

OFFICE OF

Cybersecurity, Energy Security, ENERGY Cybersecurity, Energy Sector and Emergency Response

Cyber-Physical Protection for Natural Gas Compression DE-OE0000903

GE Research

Matthew Nielsen Cybersecurity for Energy Delivery Systems (CEDS) Peer Review

Project Overview

Objective

- ~1400 natural gas pipeline compression stations in US*.
- A new cyber-physical protection focused on prime mover, controls, & compressor.
- Deployed at the edge providing near real time asset protection and situational awareness.

Schedule

Oct 1, 2018 – March 31, 2021.

Phase 1 Milestone/Deliverable	Status
Attack surface defined	complete
High fidelity digital twin simulator established	complete
Algorithms validated	complete
Secure I/O prototype produced	complete
Edge advancements completed	complete
CPP prototype delivered to INL	complete
Red team testing completed	complete

Total Value of Award:

\$3,890,126

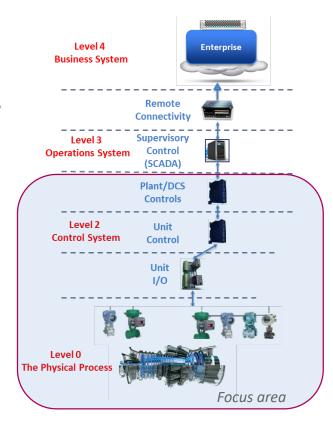
Funds
Expended
to Date:

81%

Performer:

GE Research

Partners:


Baker Hughes Idaho National Lab

^{*}https://www.eia.gov/naturalgas/archive/analysis_publications/ngpipeline/index.html

Advancing the State of the Art (SOA)

- Describe current "state of the art".
 - OT Cybersecurity anomaly monitoring: network communications including packets/devices,
 - Machine learning: learning normal network traffic models.
- Describe the feasibility of your approach.
 - Assumes sophisticated adversary has obtained access and launches attacks to manipulate asset behavior.
 - Implements three core components:
 - Detection: monitors for anomalous behavior.
 - Localization: determines manipulated nodes.
 - **Neutralization**: provides resiliency for potential of continued operation.
 - Combines Physics + ML + Controls.
 - Uses Digital Twin of asset to train algorithms.
 - Deploys solution at edge for near real-time operation.
- Describe how your approach is better than the SOA.
 - Adds cybersecurity to lower layers of Purdue ref model.
 - Provides fast detection & localization speeds: 10 msec.
 - Offers resiliency while attack is active.

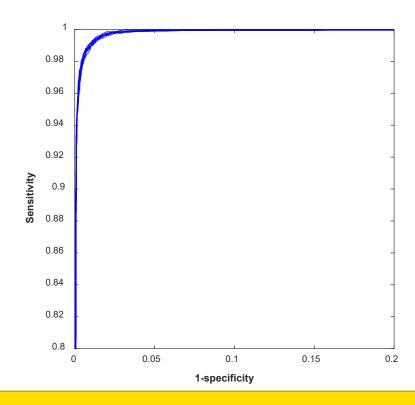
Advancing the State of the Art (SOA)

- Describe how the end user of your approach will benefit.
 - Increased situational awareness: cyber and faults [added return on investment].
 - Improved rapid detection, localization and resiliency (neutralization).
- Describe how your approach will advance the cybersecurity of energy delivery systems.
 - Adds new layer of security and situation awareness based upon asset behavior.
 - Provides model adaptation to accommodate natural machine performance degradation.
 - Enhances resiliency performance to cover > 50% of attacked nodes even during non-linear operation.
- Describe the potential for sector adoption.
 - Potential to be integrated with Baker Hughes cybersecurity solutions*.
 - Does not require "rip-n-replace" of current controls or OT systems.
 - Synergistic with existing OT cybersecurity systems.

CPP Architecture

Protecting prime mover + compressor

How is it connected? Node measurements/commands signals Controller **CPP Software** Prime Mover **Asset** Resiliency estimates Compressor Nodes Controls network What is it doing? **Feature Extraction** Detection Localization Neutralization Cybersecurity, Energy Security,


and Emergency Response

Detection Results

Attack detection development strategy

- Transform monitoring nodes measurements (multivariate time-series) to features via feature extraction and transformation.
- Perform feature-based attack detection using ensemble-based anomaly detection.
- Validate attack detection on dataset from independent simulation runs.

