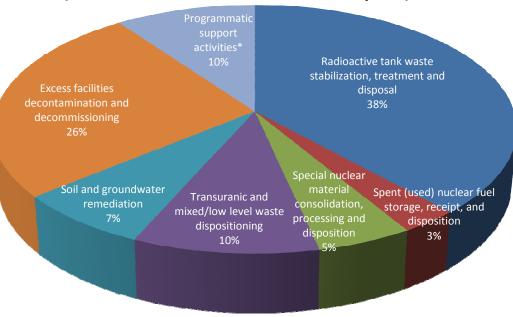


Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy

EMAB Presentation June 23, 2011

Shirley J. Olinger

Associate Principal Deputy for Corporate Operations

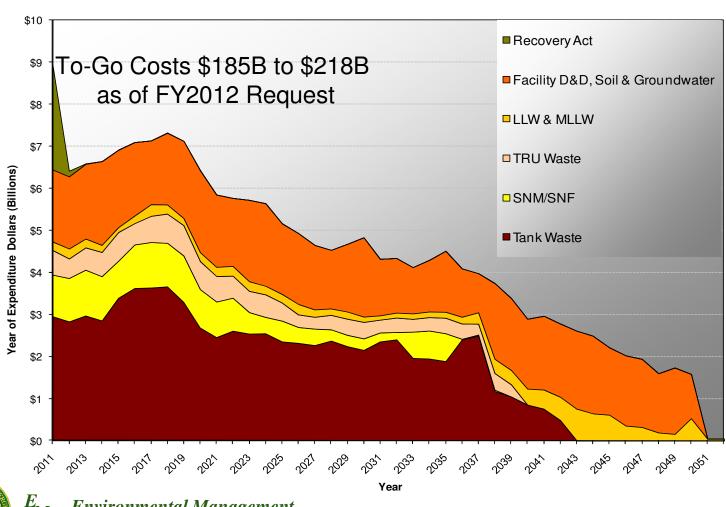


EM Priorities:

- Activities to maintain a safe, secure, and compliant posture in the EM complex
- Radioactive tank waste stabilization, treatment, and disposal
- Spent (used) nuclear fuel storage, receipt, and disposition
- Special nuclear material consolidation, processing, and disposition
- Transuranic and mixed/low-level waste disposition
- Soil and groundwater remediation
- Excess facilities decontamination and decommissioning (D&D)

"To-Go Life-Cycle Costs"

(\$185B - \$218B as of the FY 2012 Request)


• Program Direction, Program Support, Community & Regulatory Support,

Technology Development & Deployment, and Post-Closure Administration

Journey to Excellence Goal 2 Life-Cycle Cost Profile

Environmental Management Costs by Program Area

Program Goals

Building on the ARRA momentum, the EM team will:

Complete the three major tank waste construction projects:

- Waste Treatment Plant by 2016 (operational 2019)
- Salt Waste Processing Facility by 2014 (operational 2014)
- Sodium Bearing Waste Facility by 2011 (operational 2012)

Reduce the life-cycle costs by up to \$43B:

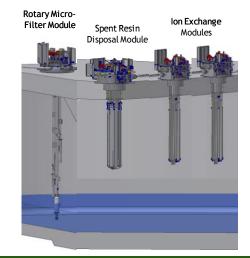
- Recovery Act investments \$7 billion in cost savings and cost avoidances
- Transformational tank waste technology up to \$19B at SRS and Hanford
- Advanced simulation tool up to \$10B saved through more precise vadose zone cleanup
- Accelerate Gaseous Diffusion Plant facilities D&D by turning valuable metals into assets \$6.9B savings

Disposition 90% of legacy TRU waste by 2015

- All EM cleanup waste to WIPP by 2020, except for Hanford
- Approximately 41,000 m³ of TRU waste remains to be disposed to accomplish the 2015 goal. Through 2010, approximately 77,000 m³ of the 118,000m³ (90% of the adjusted inventory) has been dispositioned.

Shrink the EM legacy footprint 90% by 2015

- In 1989, legacy cleanup footprint was 3,125 sq miles. By 2015, it will be reduced to 90 sq miles
- All Material Access Areas eliminated
- 2,636 facilities complete; 7,745 remediations complete


Reduce the life-cycle costs by up to \$43B and accelerate the cleanup of the Cold War environmental legacy

- Enhanced Tank Waste Strategy:
 - ✓ SRS accelerate cleanup completion by 6 years, reducing LCC by \$3.2 Billion
 - ✓ Hanford accelerate cleanup completion by 7 years, reducing LCC by \$16 Billion
 - ✓ Idaho develop treatment path forward for calcine waste, commence FBSR on sodium-bearing waste
- Develop passive remediation technologies reduce reliance on active pump-and-treat systems, use Advanced Simulation Capability for Environmental Management (ASCEM) high-performance modeling to enable risk-based vadose zone cleanup decisions
- > Generate revenue to accelerate D&D by recovering valuable metals from GDP facilities

