

Quality Report SQAS97-001

Guidelines for Software Measurement

April 1997

Software Quality Assurance Subcommittee
of the

Nuclear Weapons Complex Quality Managers

United States Department of Energy
Albuquerque Operations Office

Abstract

This document defines a core set of four software measures that can be used within any software
organization to characterize a software project and to improve software project processes and
products. The core measures are size, effort, progress to schedule, and defects. These measures
support organization requirements for attaining the Software Engineering Institute’s Capability
Maturity Model Levels 2 and 3. This document also describes actions for establishing a software
measurement program, integrating software measurement with software process improvement, and
implementing core measures through use of a measurement plan and measurement case. These
software measurement guidelines will help projects and organizations plan, manage, and improve
the life cycle processes of their software systems.

Blank Page

 i

ACKNOWLEDGMENT

The Software Quality Assurance Subcommittee of the Nuclear Weapons Complex
Quality Managers initiated Work Item #10 to establish guidelines for software
measurement. This document is a significant result of that work item. The working
group and other major contributors to this document are listed below.

Brijesh Ajmani, HQ
Mike Blackledge, SA
Faye Brown, OR
Kathy Burris, LA
Kathleen Canal, DOE/HQ
Kathleen Centeno, DOE/HQ
John Cerutti, LA
Charlie Chow, LL
Alvin Cowen, PX
Ray Cullen, SR
Gary Echert, DOE/AL
Cathy Kuhn, KC
Mike Maier, DOE/NV
Carolyn Owens, LL
David Peercy, SA, Chair
Larry Rodin, PX
Ruth Ann Smith, HQ
Ellis Sykes, DOE/KC
Patty Trellue, SA, Editor
David Vinson, PX

The reference “Software Measurement for Semiconductor Manufacturing Equipment”,
[SEMATECH], was especially useful in the preparation of Sections 2 and 3 of this
guidelines document and requires special acknowledgment.

 ii

Blank Page

 iii

TABLE OF CONTENTS
1. INTRODUCTION ...1

1.1 BACKGROUND -- THE NEED FOR SOFTWARE MEASUREMENT ..1
1.2 PURPOSE OF THESE GUIDELINES...2
1.3 SCOPE OF APPLICATION AND AUDIENCE...2
1.4 OVERVIEW OF THIS DOCUMENT ...3
1.5 OWNER AND UPDATES..3

2. RECOMMENDED CORE SOFTWARE MEASURES...5

2.1 SIZE ..6
2.2 EFFORT...8
2.3 PROGRESS TO SCHEDULE..8
2.4 DEFECTS...11

3. IMPLEMENTING AND USING THE CORE MEASURES ..13

3.1 ESTABLISHING PROJECT FEASIBILITY ...13
3.2 EVALUATING PLANS...14

3.2.1 Size...14
3.2.2 Effort ..15
3.2.3 Progress to Schedule ...16
3.2.4 Defects ...17

3.3 TRACKING PROGRESS ...18
3.4 IMPROVING THE PROCESS ...19

3.4.1 Evaluating the Impact of Design and Code Inspections..19
3.4.2 Improving Maintenance...20

3.5 CALIBRATING COST MODELS ...21

4. ESTABLISHING A SOFTWARE MEASUREMENT PROGRAM ..23

4.1 ADOPT A SOFTWARE MEASUREMENT PROGRAM MODEL ...23
4.1.1 Resources, Products, Processes...24
4.1.2 Direct and Indirect Software Measurement...25
4.1.3 Views of Core Measures ..25

