

GMLC Accomplishments and Future Directions

GMLC Leadership Team

Peer Review, September 2018

GMLC Accomplishments and Future Directions

MODERNIZATIOI

Grid Modernization FY15 to Present

- Inaugural DOE Grid Modernization MYPP
- GMLC Project Portfolio (\$88M / FY16)
 - 6 foundational research projects
 - □ 13 cross-cutting projects
 - 10 strategic regional partnerships
- GMI Program Specific Portfolio (\$132M / FY16)
- 100+ Partners (Utilities, Vendors, Academia and states)
- Six Regional Workshops
- ► 2017 Peer Review
- FY17 Resilient Distribution Systems Awards (\$32M)
- Completing 10 Strategic Regional Partnerships

2015

Grid Modernization Multi-Year Program Plan 2017

Themes of Updated MYPP (under construction)

Emerging Themes

- Resilience spanning current grid paradigm and emerging cyber and high DER challenges
- Interdependence of energy systems
- Advanced control and architecture paradigms
- □ Advanced "all hazards" analytics
- Sensors and smart controllers for flexibility and resilience
- High performance planning tools to position for future complexities
- Will reflect expanded DOE Grid Modernization Initiative Charter

DRAF

GRID

() ENERGY

Devices and Integrated Systems

Characterization and testing of energy technologies for providing grid services to improve system affordability, reliability and sustainability

Expected Outcomes

- Develop new grid interface devices to increase ability to provide grid services and utilization
- Coordinate and support the development of interconnection and interoperability test procedures for provision of grid services
- Validate secure and reliability grid operation with high levels of variable generation at multiple scales

- Common approach across labs and industry test-beds for effective validation of emerging technologies
- Develop common interoperability and interconnection standards and test procedures for industry / vendor community

September 11, 2018 6

Sensing and Measurement

Sensor development and validation strategies to provide complete grid system visibility for resilience and prediction

Expected Outcomes

- Advance and integrate novel, low-cost sensors to provide system visibility
- Incorporate new data streams (e.g. weather
- Develop real-time data management and data exchange frameworks that enable analytics to improve prediction and reduce uncertainty
- Develop next-generation sensors that are accurate through disturbances to enable closed-loop controls and improved system resilience

- Common approach across labs and industry test-beds for effective validation of emerging technologies
- Develop common interoperability and interconnection standards and test procedures for industry / vendor community

System Operations and Control

Advanced real-time control technologies to enhance the reliability and asset utilization of transmission and distribution systems

Expected Outcomes

- Deliver an architecture, algorithms, and control frameworks for a clean, resilient and secure grid
- Advanced operations software platform for predictive operations & real-time adaptive control
- New power flow control device hardware and concepts
- Advance fundamental knowledge for new control paradigms

Federal Role

- Convening authority to shape vision of advanced grid architecture
- Advance fundamental knowledge for new control paradigms for emerging grid to support industry transformation
- Deliver computational science, materials science & mathematics from National Laboratories to develop integrated faster-than-realtime software platforms and power electronics control schemes

Conventional Controls

Distributed Controls

September 11, 2018

Design and Planning Tools

Drive next generation of planning and design tools to more accurately perform costbenefit trade-offs and improve grid reliability and resilience

Expected Outcomes

- Software framework to couple grid transmission, distribution, and communications models to understand cross-domain effects
- Incorporate uncertainty and system dynamics into planning tools to accurately model renewables, extreme events, etc.
- Computational tools, methods, and libraries that enable 1000x improvements in performance for analysis and design

- Attack strategic gaps in tools capabilities
- Partner with industry to demonstrate value
- Work with vendors to transition R&D into practice

Security and Resilience

Providing a pathway to comprehensive multi-scale security and resilience for the nation's power grid

Expected Outcomes

- Holistic grid security and resilience, from devices to micro-grids to systems
- Inherent security designed into components and systems, not security as an afterthought
- Security and resilience addressed throughout system lifecycle and covering the spectrum of legacy and emerging technologies

- Lead and establish security and resilience research programs to develop technology solutions and best practice guidance
- Improve adoption of security and resiliency practices, and provide technology-neutral guidance
- Inform stakeholders of emerging threats and help address threats appropriate for government response

Institutional Support

Enable regulators and utility/grid operators to make more informed decisions and reduce risks on key issues that influence the future of the electric grid/power sector

Expected Outcomes

- Accelerated state & federal policy innovation due to enhanced State and Regional technical assistance
- States adopt changes to their regulatory model that better align utility interests with grid modernization and/or clean energy policy goals
- Methods for valuation of DER technologies and services are defined and clearly understood by stakeholders to enable informed decisions on grid investments and operations

- Provide independent, unbiased technical assistance (e.g., information and analysis tools) that address key grid-related policy, regulatory, and market issues
- Create an over-arching stream of grid-related "institutional" analysis, workshops, and dialogues to raise awareness of the need for grid modernization