Environmental Management

Enhanced Tank Waste Strategy

Hanford -- \$16B savings

SRS -- \$3.2B savings

- Small Column Ion Exchange (SCIX) and Rotary Microfilter (RMF)
- FBSR as supplemental treatment
- HLW improved vitrification capacity
- Tank Waste Retrievals
 - Single Shell Tank (SST) waste staging
 - Hard heel retrieval technology
 - Wiped film evaporators
 - Tank chemical cleaning
- FBSR as secondary waste treatment
- Package contact-handled TRU tank waste for offsite disposition

- Small Column Ion Exchange (SCIX) and Rotary Microfilter (RMF)
- Next Generation Solvent (NGS) and ARP/MCU life extension
- DWPF throughput improvements
- Tank chemical cleaning

Key Strategies

Key Strategies

Enhanced Tank Waste Strategy

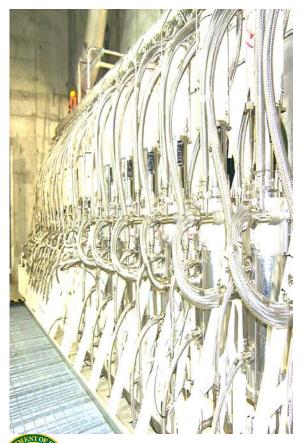
Updated SRS Liquid Waste Operations Baseline to reflect \$3.2 B savings

- Fall 2010, SRS presented the proposed ETWS savings in PBS-14C, Liquid Waste Operations, to the EMAAB and obtained their endorsement
- ➤ EM-1 approved the update to the PBS-14C baseline, implementing the ETWS savings, in advance of a complete, recertified site baseline
- > SRS updated IPABS to reflect the improved baseline as well as updated PBS-14C performance metrics

Enhanced Tank Waste Strategy

SRS

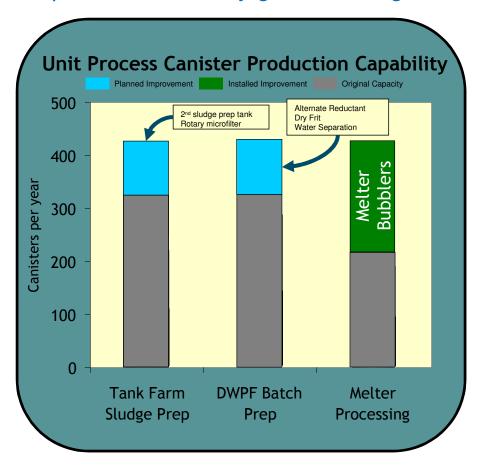
RMF/SCIX


- Combination of Rotary Microfilters and Small Column Ion Exchange to process salt waste
- Technology maturation in progress with Technology Readiness Assessment planned in September 2011
- Detailed design in progress for installation into Tank 41
- Using non-elutable Crystalline Silicotitanate (CST) resin with grinder to prepare resin to be fed into DWPF
- Close integration with Hanford to share lessons learned for Hanford's development and deployment

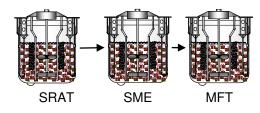
Enhanced Tank Waste Strategy

SRS

Next Gen Solvent

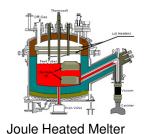


- Next Generation Solvent (NGS) under development for use in the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU)
- Will provide operational experience for the Salt Waste Processing Facility under construction
- NGS testing demonstrated improved Cesium extraction – technology maturation strategy in place to insert new chemistry in existing equipment
- TRL 6 to be achieved by September 2011
- Extend the operations of ARP/MCU till SWPF startup through process/equipment upgrades, performance monitoring, and appropriate regulatory approvals



ETWS SRS DWPF Enhancements

Several efforts underway to improve DWPF throughput – substantial improvement already gained through installation of bubblers in the melter.

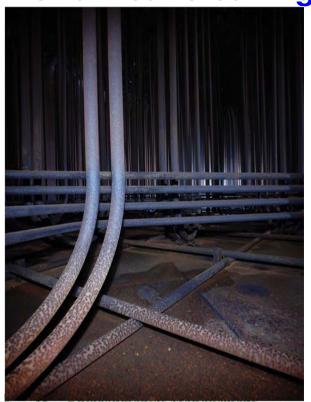

DWPF Chemical Process Cell

DWPF Batch Prep

- Alternate reductant
- Dry process frit addition
- Water separation from decon frit
- Provide flexibility for strip effluent addition
- Analytical Cycle Time Improvements

DWPF Melt Cell

Melter Processing


- Deployed melter bubblers
- Deploy high capacity canisters
- Improvements Melter Off Gas Operation