4.2 USE A SOFTWARE PROCESS IMPROVEMENT MODEL ...26
4.2.1 SEI IDEAL Model ..27
4.2.2 SEI CMM ...27

4.3 IDENTIFY A GOAL-QUESTION-METRIC (GQM) STRUCTURE...29
4.4 DEVELOP A SOFTWARE MEASUREMENT PLAN AND CASE...30

5. SUMMARY OF RECOMMENDATIONS ...33

5.1 SOFTWARE MEASUREMENT PROGRAM ...33
5.2 CORE MEASURES..33
5.3 AUTOMATED METHODS..34

APPENDIX A: DEFINITIONS, ACRONYMS, AND ABBREVIATIONS ..A-1

A.1 DEFINITIONS AND TERMINOLOGY..A-1
A.2 ACRONYMS AND ABBREVIATIONS ...A-2

APPENDIX B: REFERENCES AND BIBLIOGRAPHY..B-1

APPENDIX C: EXAMPLE MEASUREMENT PLAN STANDARD ...C-1

APPENDIX D: EXAMPLE PROJECT CORE MEASURES..D-1

LIST OF ILLUSTRATIONS

Figure 2-1. The Case of Disappearing Reuse .. 7
Figure 3-1. Exposing Potential Cost Growth from Disappearing Code Reuse 15
Figure 3-2. Deviations from Original Plan Indicate Problems 15
Figure 3-3. Staffing Profile.. 16
Figure 3-4. Comparison of Compressed and Normal Schedules 16
Figure 3-5. Continually Slipping Milestones ... 17
Figure 3-6. Effects of Slipping Intermediate Milestones ... 17
Figure 3-7. Extrapolating Measurements to Forecast a Completion Date 18
Figure 3-8. Effects of Normal Schedules.. 19
Figure 3-9. Effects of Early Defect Detection ... 20
Figure 3-10. Declining Defect Density .. 20
Figure 4-1. Steps to Establishing a Software Measurement Program.......................... 23
Figure 4-2. Software Measurement Program Model .. 24
Figure 4-3. Software Process Improvement Models .. 26
Figure 4-4. Basili's Goal-Question-Metric (GQM) Paradigm... 29
Figure 4-5. Software Measurement Plan and Case ... 30
Figure 4-6. Integration of Software Measurement and Process Improvement 31

Table 2-1. Measures for Initial Implementation .. 5
Table 4-1. Relationship of Software Measures to Process Maturity 28
Table D-1. Core Measures for Example Projects ... D-1

 iv

1. INTRODUCTION

The Software Quality Assurance Subcommittee (SQAS) is chartered to define
methods for improving the quality of software developed within the Nuclear Weapons
Complex (NWC). The core measures and implementation guidelines presented here
provide a basis for data-driven software project management, quality engineering, and
continuous process improvement.

1.1 Background -- The Need For Software Measurement

Within a given organization, software improvement typically involves the
achievement of the following goals:

· delivering ever-improving software quality to customers/users while reducing
cycle time, cost, and defects; and

· increasing the overall maturity, productivity, and effectiveness of the software
engineering process (including both development and support).

The primary mechanism for accomplishing these goals is a structured and
institutionalized program of continuous software process improvement based on
software measurement. Developing such a program requires a clear understanding of
software engineering capabilities and a baseline for measuring improvements.

Members of the SQAS have conducted a number of surveys and assessments within
the NWC and other Department of Energy (DOE) sites (e.g., see [SQAS-SURVEY]).
The following conclusions have been formed from the results of these efforts:

· most software developers do not know basic facts (such as cost, size, and defects)
about their software development efforts;

· there is little understanding of the components of software development costs and
profits and apparent uncertainty about what should be measured;

· little agreement exists on how to measure the software process or product quality -
- there is little agreement on what characterizes good software quality;

· software project performance is not closely controlled within most projects and
most organizations have difficulty accommodating change;

· software processes of most software development organizations are immature,
with few (if any) management controls or measurements other than milestone
progress; and,

· the arrival of the ship date is often used as the criterion for determining if software
is ready for delivery.

The SQAS member surveys and assessments have found that no organization has a
comprehensive, clearly defined software measurement programs. Those organizations
that have some software measurement program elements tend to use different
measurement and reporting mechanisms, and inconsistent measurement definitions.
This makes effective comparisons across organizations impossible.

A measurement program supports management’s need for answers to key questions
about software-intensive projects:

1

· How large is the job?
· Do we have sufficient staff to meet our commitments?
· How are we doing with respect to our plans?
· Will we deliver on schedule?
· How good is our product?
· How much have we improved our capability to develop software?
To answer these questions, methods are needed to accurately measure software for
size, effort, schedule progress, and the quality of the software processes and resulting
products. Reliable measurement of these characteristics is crucial to managing project
commitments and improving process maturity.

A measurement program provides data for the following important management
functions:

· project planning: estimating costs, schedules, and defect rates;
· project management: tracking and controlling costs, schedules, progress, and

quality; and,
· process improvement: providing baseline data, tracing root causes of problems

and defects, identifying changes from baseline data, and measuring trends.
The measurement program described in this document is intended to support an
organization and its specific projects. Each software project should initiate software
measurement as an integral part of the project planning process and collect software
measures to better quantify the project goals, successes, and failures. Each project’s
software measures are an integral part of the organization’s software measurement
program. An organization's software measurement program should be an integral part
of a software process improvement initiative.

1.2 Purpose of These Guidelines

The information in this document will assist organizations and projects to establish
and improve their software processes and products through measurement. A set of
four core software measures is recommended. The core measures are size, effort,
progress to schedule, and defects. These measures support requirements for an
organization to attain the Software Engineering Institute’s (SEI’s) Capability Maturity
Model (CMM) Levels 2 and 3. This document describes actions for establishing a
software measurement program, integrating software measurement with software
process improvement, and implementing core measures through use of a plan for
measurement and a case of evidence describing the results from the measurement plan
activities.

1.3 Scope of Application and Audience

The guidelines in this document apply to any organization that is responsible for the
acquisition, development, support, or use of software. Business, scientific, and
research software applications can benefit from these guidelines. The software
manager, software engineer, software quality engineer, software process improvement
group, and software customer have important software measurement roles. For any

 2

specific software project there may be multiple managers, engineers, and customers
involved in the measurement process. Some organizations will find it more efficient
to have a specialist in software measurement on the staff.

