Technology Advancement and Infrastructure Development Panel

Patrick B. Davis, Program Manager U.S. Department of Energy Vehicle Technologies Program

September 29, 2009

U.S. China Electric Vehicles Forum

Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emissions

Well-to-Wheels Petroleum/GHG Reduction

Vehicle Electrification Progression

Battery Technology

Administration Goal: 1 Million PHEVs by 2015

Annual vehicle battery R&D spending: \$80M

Additional Recovery Act funding of \$1.5 Billion to accelerate the manufacturing and deployment of the next generation of U.S. batteries

Recovery Act will funding multiple projects in advanced battery components manufacturing

Battery Cost Reduction

- Cell materials & fabrication 1000 represents about 3/4 the cost for PHEV batteries 700
- For significant cost reduction, new materials with increased energy density are needed to reduce:

- cell count, and
- cell/pack hardware

Status and Targets

2009 Status

Status: \$8000-\$12,000

for a PHEV 40-mile

range battery

Status: Current cost of the electric traction system is \$40/kW

Targets

2014 PHEV: Battery that has a 40-mile all-electric range and cost \$3,400 2015 PEEM: Cost for electric traction system no greater than \$12/kW peak by 2015

Battery Chemistry Comparison

Lithium Ion Chemistry	Type 1	Type 2	Type 3	Type 4
Life	(3)	8	(4)	<u>@</u>
Power	<u>@</u>	©	(4)	0
Energy	©	(4)	(4)	8
Abuse tolerance	8	(4)	©	©
Materials cost	<u> </u>	©	8	<u> </u>

Power Electronics and Electric Motors R&D

Power Electronics – Power inverters and converters for electric drivetrains

- Wide Band Gap semiconductors for increased efficiency
- New device packaging and topologies to minimize cost
- Low cost, high temperature capacitors

Electric Motors – Hybrid and Plug-in Hybrid capable designs

- Novel motor concepts to reduce cost
- Research to develop low cost, high performance magnetic materials

Traction Drive Systems – Combined stand-alone drive systems enable all-

electric operation for plug-in hybrids and fuel cell vehicles

Thermal Control – Improving heat transfer and reliability evaluation

- Enables smaller devices through more aggressive cooling technologies
- Predictive thermal
 stress and reliability
 models identify
 design issues

Contact Information

www.vehicles.energy.gov

Patrick Davis, Program Manager 202-586-8055 patrick.davis@ee.doe.gov