Electrochemical Energy Storage for the Grid

Yet-Ming Chiang
Department of Materials Science and Engineering
Massachusetts Institute of Technology

Ohio State Univ Buckeye Bullet 2.5

Hymotion PHEV

Trans-Atlantic Workshop on Storage Technologies for Power Grids, Oct 19-20, 2010

Automotive Li-Ion Battery Development is Driving Down Battery Cost, Improving Performance, Enabling Grid Applications

A123 Example: Government-Private Partnership Through Cycle of Innovation and Commercialization

USABC Program, 2006 Multiple Vehicles, 2007 ARRA Manufact., 2009

A123's Nanophosphate™ Technology Is Used In Three Core Markets

New Classes of Products Have Been Enabled by Advanced Energy Storage

Transportation

Passenger Hybrids, Commercial PHEVs and EVs Hybrids, PHEVs and EVs

- + Fueleconomy
- Reduced emissions
- + Energy independence
- + Lighter-weight components
- + Fuel efficiency

Electric Grid

Smart Grid Network
Stabilization Systems Energy Storage

- Increase grid reliability
- + Enable Wind and Solar
- + Increase plant efficiency/utilization

Consumer & Industrial

- + Improve performance
- Reduce emissions
- Reduce toxic battery chemicals

Drivers

Frequency Regulation Application: "Hybridizing" Power Plants With Li-Ion Batteries

ISO Regulation Example

The Problem:

 Thermal plants providing regulation operate less efficiently, have increased O&M costs and worse emissions

The Solution:

- 20MW Smart Grid Storage System (SGSS) in U.S. ISO
- Even with historic low natural gas prices, achieve 3 year payback
- Improve emissions by >50%

Wind Firming Example: Tehachapi Storage Project

- Customer: Southern California Edison
- Location: Tehachapi Windfarm
 - California's largest wind resource
 - Wind development potential driving grid infrastructure upgrades and expansion
 - 2nd largest wind park in the world
 - 660MW installed / ~5,000 turbines
- System
 - 8MW 4 hour (32MW-hour) GBS system
 - World's largest Li-ion battery system when complete
 - Dynamic 4-Quadrant PCS/Grid Interface
 - A123 Prismatic Cells
 - Installation / Operation 2012
 - 13 Targeted Operational Uses Individually and Stacked

Recent Studies Predict Li-ion Battery Pack Costs Will Reach \$330-\$400/kWh at Scale

¹State-of-charge window, is the available capacity in a battery relative to its capacity when full. Conservative applications work within a 65% window, whereas more aggressive applications use 80%; over the next 5 to 10 years, most applications will likely migrate to the higher value.

(McKinsey, 2010)

Future: Pumped Hydroelectric Is Lowest Cost Storage (~\$100/kWh), can this be done with electrochemical storage?