Software measurement is a complex process that involves progressively detailed
activities for identifying and applying software measures and for implementing a
measurement program. Some aspects (e.g., core measures and implementation
examples) of this document should be easily understood, even by personnel who are
just beginning to assume responsibility for software. Other aspects (e.g., establishing
a software measurement program) may be more easily understood by personnel who
are experienced with software engineering methods and process improvement
activities.

1.4 Overview of This Document

Section 2 describes guidelines for the recommended set of core measures.

Section 3 describes guidelines for implementing and using the core measures on
projects.

Section 4 provides guidance on establishing a software measurement program. A
structure for strategic, tactical, and engineering measures is described along with
supporting models, methods, and example plan/case documentation outlines.

Section 5 is a summary of the main conclusions and recommendations in this
document.

Appendix A includes definitions, acronyms, and abbreviations used in this document.

Appendix B includes a list of references and other important related documents.

Appendix C provides an example organization measurement plan standard with a
thematic outline of a measurement plan.

Appendix D provides examples of the four core measures for various projects.

1.5 Owner and Updates

The owner of this document is the SQAS. Feedback from each of the NWC sites, the
DOE, and any end-use customers is encouraged and will be addressed by the owner.
As appropriate, work items will be established to update this document to reflect
suggested changes.

3

Blank Page

 4

2. RECOMMENDED CORE SOFTWARE MEASURES

This section presents recommendations for implementing a set of four core measures
to support software projects. Methods for defining and reporting results are provided
for each measure. These methods are supported with reasons for using the measures
and recommendations are included for making the measures effective.The
recommended core software measures are listed in Table 2-1 along with examples of
measure units and the characteristics they address. Software development projects
within any organization should use these measures whether acquiring, developing,
using or maintaining software systems. Examples of specific core measure sets for a
variety of projects are provided in Appendix D.

Table 2-1. Measures for Initial Implementation

Type of Measure Examples of Measure Units Characteristic Addressed

Size Counts of physical source lines of
code (SLOC)

Function Points

Size, progress, reuse

Effort Counts of staff hours expended

Counts of staff hours to correct
problems & defects

Effort, cost, resource utilization,
rework

Progress to Schedule Calendar dates (events/milestones) Schedule, progress
Defects Counts of software problems &

defects
Quality, acceptability for
delivery, improvement trends,
customer satisfaction

Although other measurements also capture attributes of software resources, products
and processes, the measures listed above are practical, produce meaningful
information, and can be defined to promote consistent use. In that regard, the SEI has
developed three reports that are useful in defining the methods that are to be used in
collecting software measurements. In addition, these reports allow software project
management to state what each basic measure includes and excludes. The reports are:

· Software Size Measurement: A Framework for Counting Source Statements
[SEITR20].

· Software Effort and Schedule Measurement: A Framework for Counting Staff
hours and Reporting Schedule Information [SEITR21].

· Software Quality Measurement: A Framework for Counting Problems and Defects
[SEITR22].

Because experienced software managers are rarely satisfied with a single number, each
measure requires collection of multiple data items to define the attribute mapping. For
example, problems and defects usually are classified according to such attributes as
process task activity, status, type, severity, and priority. Effort can be classified by
labor class and type of process activity performed. Schedules are defined by process
activity, dates and completion criteria. Size measures might be aggregated according

5

to programming language, development status, and production method. To be of
value, both estimated and measured values must be collected at regular intervals
(weekly or monthly).

Thus, what may first appear to be just a few measures is actually much more. It will
be a significant accomplishment to implement a uniform collection and use of these
measures across a single organization much less the many organizations within any
given site. Neither the difficulty nor the value of this task should be underestimated.

2.1 Size

Recommendation

Adopt physical source lines of code (noncomment, nonblank source statements) as the
measure of software size. Function points are an alternative recommended measure of
software size.

Size of software product is dependent upon the attributes of product length,
functionality, and complexity. Some of the more popular and effective measures of
the length part of software size are physical source lines of code (SLOC) and logical
source statement (instructions). Function points (or feature points) and counts of
logical functions or computer software units (i.e., modules) might be the measure of
the functionality part of software size. Many attributes contribute to complexity, such
as the nineteen attributes that are part of the COnstructive COst MOdel (COCOMO)
cost estimation algorithm [BOEHM].

As an initial core measure, organizations should adopt physical SLOC as the measure
of software size. Even though this measure only represents the length part of size, it
should be an initial core measure for the following reasons.

1. SLOC is easy to measure; measurements are made by counting end-of-statement
markers, or simply the lines that are neither blank nor comments.

2. Counting methods strongly depend on the programming language used. One need
only to specify how to recognize statement types not counted (e.g., comments,
blank lines). Automated counters for physical SLOC measures are available.

3. Most historical data for constructing the cost models used for project estimating
are based on measures of source code size.

4. Empirical evidence to date suggests that counting physical SLOC is generally as
effective as any other existing size measure.

An explicit guide for defining the mapping of software product to the SLOC measure
is provided in [SEITR20]. This document spells out rules that address all origins,
stages of development, and forms of code production.

