1,1,2,2 3,3, 3-heptafluoroproproxy)propanoic acid CEHF1103 HFPO-DA 329.975003 284977348
16 Sodium dodecafluoro-3H-4,8-dioxanonanoate C7H2F1204 NaDONA 377.976146 376.9689
17

18 Potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate CBCIF16HO45 9CI-PF30NS 531.902858 530.8956
19 Potassium 11-chloroeicosaflupro-3-oxaundecane-1-sulfonate C10CIF20HD4S 11CI-PF30UdS 631.89647 630.8892
20
21
22 M2 PFOA [13C]2C6HF1502 M2 PFOA 415.9737 4148731
23 d3 MEFOSAA C11H3D3F1TNO4S d3 MEFDSAA 573.974607 572.9862
24 M PFOS [13C]4C4HF17035 M PFOS 503.937493 502.9436
25
26 formula for alcohol MW
27 | 2-Perflucrooctyl ethanol |(:F3.'cr2)7<:1—ncH_:oH |3:2 FTOH | 464 006891 4859973

Figure 22. Native PFAS standards and mass labeled internal standards added to the
environmental samples from the SRS, along with the indicative mass to charge ratio (m/z) that
would be seen in the mass specitra.

To prepare adsorbent probes for concentrating samples, octadecylamine was first dissolved to
its solubility limit in hexane. After dissolving octadecylamine, glass melting point tubes were
submerged closed-side down into the octadecylamine-hexane solution for 30-seconds. After this
the adsorbent probe was lifted, and the probe was dried. This was repeated for a total of two
layers of adsorbent on the probe.

Samples were prepared including spikes of native PFAS compounds and internal standards as
needed in 10 mL volumes in 15 mL polypropylene centrifuge tubes. Methanol in the mixture was
< 0.5% by volume. Each sample was vortexed after spiking to ensure homogeneity. One
adsorbent probe was added per sample and then the system was gently shaken (300 rpm) for
1-hour at room temperature to adsorb PFAS from the sample. To avoid temperature impacts,
unknown and calibration samples were prepared and analyzed together in the same batch.

Samples were analyzed using direct analysis in real time (DART) coupled with high-resolution
time-of-flight (TOF) MS. Helium was used as the ionization gas and the sample was analyzed in
negative ionization mode. The DART source was set to 550 “C and was positioned 14 mm from
the inlet to the AccuTOF. The AccuTOF was set to scan from 100-1500 m/z. The MS was mass
calibrated at the end of each analytical run using FomblinY. In total, 64 mass spectra from the
“Rapid Screening for PFAS” effort were provided for preliminary exploratory data analysis in the
Al4PFAS effort.

SRNL Sampling on the Savannah River Site
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4.3 Exploratory Data Analysis

Figure 23 shows the mass spectra of sampled water from all locations. There are notable
similarities between the spectra for DSWM4A (D-Area), DSWM11 (D-Area), L-Lake, Pen Branch
(PBr) and Upper Three Runs (UTR). In contrast, the spectra for DSWM12 and Pen Branch
(PBx) show greater differences in the general profile, while still having visually similar groupings
of high intensity peaks. DSWM4A, DSWM11, and DSWM12 all reside in the same area of the
site (D-Area). However, DSWM4A and DSWM11 were sampled from a drainage ditch, whereas
DSWM12 was sampled from a pond. Hence, the differences in the spectra likely arise from the
differences in the overall content of organic matter present in the samples at different locations,
illustrating the complexity of real environmental samples. UTR, being upstream of most site
facilities, is the likely best representative of an environmental background for samples from the
region without impacts from the site.
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Figure 23. Mass spectra of sampled water without any spiking from all locations. Multiple
measurements on the same plot indicates instrumental analysis of the same aqueous sample.
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1e6 Mass Spectra from All Sites

3.0 A
— 20230912 _PBx

--- 20230914_PBx

] —-— 20230926_PBx
—— 20230914 _UTR
20230926 _UTR
— 20230926_PBr
20230926_LLake
20230926_DSWM11
— 20230926_DSWM12
—— 20230926_DSWM4A

2.5 4

!—‘ M
] o
| |
1
1
1

LSSy

g
o
L

0.5 4

0.0 -
100 200 300 400 500 600

m/z
Figure 24. Overlapping mass spectra without spiking from all sites. Multiple measurements on
the same plot indicates instrumental analysis of the same sample across different days.