Enhanced Tank Waste Strategy

SRS

Enhanced Chemical Cleaning

- Demonstrated successful combination of bulk retrieval using mixer pumps and hydrolances, and mechanical heel removal using robotic Sand Mantis in tanks with no cooling coils
- Developing Enhanced Chemical Cleaning for tanks with coils – using oxalic acid with an oxalate decomposition step to minimize impact on salt waste processing and vitrification
- Close integration with Hanford to share lessons learned as both sites develop new tools for tank waste characterization, retrieval, and closure

Enhanced Tank Waste Strategy

Hanford

Rotary Microfilter and Small Column Ion Exchange

- Received Approval of Mission Need for the Supplemental Treatment Project in January 2011
- Performed Supplemental Pretreatment alternatives analysis – leveraging SRS development of Rotary Microfilter and Small Column Cesium Ion Exchange technologies for planned In-Tank Deployment – conceptual design by September 2011
- Supplemental Pretreatment deployment supports both ETWS and WTP 2020 Vision

Enhanced Tank Waste Strategy

Hanford

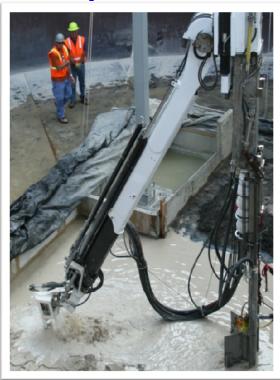
Fluidized Bed Steam Reforming

- Five different waste types undergoing Bench Scale Steam Reformer (BSR) testing at SRNL – including three Hanford tank waste samples
- BSR product granular and monolith forms undergoing waste form durability analysis at SRNL and PNNL – preliminary results promising – more results in Summer 2011
- Using BSR testing results from SRNL and PNNL to support development of Supplemental Immobilization data packages – DOE Expert Panel Review for alternative analysis planned for late 2011
- Alternatives analysis for Secondary Waste Treatment in Summer 2011 with FBSR among potential choices

Enhanced Tank Waste Strategy

Hanford

Improved HLW Vitrification Capacity


- HLW improved vitrification capacity (1.5 2 X) starting in 2025 –using Next Generation Melters and enhanced glass formulations
- Potential technologies:
 - Advanced Joule-heated melters
 - Cold Crucible Induction Melter (CCIM)
 - Iron Phosphate glass
- Performing melter off-gas stream recycle testing at the Vitreous State Laboratory to validate assumptions for high Tc incorporation into glass

Enhanced Tank Waste Strategy

Hanford

Single-Shell Tank Retrieval Improvements

- SST retrievals currently limited by available DST space
- Peak retrieval rates necessary to support WTP and Supplemental Immobilization presents challenge (>10 tanks per year at peak)
- Staging of SST waste from "leaker" tanks into sound SSTs "levelloads" the retrieval mission, reducing waste feed delivery risks
- Implementing expert panel recommendations to validate integrity of sound SSTs
- Developing modular wiped-film evaporators to minimize liquid volume in sound SSTs used for staging – building full scale model and planning for lab scale testing with actual waste in hot cell
- Deploying Mobile Arm Retrieval System (MARS Sluicing version) in Tank C-107
 - Testing demonstrated substantial improvement in bulk waste and hard heel retrieval
 - Performing integrated testing of MARS Eductor version for use in "assumed leaker" tanks.
- Integrating with SRS on development of tank chemical cleaning.
- Kicked off effort to develop a contact-handled TRU tank waste retrieval, treatment, packaging, and shipment program (8-11 tanks)

Journey to Excellence Goal 2 - Next Steps

Savannah River/Idaho

- Perform integrated system testing of RMF/SCIX at SRS while performing detailed design
- Institute ARP/MCU life extension program
- Deploy Next Generation Solvent into the ARP/MCU
- Implement DWPF improvements in frit delivery, replacement reductant, and capability to deliver SWPF Cs effluent to DWPF
- Continue development and real waste testing of the Enhanced Chemical Cleaning System
- Enhance capacity and reliability of the saltstone facility to support accelerated salt waste disposition
- Upgrade utilities and services to support RMF/SCIX and ARP/MCU

Journey to Excellence Goal 2 - Next Steps

Hanford

- Perform detailed design of RMF/SCIX at Hanford while building on the testing of similar systems at SRS
- Complete comprehensive waste form performance testing of FBSR immobilization using Hanford waste in support of the downselect process for LAW and secondary waste
- Complete Tc recycle testing at VSL in support of Hanford's supplemental LAW immobilization downselect
- Complete supplemental LAW immobilization conceptual design
- Continue Next Generation HLW Melter and Tank Chemical Cleaning technology development
- Perform integrated testing of the Mobile Arm Retrieval System with waste vacuum capability for suspected leaker tanks
- Continue SST integrity evaluation in support of SST Waste Staging
- Develop and submit Class 3 Permit Modification Request to CBFO to include waste from the contact-handled TRU tanks into the WIPP permit