Size measurements can be used to track the status of code from each production
process and to capture important trends. An example such as the relationships
between planned and actual source code size as categorized by copied (reused),
modified (partially reused), and planned (new code) is shown in Figure 2-1.

 6

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Project Month

So
ur

ce
 L

in
es

 C
od

ed
 (t

ho
us

an
ds

)

Copied Modified Programmed

Planned

Figure 2-1. The Case of Disappearing Reuse

In this instance, it is apparent that a single measure of size would give a misleading
picture of progress and cost. Similar graphs that plot the amount of code by
development status also can be useful in relating progress to schedule. Examples
using the size core measure are described in Section 3.

Function (feature) points provide a possible alternative or additional size measure,
especially for information management software systems. A function point is defined
as one end-user application function [DREGER]. Typical end-user application
functions include:

· outputs: items processed by the computer for the end user, such as reports and
displays;

· inputs: items sent by the user to the computer for processing and to add, change, or
delete something;

· storage files: data stored for an application, as logically viewed by the user;
· interfaces: data stored by another application but used by the application of

concern; and
· inquiries: simple output from direct inquiries into a master file or special data base

using simple keys, requiring immediate system response, and performing no
update functions.

The counting process for function points is somewhat more complicated than for
SLOC. However, function points have the appealing advantage of relating directly to
the complete set of attributes for the size measure: length, functionality, and

7

complexity properties of the software system. And, the specific function point
attributes are typically known somewhat earlier in the software project than SLOC.

There are standards [IFPUG] for counting function points and detailed information
[DREGER] on application of function points to support software project size, cost, and
schedule estimations for both development and maintenance projects.

2.2 Effort

Recommendation

Adopt staff hours as the principal measure for effort.

Reliable measures for effort are prerequisites to dependable measures of software cost.
By tracking the human resources assigned to individual tasks and activities, effort
measures also provide the principal means for managing and controlling costs and
schedules.

The measurement of effort and schedule, as addressed in [SEITR21], is recommended.
This guide provides a useful definition checklist that enables managers to clearly state
what is included and excluded in a staff hour. An alternate definition is the staff hour
unit in the Institute of Electrical and Electronic Engineers’ (IEEEs’) draft Standard for
Software Productivity Measurements [P1045].

Although other units for measuring and reporting effort data could be used, such as
staff months and staff weeks, the use of staff hours is preferable for the following
reasons:

1. No standard exists for the number of hours in a labor month. Practices vary widely
across projects and reported values range from less than 150 to over 170 hours per
labor month. Because of contractual requirements, individual organizations may
define a labor month differently for different projects.

2. Staff months often do not provide the granularity needed for measuring and
tracking individual activities and processes, particularly when the focus is on
process improvement.

3. Measuring effort by staff weeks or staff days presents many of the same problems
as staff months, as well as additional ones. For example, although the basic
assumption is that a calendar week is five working days, the length of a standard
working day varies across organizations. Weekend work, overtime, and holidays
must also be addressed and defined if staff week measures are used.

4. Staff month, staff week, and staff day measures can be calculated from staff hours
should these measures be needed for presentations or other summaries.

Information about staff hours is used to track resource utilization across tasks and
products. Examples using the effort core measure are described in Section 3.

2.3 Progress to Schedule

Recommendation

 8

Projects should adopt structured methods such as those in [SEITR21] for defining two
important and related aspects of the schedules they report:

· Dates (both planned and actual) associated with project milestones, reviews,
audits, and deliverables; and

· Exit or completion criteria associated with each date.

Schedule and progress are primary project management concerns. For many projects
timely delivery is often as important as functionality or quality in determining the
ultimate value of a software product. Moreover, project management can become
especially complicated when delivery dates are determined by external constraints
rather than by the inherent size and complexity of the software product. Overly
ambitious, unrealistic schedules often result.

Because schedule is a key concern, it is important for managers to monitor adherence
to intermediate milestone dates. Early schedule slips often foreshadow future
problems. It is also important to have objective and timely measures of progress that
accurately indicate status and that can be used to estimate completion dates for future
milestones.

Cost estimators and cost model developers are also very interested in schedules.
Project duration is a key parameter when developing or calibrating cost models.
Model developers and estimators must understand what activities the duration includes
and excludes. For example, if a project is described as having taken 3 1/2 years, it is
reasonable to ask questions such as:

1. Exactly what milestones were included in that period?
2. What were the start/stop criteria that bounded the project?
3. Did the project include system requirements analysis and design, or just software

activities?
4. Did the period include hardware-software integration and testing or just software

integration?
The tracking of dates for milestones, reviews, audits, and deliverables provides a
macro-level view of project schedule. In addition, tracking the progress of activities
that culminate in reviews and deliverables can reveal potential problems. Tracking the
ratio of tasks completed to tasks planned during each reporting period provides
objective knowledge of where the project is at any given point and the trend over time.
This “task completion ratio” provides a valuable understanding of dynamically
changing tasks and schedules.

