

OFFICE OF

Cybersecurity, Energy Security, and Emergency Response

Deep Cyber-Physical Situational Awareness for Energy Systems: A Secure Foundation for Next-Generation Energy Management

Texas A&M Engineering Experiment Station (TEES)

Katherine Davis
Cybersecurity for Energy Delivery
Systems (CEDS) Peer Review

Project Overview

Objective

 To enhance the resilience of our critical energy infrastructure through the design of a nextgeneration cyber-physical energy management system that can prevent and detect malicious events through fusion of cyber and physical data and facilitate online control actions that couple cyber and physical spaces.

Schedule

- **Start and end:** 10/01/18 to 12/31/21 7/19: Kickoff Webex with DOE
- Past and upcoming key dates:

11/19: Industry workshop & demo

10/19: Publications & recorded demo

2/20: Industry workshop & demo

5/20: Approval for Phase 2

11/20: Response publications & demo

3/21: Vistra demonstration plan

Total Value of Award:

\$2,745,830

Funds

Expended 33%

to Date:

Performer:

Texas A&M Engineering

Experiment Station

(TEES)

Partners: Sandia, UIUC, &

Rutgers, PNNL,

Vistra is demo partner

Advancing the State of the Art (SOA)

CYPRES approach: Closing the loop with a unified model

1. Model

 Represent, manage, and visualize the cyber physical model

2. Monitor and Verify

- Fuse streaming inputs to the model
- Estimate cyber-physical state

3. Analysis

- Early attack detection
- Cyber-physical risk analysis
- Cyber-physical detection and situational awareness use cases

4. Verify and Control

- Recommend cyber-physical actions
- Mitigations, countermeasures

Cyber-Physical Resilient Energy Systems (CYPRES) https://cypres.engr.tamu.edu/

Advancing the State of the Art (SOA)

- State of the art: Utility solutions siloed based on specific activities such as patching, detection, planning, operations, and protection.
- Difficult to broadly infer adversary actions targeting physical devices.

DURING AN EVENT PRIOR TO AN EVENT AFTER AN EVENT The ability to manage a The ability to absorb shocks The ability to get back to disruption as it unfolds and keep operating normal as quickly as possible INCIDENT-1. PREPARE 2. AMELIORATE 3. QUICKLY RECOVER FOCUSED POST-INCIDENT 4. OBSERVE, LEARN AND IMPROVE LEARNING The ability to incorporate new lessons after a disaster and minimize the risks associated with future events

Fig. 1.2 (A), p. 36

The National Academies "Enhancing the Resilience of the Nation's Electricity System," July 2017.

CYPRES research benefits:

- 1. Redesign of energy management systems to be intrinsically cyber-physical with analyses that enable the system to prevent, detect, and respond to events through fusion of cyber and physical data.
- Facilitating online and potentially automated control actions that couple cyber and physical control spaces.
- 3. Facilitating how to integrate with existing tools to obtain broad sector adoption of such technology.

CYPRES Modeling & Workflow

CYPRES Team & Industry

Kate Davis

Tom Overbye

Paula DeWitte

Ana Goulart

Hao Huang

Abhijeet Sahu

Amara Umunnakwe

Zeyu Mao

Patrick Wlazlo Tasha Gaudet

Ben Stirling

ercot \$

Oladiran Obadina Christine Hasha Stefani Hobratsch

Robin Berthier

Walter Yamben

Edmond Rogers

Saman Zonouz

James O'Brien Mark Rice

Contact: Kate Davis

katedavis@tamu.edu

Shamina Hossain-McKenzie Eric Vugrin

Cyber-Physical Resilient Energy Systems (CYPRES) https://cypres.engr.tamu.edu/

Progress to Date

Major Accomplishments Model Development:

- Created cyber-physical 1250-substation power system case as our exemplar test system.
- Implemented exemplar system in RESLab that interfaces with CYPRES and is used for testing and evaluation.
- Developed and synthesized realistic use cases and scenarios in RESLab for CYPRES closing the loop from monitoring to analysis to control.

Technology Development & Validation

- Implemented major updates in our Resilient Energy Systems Lab (RESLab) testbed to enable the CYPRES technology to be developed, demonstrated, and evaluated.
- CYPRES was created to act as a next generation cyber-physical EMS/SCADA.

Progress to Date, continued

Major Accomplishments, continued Technology Development & Validation

- CYPRES analyzes the system under intrusions that target multiple critical elements, using RESLab testbed with actual hardware, real-time power simulation, and network emulation.
- Algorithms being developed for cyber-physical data fusion, inferencing, and response.