Spiking with the native PFAS standards from Figure 22 was performed in different
concentrations to further identify and quantify the peaks of interest in the environmental
samples. In general, the higher the concentration added, the higher intensity of those
peaks.(Note: the current scope in AI4PFAS is not to be quantitative but rather characterize the
challenges with real environmental samples — a separate publication is in progress with
quantitative analysis). Figure 25 shows the mass spectra for DSWM11 with and without the
addition of native PFAS, while Figure 26 focused on the m/z for PFNA. While the m/z for PEFNA
cannot be clearly detected against nearby peaks, in the sample with only mass labeled internal
standards added, the m/z for PFNA is clearly seen after the native PFAS are spiked into the
sample, as would be expected to be seen in a sample collected from an area with PFNA
contamination. In Figure 27, it is shown that the natural site water does not have a background
of the mass labeled internal standards d3 MEFOSAA. This is as anticipated. These zoomed-in
views demonstrate the importance of looking closely at the specific mass spectral signatures for
these PFAS, as similar m/z can be present at higher abundances, as well as the potential
quantitative capabilities enabled by spiking the samples at different concentrations. Additional
work is in progress to fully review samples for these PFAS signatures.
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Mass Spectra with/without Spiking
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Figure 25. PFAS mass spectra for DSWM11 and PBx locations with and without spiking. “IS”
appended to the name indicates only the mass labeled internal standards (M2PFOA, d3
MEFOSAA, and M PFOS) are added to the sample at a concentration of 100 ng/L, and “Xppt”
indicates the full suite of native PFAS standards from Figure 22 have been added.
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Figure 26. Zoomed in mass spectra for DSWM11 with and without spiking showing PFENA. “IS”

appended to the name indicated only the mass labeled internal standards were added while

300 ppt indicates the full suite of native PFAS standards were added.
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Mass Spectra with/without Spiking
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Figure 27. Zoomed in mass spectra for DSWM11 with and without spiking showing d3

MEFOSAA.

Figure 28 and Figure 29 show the zoomed in mass spectra for deionized water and the PBx
location, respectively, with the different levels of spiking. Zooming in around the m/z for PFPeA
shows that the compound was readily detected in de-ionized water but proved difficult to
disambiguate in natural waters due to the presence of other ionic compounds. Notably, even
higher concentration spikes did not aid in disambiguating the presence of PFPeA. Hence, such
challenges with the detection of PFAS compounds must be accounted for both in the
characterization approaches and the data analytics pipelines for real environmental samples.
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Mass Spectra with/without Spiking
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Figure 28. Zoomed in mass spectra for de-ionized water with and without spiking showing
PFPeA. “IS” appended to the name indicates only M2PFOA, d3 MEFOSAA, and MPFOS are
added to the sample at a concentration of 100 ng/L, and “300 ppt” indicates the full suite of
PFAS standards from Figure 22 have been added.
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Figure 29. Zoomed in mass spectra for PBx with and without spiking showing PFPeA. “I1S”
appended to the name indicates only M2PFOA, d3 MEFOSAA, and M PFOS are added to the
sample at a concentration of 100 ng/L, and “300 ppt” indicates the full suite of PFAS standards
from Figure 22 have been added.

SRNL Sampling on the Savannah River Site 38



PNNL-38833

5.0 Concluding Remarks and Future Work

The three efforts undertaken by the individual laboratories represent capabilities that advance
key elements of environmental management for PFAS contamination, from optimal sampling
(SRNL); to rapid detection, characterization, and source attribution (PNNL); and finally,
strategies for effective remediation (ANL). Leveraging analytical capabilities and AIML tools,
together, they have the potential to serve as a basis for the next-generation strategy in
monitoring and verification of PFAS contamination.

Understanding the challenges that different complex matrices present to the detection of PFAS
can guide environmental sampling and inform sample preparation strategies to maximize the
detectability of potential PFAS. The ability to rapidly detect and characterize environmental
samples to various PFAS classes will enable us to attribute PFAS contamination source. And
once PFAS class from environmental samples is determined and unknown chemicals that are
potentially PFAS are characterized, having a predictive capability to better understand their
physicochemical properties with an eye towards identifying the most effective methods for
degrading and transforming these chemicals would facilitate remediation efforts.

Continued efforts to advance these nascent capabilities will enable us to be informed and
strategic to not only address current EM and remediation efforts, but to also remain prepared for
the challenges that emerging contaminants and other unknown chemicals bring. While these
capabilities were developed and evaluated for PFAS, the methodologies can generalize to other
chemical classes that may be of interest to environmental management.

Concluding Remarks and Future Work
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