· Potential completion criteria

1. internal review held;
2. formal review with customer held;
3. all high-priority action items closed;
4. all action items closed;
5. document baselined under configuration management;

9

6. product delivered to customer;
7. customer comments received;
8. changes incorporated; and,
9. customer sign-off obtained.

Project activities or “phases” are not sufficient. The variations associated with
beginning and ending activities make it difficult to define start and end dates precisely.
Most activities (e.g., requirements analysis, design, code) continue to some extent
throughout the project. Where one project may consider requirements analysis
finished with a software specification review, another may consider it to be ongoing
throughout development. A second source of ambiguity stems from the fact that some
activities start, stop, and restart, making it very difficult to establish meaningful dates.

Project milestones, reviews, audits, and deliverables should have clear-cut completion
criteria linked to specific dates and should be reported separately by product, using the
following practices:

· Dates of milestones, reviews, audits, and deliverables
1. Require and report both planned and actual dates.
2. Specify the dates to be reported. A good first set includes the baseline date for

products developed as part of a given activity, the date of formal review, the
date of delivery for interim products, and the date of formal sign-off.

3. Allow some dates to apply to an entire build or system. In other cases, dates
should be specified for each software component. For critical components,
such as those developed by many NWC software projects, it may be
appropriate to track dates for individual software units or modules.

4. Require that planned and actual dates be updated at regular intervals. Keep a
record of all planned schedules and any major events that have a significant
impact on the planned schedules. Much can be learned by looking at the
volatility of those plans over time and the extent to which they are based on
supporting data (like the progress measures).

· Progress measures

1. Specify the measures to be tracked.
2. Require or produce a plan that shows the rate at which work will be

accomplished. A plan should be developed for each major software
component. Require that the planned and measured values be reported at
regular intervals.

3. Require objective completion criteria to make progress measures meaningful.
Make sure that these criteria can be audited to be sure that progress is real.

 10

2.4 Defects

Recommendation

Counts of software problems and defects and rework time should be used to help plan
and track development and support of software systems.

Determining what a customer or user views as true software quality can be elusive.
Whatever the criteria, it is clear that the number of problems and defects associated
with a software product varies inversely with perceived quality. Counts of software
problems and defects are among the few direct measures for software processes and
products. These counts allow qualitative description of trends in detection and repair
activities. They also allow the tracking of progress in identifying and fixing process
and product imperfections. The counts and rework time should be used to help
determine when products are ready for delivery to customers, identify the operational
impact of software defects on the customer, and provide fundamental data for process
and product improvement. In addition, problem and defect measures are the basis for
quantifying other software quality attributes such as reliability, correctness,
completeness, efficiency, and usability. IEEE Standard for Software Quality Metrics
Methodology [P1061] addresses this subject.

Defect correction (rework) is a significant cost in most software development and
maintenance environments. The number of problems and defects associated with a
product contribute directly to this cost. Counting problems and defects can aid
understanding of where and how they occur and provide insight into methods for early
detection, prevention, and prediction. Counting problems and defects also can directly
help track project progress, identify process inefficiencies, and forecast obstacles that
will jeopardize schedule commitments.

The SEI report on software quality measurement [SEITR22] provides a structure for
describing and defining measurable attributes for software problems and defects. It
uses a checklist and supporting forms to organize the attributes so that methodical and
straightforward descriptions of software problem and defect measurements can be
made. These forms can be used to define or specify a wide variety of problem and
defect counts, including those found by static processes (e.g., design reviews or code
inspections) or by dynamic processes (e.g., testing or customer operational use).

Opportunities abound for using defect and problem reporting to advantage across
many applications including the following:

Past projects. For projects in the post-release stage, a basic measurement is defect
logging (software trouble/problem reports), classification, prioritization, resolution,
and customer notification. This is a customer service function and is critical to
increasing customer satisfaction.

Ongoing projects. For projects currently in development and already measuring
problems and defects, the data collected should be used to estimate project completion
and potential failure rates during operational use. This may reveal that the

11

measurements are less than clear and precise in their meaning or that they fall short of
what is needed to control the development or maintenance activity.

New projects. For projects establishing or expanding a measurement system, an
initial task is to define the measurements that will be used to determine and assess
progress, process stability, and attainment of quality requirements or goals.

Serving the needs of many. Software problems and defect measurements apply
directly to estimating, planning, and tracking various parts of the software
development process. Users are likely to have different purposes for using and
reporting this data. The data can serve as a starting point for developing a repository
of problem and defect data that can be used as a basis for comparing past experience to
new projects, showing the degree of improvement or deterioration, justifying
equipment or tool investment, and tracing product reliability and responsiveness to
customers.

 12

3. IMPLEMENTING AND USING THE CORE MEASURES

This section outlines some ways to implement and use the recommended core
measures identified in Section 2. The recommended core measures can be used to
provide early warnings of potential problems, generate reliable projections, or suggest
and evaluate process improvements. This section includes discussion and examples of
the following:

1. Establishing project feasibility: using size/schedule/cost measures prior to the start
of a project.

2. Evaluating existing project plans and data: using size/effort/schedule/defect data to
derive patterns that characterize high-risk projects.