Texas A&M Testbed

- CYPRES reconfigures the network to mitigate cyber and physical contingencies discovered using graph theory combined with sensitivity analysis.
- Implemented and tested response of reconfigurable network solution with rerouting and firewall policy changes based on inferences from sensor data fusion.
- Incorporated firewall rules developed by our team with industry input that follow NERC standards and SCADA data pipeline into exemplar system model and RESLab.
- Updating synthetic cyber-physical grid models as we are validating them in RELab.

Progress to Date, continued

CYPRES in RESLab Testbed: Status

Video, tutorials, & cases on our website:

https://cypres.engr.tamu.edu/

Collaboration/Sector Adoption

Plans to transfer technology/knowledge to end user

 Targeted end users are asset owners and regional reliability organizations with a focus on transmission and generation.

- Security-oriented cyber-physical energy management application.
- Goal is to be easily deployable in utilities as a plugin, achieved by testing as a proof-of-concept in emulated utility in RESLab.
- Achieved by providing safe proving ground in RESLab with sharable test cases and engaging industry throughout project.
 - Collaborations including with Vistra, ERCOT CIPWG, Network Perception, OSIsoft, SEL, TDi.
 - Received utility data and developing demonstration plan.
 - Past and upcoming workshops and live/recorded demos to increase engagement with us.
 - Upcoming demos in October and November and creation of demo videos to share and post on website.

Challenges to Success

Challenge 1: Scaling realistic cyber-physical grid emulation.

- Recognized inherent coupling of testbed, model, and analytics and created milestones that reflect and support agile development.
- Producing publications, algorithms, and software prototypes in agile manner.
- Research programmer support to help with daily testbed and code maintenance.
- Leveraging the expertise and prior experience of the team in the mathematical modeling of these systems combined with the team's real-world large-scale system expertise enable the development of new solutions to overcome these challenges.

Challenge 2: Process delays particularly due to COVID-19.

- Frequent check-ins and reminders to university administration support staff.
- Working remotely with close team communication and regular check-in times.
- Success with accessing and working on RESLab testbed remotely.

Next Steps for this Project

Approach for the next year

- Testbed evaluation with large scale systems: scalability of emulations of raw traffic collection of ICS protocols for inference by emulating data I/O interface in substations in nodes of cyber emulator CORE making use of PowerWorld DS and HELICS.
- Demonstrate and validate with Vistra Energy.
- System integration with CYPRES modules, third party security solutions, and other applications.
- Evaluate and disseminate findings.

Project Publications to Date

- [1] B. L. Thayer, Z. Mao, Y. Liu, K. Davis, T. Overbye "Easy SimAuto (ESA): A Python Package that Simplifies Interacting with PowerWorld Simulator," Journal of Open Source Software, 5(50), 2289, https://doi.org/10.21105/joss.02289
- [2] A. Sahu, Z. Mao, K. Davis, and A. Goulart, "Data Processing and Model Selection for Machine Learning-based Network Intrusion Detection," IEEE workshop on Communication, Quality and Reliability (IEEE CQR 2020), May 2020.
- [3] N. Gaudet, A. Sahu, A. Goulart, E. Rogers, and K. Davis, "Firewall Configuration and Path Analysis for Smart Grid Networks," IEEE workshop on Communication, Quality and Reliability (IEEE CQR 2020), May 2020.
- [4] Z. Mao, H. Huang, K. Davis, "W4IPS: A Web-based Interactive Power System Simulation Environment For Power System Security Analysis," Hawaii International Conference on Science and Systems (HICSS), Jan. 2020.
- [5] H. Huang, M. Kazerooni, S. Hossain-McKenzie, S. Etigowni, K. Davis, S. Zonouz, "Fast Generation Redispatch Techniques for Automated Remedial Action Schemes," IEEE 20th International Conference on Intelligent Systems Applications to Power Systems (ISAP), Dec. 2019.
- [6] A. Sahu, H. Huang, K. Davis, S. Zonouz, "A Framework for Cyber-Physical Model Creation and Evaluation," IEEE 20th International Conference on Intelligent Systems Applications to Power Systems (ISAP), Dec. 2019.
- [7] P. Wlazlo, K. Price, C. Verloz, A. Sahu, H. Huang, A. Goulart, K. Davis, S. Zonouz, "A Cyber Topology Model for the Texas 2000 Synthetic Electric Power Grid," Principles, Systems and Applications of IP Telecommunications (IPTComm), Oct. 2019.
- [8] A. Sahu, H. Huang, K. Davis, S. Zonouz, "SCORE: A Security-Oriented Cyber-Physical Optimal Response Engine," IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Oct. 2019.