Attack detection performance summary*

Confusion matrix of 10-fold cross-validation on training dataset

		Predicted	
		Normal	Attack
True	Normal	99.00%	1.00%
	Attack	1.95%	98.05%

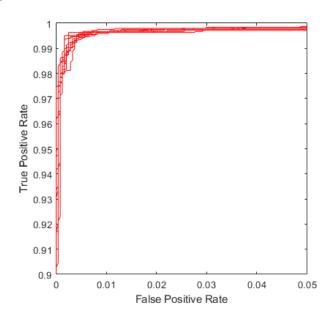
TPR = 98.05% FPR = 1.00%

Confusion matrix on validation set

		Predicted	
		Normal	Attack
True	Normal	99.37%	0.63%
	Attack	7.20%	92.80%

TPR = 92.80%FPR = 0.63%

Achieving High 98% Detection TPR at 1% FPR


Localization Results

Attack localization development strategy

- Leverages features from detection module.
- Each node assigned to a subsystem.
- Performs anomaly monitoring at subsystem level -> determines which subsystem is being manipulated.

Attack localization performance summary*

Subsystem 1.0 ROC curves 10-fold cross-validation

Subsystem Localization Results

Subsystem	Number of Nodes	Number of Attack Factors	Localization True Positive Rate at 1% False Positive Rate
1.0	7	3	99.7%
2.0	4	1	100%
3.0	16	6	99.8%
3.1	7	3	100%
3.2	9	3	99.3%
4.0	4	1	100%

Achieving High 90's% Localization Accuracy for Subsystems at 1% FPR

Challenges to Success

Project Specific

Challenge 1

• <u>Demonstration approval</u> delayed due to Covid related issues → continue engaging with compressor station owner; explore other options, such as historical data experiments.

Challenge 2

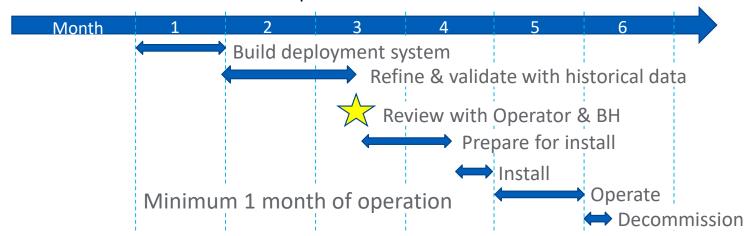
• <u>Complex transient behavior</u> of prime mover could cause lower TPR at desired 2% FPR → obtain historical site data to find actual operating modes and ranges of operation.

General Learnings

Challenge 3

• On-line learning leveraged by attacker → *Invariant learning*: continuous on-line learning, constrained by the physics of the system and robust against learning attack behavior.

Challenge 4


 Operators don't trust "AI" system → Explainable AI: for adoption, customers need to understand causality (trust the AI).

Collaboration/Sector Adoption

Plans to transfer technology/knowledge to end user

- What category is the targeted end user for the technology or knowledge?
 - Solution provided to the Asset Owner.
 - In discussion with Baker Hughes to incorporate into their cybersecurity solutions.
- What are your plans to gain industry acceptance?
 - Deploy CPP algorithms into near-real time software executable.
 - o Install CPP software on Predix Edge OS compute platform.
 - o Connect compute platform to controls network of compressor station.
 - Demonstrate at actual compressor station.

Next Steps for this Project

Approach for the next year or to the end of project

- Key Milestones to accomplish
 - Finalize demonstration details with compressor station operator.
 - Submit NEPA forms and obtain DOE approval for Phase 2.
 - Complete demonstration.
 - Preparation and final tuning of algorithms per site specifications.
 - Installation.
 - Data analysis + report.
- Upcoming significant events
 - Key outcomes or measurement criteria expected:
 - 1. Robustness of software system.
 - 2. Actual operational data versus simulated data.
 - New operating modes.
 - Unexpected environmental or boundary conditions.
 - 3. Operator interactions.