3. Tracking project progress: identifying trend data that reflect likely problems and
projecting the trend data into the future.

4. Improving the software process: using measurement results to streamline
maintenance and evaluate the impact of design and code inspections.

5. Calibrating cost models: using project data to assist an organization in calibrating
commercially available cost models.

When implementing a measurement program, the information being reported should
be formally described. Clear descriptions for measurement results can minimize
misunderstandings, and inappropriate decisions can be avoided. Such descriptions
provide a basis for standardizing measurement definitions across projects and provide
guidelines to support such consistency. In addition, these descriptions support training
of project personnel.

An appropriate time to conduct data collection activities is at each activity stage entry
and exit, with a focus on the early stages and defect removal. This provides for an “in-
process” prioritization to using measurement data to improve a project’s or
organization’s processes and products.

3.1 Establishing Project Feasibility

If a project is to deliver the required functionality on schedule, within budget, and with
acceptable quality,the project shouldbegin with realistic estimates.

Software cost models provide an objective basis for determining the feasibility of the
planned functionality/effort/schedule combination. Functionality is represented by
estimates of size combined with descriptions of complexity and hardware constraints.
On many projects, the schedule is determined by outside pressures (for example, when
the hardware will be ready or when the marketing department promised the new
release). The budget also may be determined by outside constraints. Software cost
models allow estimators to combine these basic project dimensions to determine
whether the project is feasible. If not, then early corrective actions can be taken
relative to plans, schedules, and delivered product. Such actions can involve any or all
of the following:

· reduction of planned functionality;
· expansion of the time planned to carry out the project; and,

13

· increasing the budget so as to allow additional resources and/or an improvement in
the development environment.

Several cost models allow estimators to enter a specific schedule as a constraint and to
observe its effect on total effort. Some also allow users to enter effort as a constraint
and observe the effect on schedule.

A highly compressed schedule leads to substantially increased effort and
cost.

Typical models accept historical data that describe projects in terms of size (e.g.,
SLOC) and complexity attributes and provide a estimated profile of staff hours over
project time and total project duration.

Managers like to avoid impossible projects and control risky projects. In both cases,
examinations of tradeoffs using software cost models provide a basis for
understanding the extent of cost and schedule risk.

3.2 Evaluating Plans

Much can be learned, often before any software has been developed, by examining
project plans. The following examples show how potential problems sometimes can be
identified from staffing and schedule plans and from successive size estimates.

3.2.1 Size

Size is often underestimated early in a project. A great deal of useful information can
be obtained from using historical data from similar projects and periodically updating
size estimates. As more is understood about the product, the estimates are likely to
change. Size growth will impact cost and schedule in ways that should be identified
and dealt with as early as possible.

One such case is shown in Figure 3-1. In this figure, counts of reused and new code
have been extracted from each of a series of development plans. This project was
planned so that there would be substantial reuse of existing code. From Figure 3-1,
note that the code growth appears to be nearing 10 - 20% for each new forecast, with
costs likely to rise similarly. It also indicates that the situation is actually much worse:
by the final plan, all of the planned reuse has disappeared and the forecast for new
code development is up by approximately 60%. If such information is not reflected in
current schedules and cost estimates, serious questions should be asked.

 14

400

300

200

100

Draft
Plan

Contract
Plan

Plan 1 Plan 2 Plan 3 Plan 4 Plan 5

So
ur

ce
 S

ta
te

m
en

ts
 (t

ho
us

an
ds

)

Plans

Reused Code New Code

Figure 3-1. Exposing Potential Cost Growth from Disappearing Code Reuse

The importance of keeping planned and actual data is illustrated in Figure 3-2 and
inspires some probing questions. Since the project has made only minor changes in
the planned completion date despite falling significantly below the original profile
over the last nine months, there is reason to examine the code production rate that the
current plan implies. Upon doing this, it is easily calculated that the current plan
requires an average rate of 12,000 statements per month for months 12 through 20 to
reach the planned completion date. This is highly suspect, since the demonstrated
capability has yet to reach an average rate of even 2,500 statements per month,
considerably less than the 7,600 statements per month that were required in the
original plan. It is appropriate to question how the rate of code production can be
quadrupled under the current plan. If the project relies on improvements of this
magnitude to meet the original completion date, then there should be more emphasis
on measuring and tracking the quality of the evolving product.

150

100

50

0
0 5 10 15 20

Original Plan
Actuals

Development Month

So
ur

ce
 S

ta
te

m e
nt

s
(th

ou
sa

nd
s)

Figure 3-2. Deviations from Original Plan Indicate Problems

3.2.2 Effort

Effort profiles, such as the example in Figure 3-3, can provide early indication of
project problems. Project managers should beware of steep ramp-up curves and of

15

throwing extra people at troubled projects. They are subject to ‘Brooks Law’ as stated
in [BROOKS]. That law says that “Adding manpower to a late project can make it
later.”

Requirements

Review
Design
Review

Code
Review

Integration/
Test

Delivery

Time

Pe
op

le

Figure 3-3. Staffing Profile

3.2.3 Progress to Schedule

Attempts to compress schedules typically lead to increased risk. As previously
described, fairly severe limits exist as to how quickly any project can ramp up in terms
of staffing. A common manifestation of a compressed schedule is the type of plan,
illustrated for computer software Module 1 in Figure 3-4, in which fundamentally
sequential activities run in parallel. Contrast this with the plan for Module 2.
Schedules of the latter type are much more desirable.

Top Level Design

Detailed Design

Code/Unit TestModule 1
(compressed)

Module 2
(normal)

 Software Development Schedule (months)
Figure 3-4. Comparison of Compressed and Normal Schedules

Another obvious symptom of a project in trouble is a series of continually slipping
milestones such as that as shown in Figure 3-5. In each new plan, the scheduled
delivery date slips, resulting in a continually moving delivery date. In this case, new
plans were made every two to three months, with each new delivery date slipping by
about the same amount of time. It is likely that when a schedule has slipped, then the
original estimates for the remainder of the schedule are also too optimistic.

 16

Date of Plan

Scheduled Delivery
Plan 1

Plan 2

Plan 3

Time (months)

Plan 4

Plan 5

Figure 3-5. Continually Slipping Milestones

3.2.4 Defects

When intermediate milestones keep slipping without corresponding adjustments to the
delivery date, the result is that the amount of time allocated to software integration and
test gets compressed. When this happens defect detection rates reach sustained high
levels with resulting backlogs of open problem reports.

The detection pattern shown in Figure 3-6 is typical for projects in trouble. It shows
manpower and detected defects peak during integration and test. These high levels
should not be interpreted as phenomena to be tolerated when shortening schedules.
Rather, they indicate that considerably more time than anticipated will be required to
complete the software. The choices are realistically adjusting the delivery date or
delivering a product with a high number of residual defects.

Time (months)

DEFECT DISCOVERY RATE

Requirements
Review

Design
Review

Code
Review

Integration/
Test

Delivery

D
ef

ec
ts

Figure 3-6. Effects of Slipping Intermediate Milestones

In cases where integration and test steps are compressed, objective progress measures
can play a key role in providing a basis for defensible schedule projections. The use

17

of size estimates and projected defect rates and their comparisons with periodic
measurement results also provide a basis for this type of analysis.

3.3 Tracking Progress

In managing a project, the following questions are fundamental:

· How much has been done?
· How much is left to do?
· When will it be completed?
These questions can be answered for any activity with outputs or products that can be
expressed in quantifiable units. For requirements analysis, this could be the number of
requirements to be allocated to each software component. For preliminary design, it
could be the number of external interfaces to be specified. For integration and test, it
could be the number of test procedures to be executed. To implement, estimate the
total number of units to be completed and then, at regular intervals (weekly or
monthly), track the actual number completed. Extrapolation of the resulting curve will
give an objective basis for projecting the completion date for that activity. A simple
linear extrapolation is often accurate.

An example of this type of analysis for code production is shown in Figure 3-7. In this
case, the total number of SLOC was estimated at 120,000. The actual SLOC
completed was plotted over a five-month period. An extrapolation made at that point
yielded a very accurate projection of when coding would be complete.

Estimated
Completion
Date

Actual
Completion
Date

Time (months)

N
um

be
r

Li
ne

s
C

od
ed

Estimated Total Size

Figure 3-7. Extrapolating Measurements to Forecast a Completion Date

This type of analysis is valid only if objective criteria exists for counting units as
complete. In this example, the criteria were that each line of code had completed unit
test and had been entered under configuration control. At that point, it was processed
by an automated code counter.

The same analysis can be performed for individual components. If some components
are lagging more people can be assigned to work on them or the approach can be

 18

changed to increase the code production rate for the affected components. But, be
careful of Brooks Law!

Another measure that provides valuable information for projecting completion dates is
the rate of defect discovery, especially during integration and test. Ideally, a steady
decline in defect discoveries will be seen as the scheduled delivery date approaches.
An example of a project that delivered on schedule is shown in Figure 3-8. Contrast
this with the pattern shown previously in Figure 3-6, where the number of defects
detected peaked near the end of integration and test.

Requirements
Review

Design
Review

Code
Review

Integration/
Test

Delivery

Time (months)

DEFECT DISCOVERY RATE

D
ef

ec
ts

Figure 3-8. Effects of Normal Schedules

3.4 Improving the Process

The recommended core measures provide a basis for evaluating the impact of changes
made to software development and maintenance processes. Two such examples are
described in this section.

3.4.1 Evaluating the Impact of Design and Code Inspections

Problem reports can be used to evaluate the impact of implementing design and code
inspections. A time history of problem reports is illustrated in Figure 3-9 as reported
over time for a project that implemented inspections to find defects early in the
process. The defects found peaks during design and coding activities and drops off
quickly (as desired) during integration and testing. Compare the pattern in Figure 3-9
with Figures 3-6 and 3-8.

19

Requirements
Review

Design
Review

Code
Review

Integration/
Test

Delivery

Time (months)

DEFECT DISCOVERY RATE
D

ef
ec

ts

Figure 3-9. Effects of Early Defect Detection

3.4.2 Improving Maintenance

In this example, measures were used to bring much needed visibility to software
maintenance. The organization implementing these measures was maintaining fielded
versions of their software worldwide. When a problem came in from the field, the
organization tracked which system components were at fault and the amount of time
spent isolating and fixing the problem. This typically involved a workaround for the
customer and a revision to the software for the next release. With information about
where the problems occurred and the effort to fix them, the organization was able to
identify their most error-prone components and know exactly how much was being
spent on maintenance. The organization could make informed decisions about the
costs and benefits of redesigning these components.

The defect reduction trend is illustrated in Figure 3-10 over a five-year period of a
project in which customer software problem reports are logged and defects are
identified and removed. Post-release (software maintenance) defect tracking is one of
the keys to increased customer satisfaction.

1.0

2.0

3.0

4.0

5.0

90 91 92 93 94

Goal
Results

Defects
per

K lines
of code

Figure 3-10. Declining Defect Density

 20

3.5 Calibrating Cost Models

Core software measures and data from existing projects can also be used in calibrating
cost models. As noted earlier, several commercially available cost models allow
estimators to use historical size, effort, and duration data to calibrate underlying
estimation algorithms. Others use the data to derive tailored values for parameters that
characterize resources, productivity, product difficulties, or organizational capabilities
in more complex ways. In either case, once these values are determined from
completed projects, the resulting baselines can be used as references to help make
future estimates consistent with demonstrated past performance. To be valid,
calibration of cost models requires full knowledge of the definitions used when
collecting and reporting effort, schedule, and size measurements. Calibration is
greatly assisted when consistent definitions and measurement rules are used across
projects and organizations.

21

Blank Page

 22

4. ESTABLISHING A SOFTWARE MEASUREMENT PROGRAM

This section provides an overview of software measurement and an infrastructure for
establishing a software measurement program. It is recommended [GRADY87] to
start small and build on success. It is also recommended [SEMATECH] to combine a
software measurement program with a software process improvement initiative so the
measurement program is sustainable. As far as possible, establish automated
mechanisms for measurement data collection and analysis. Automated methods
should be a support resource of the measurement process rather than a definition of the
process. Regularly collect the core measurements and additional measurements
specific to the local goals in the organization. Plan and schedule the resources that
will be required to collect and analyze the measurement data within the organization’s
overall software process improvement efforts and the specific organization’s projects.
Evolve the measurement program according to the organization’s goals and objectives.
Provide a mechanism for projects and the organization’s software process
improvement group to consolidate software project measurements.

The four steps identified in Figure 4-1 illustrate a comprehensive process for
establishing a software measurement program. An organization may decide to
implement a subset of these activities. Organizations should tailor their use of the
activities as necessary to meet organization and project goals and objectives. Each of
these four major activities is described in the following subsections.

Step 1: Adopt a Software Measurement Program Model
 - Identify resources, processes, products
 - Derive core measurement views

Step 2: Use a Software Process Improvement Model
 - Establish baseline assessment of project/organization
 - Set and prioritize measurable goals for improvement
 - Establish action plan with measures
 - Accomplish actions and analyze results
 - Leverage improvements through measurement

Step 3: Identify a Goal-Question-Metric (GQM) Structure
 - Link software goals with corporate goals
 - Derive measures from attribute questions
 - Establish success criteria for measurement

Step 4: Develop a Software Measurement Plan and Case
 - Plan: what, why, who, how, when
 - Case: measurement evidence and analysis results

Figure 4-1. Steps to Establishing a Software Measurement Program

4.1 Adopt a Software Measurement Program Model

An organization or a project must understand what to measure, who is interested in the
results, and why. To assist this understanding, it is recommended that a software
measurement program model be adopted such as illustrated in Figure 4-2.

23

• Three views—Collecting the right measure at the right level . . . and for the
right purpose

 Strategic Customer Based

 Tactical Project Management

 Application Engineering

• Integrating lower level measures into the appropriate view

−Each view has its own Goal-Question-Metric perspective

Software Objects Views of Core Measures

Resource

Process

Product

View
1

View2
View3

Figure 4-2. Software Measurement Program Model

The measurement program model provides a simple framework for specifically
identifying what software attributes are of potential interest to measure, who the
various customers of measurement results might be, and why such measurement
results are of interest to those customers. The measurement program model includes
the general software objects of measurement interest such as resources, processes, and
products. The measurement customers include the end-use customer, software
organization and project management, and software application personnel. These
customers need software measures for different reasons. Their viewpoints drive the
eventual measurement selection priorities and must be integrated and consistent to be
most effective.

To establish a successful measurement program (e.g., one that is used for organization
and/or project decision making and lasts more than two years), it is necessary to have
a basic understanding of measurement. The following subsections provide an
introduction to attributes of resources, processes, and products that might be useful to
measure and some software measurement terminology that relates to the Software
Measurement Program Model. