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Objective
• The project addresses the gap in the IEEE 

1547-2018 requirements on secure 
integration of DER, particularly DER 
systems consisting of multiple DER units.

• Schedule
• 10/1/18 – 9/30/21 (delayed start 01/19)

• Threat modeling (Q1 2020)

• Resilient DER system architecture (Q2 2020)

• IEEE 1547 security extensions (Q3 2020)

• Lab-scale implementation (planned, Q1 21)

• Red team testing (planned, Q2 2021)

• Field demonstration (planned, Q3 2021)

Project Overview
Total Value
of Award: $ 3,358,734

Funds 
Expended to 
Date:

30.4% as of 8/31/20
(Not all funds have 
been invoiced to DOE 
yet.)

Performer: ABB Inc.

Partners:

University of Illinois at 
Urbana-Champaign; 
Duke Energy; 
Oak Ridge National 
Laboratory
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Advancing the State of the Art (SOA)
• IEEE 1547-2018 revision introduced new 

requirements for DER performance and 
interoperability:
• Points of applicability may be defined at Point of 

Connection or Point of Common Coupling.
• No guidance on implementing interoperability 

and response for microgrids with multiple DER 
units.

• Cybersecurity requirements are not addressed.

• Our approach extends the SOA by 
implementing cyber-physical secure resilient 
IEEE 1547 use cases for DER systems:
• Aggregated regulation, ride-through and system-

level anti-islanding considering the potential 
impact of the mode/setpoint change on the 
overall system performance.

• DER circuit communication architecture and 
security enhancements for IEEE 1547 protocols.
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Advancing the State of the Art (SOA)
• Resilient IEEE 1547 DER system architecture and the use cases 

developed on top of open standards (IEC 61850-7-420) will enable 
interoperability.

• Similarly, proposed security extensions for IEEE 1547 protocols follow 
IEC 62351 practices.

• Use cases and semantic information models developed in the project 
contributed to UCA/OpenFMB Working Group to ensure industry 
acceptance.

• Field demonstration at Duke Energy to confirm the feasibility of the 
proposed approach.
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Progress to Date
Major Accomplishments

• Defined threat models for major IEEE 1547 use case categories.

• Derived communication architecture and information models for 
hierarchical DER system based on open standards.

• Prototype implementation of IEEE 1547-constrained energy 
managements and resilient dynamic voltage support during ride-
through with enhanced security mechanisms for Layer 2 and Layer 3 
publisher-subscriber communications.

• Patent Application “Distribution Power System Fault Control Apparatus 
and Method” submitted.
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Challenges to Success
Implementation delayed due to restricted physical access to 
laboratory facilities.

• Enhancing remote access capabilities to all hardware and software components that 
are needed for creating controller-hardware-in-the-loop setup.

Plans for field demonstration and red team testing affected by 
limited access to facilities.

• Work with the partners on arranging remote access to the facilities; consider HIL-only 
demonstration as a back up.

Limited technology transfer and outreach possibilities.
• Consider virtual event participation, possibly with pre-recorded video demonstrations.
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Collaboration/Sector Adoption
Plans to transfer technology/knowledge to end user

• What category is the targeted end user for the technology or 
knowledge? 
• Asset owners (Utilities) and Vendors

• What are your plans to gain industry acceptance?
• Controller and Power Hardware-in-the-loop testing, demonstrations at 

conferences/events in 2021

• Field demonstration at Duke Energy facility in NC

• Providing inputs to UCA OpenFMB/IEEE/ IEC working groups

• What is the timeline for demonstration and sector adoption?
• Field demonstration and technology transfer with additional demos and working 

group presentations planned for 2021
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Next Steps for this Project
Approach for the next year or to the end of project:

• Implementation and testing of the major use cases in CHIL and PHIL 
laboratory environment

• Red Team testing at ORNL

• Transition to field demonstration with algorithm tuning as needed

• Technology transfer – use cases and semantic models contributed to 
the community
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DER System Hierarchical Architecture
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Result: UML Model with derived semantic 
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Use Case: Resilient Distributed Dynamic Voltage 
Support During Fault Ride-Through

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

0.0
1 0.1 1 10 100 1000

Momentary Cessation

20

Mandatory 
Operation

Continuous Operation

Momentary Cessation
Shall Trip

Shall Trip

V
ol

ta
ge

 (p
u)

Time (s)

t1

t2

t1

t2

 Grid faults -> Sensitive DER tripping
 Fault ride-though and dynamic voltage support to keep DERs

remain online and faster voltage recovery

 Uncontrolled local voltage support may become risky
 Aggregated cooperative response can shift ride-

though operating point to safer region
 Communication based methods require defining the appropriate

message profiles and need enhanced security

Solution Method:

 Distributed cooperative dynamic voltage support
(DCDVS) resilient to single point of failure

 Implements a multiagent based leader target tracking
algorithm

 Avoids uncoordinated current injections via
cooperative behavior

 Secure publisher-subscriber mechanisms according to
IEC 61850-90-5, 62351-6, and IEC 62351-9 principles
for wired or wireless communications
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Use Case: Resilient Coordinated Anti-Islanding

 

• For an unintentional island in which the 
DER energizes a portion of the Area EPS 
through the PCC, the DER shall detect the 
island, cease to energize the Area EPS, and 
trip within 2 s of the formation of an 
island.

• Leveraging measurements and local 
islanding detection methods at multiple 
locations to confirm an unintentional 
island condition has occurred.

• Consensus-based resilient mechanism to 
reduce non-detection zone and reduce 
attack surface.

• New information models, communication 
profiles and the associated security.
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Use Cases demonstrating how misuse of IEEE 1547-2018 standard 
could result in grid instability.

• Malicious change of reactive power modes.

• Malicious change of state-of-charge information.

• Misuse of Volt-Var setpoints and conservative trip settings (See figures below).

Mitigations: Network detection methods being explored: 
• Firewalls with intelligent packet inspection rules.

• Simulations to decide if a new command will make the system unstable.

• Machine learning approach to decide if new settings pose a threat to stability.

UIUC: Use Cases, Attacks, and Mitigation
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Demo – Malicious change of reactive power 
modes 

• Assume the system is operating in constant power 
factor mode, active and reactive power are injected.

• Voltage-active power mode is on (or turned on by 
attacker), causing maximum active power injection.

• Attacker sends a command to change to Watt-VAR 
mode, causing maximum reactive power absorption. 

Example: Impacts of Malicious Mode Changes

• Sudden change from Q injection 
to Q absorption causes voltage 
depression.

• Monte Carlo simulations show 
that with DER penetration as low 
as 14% of AEPS capacity, voltage 
and frequency collapse occurs.



Thank you!

Questions?
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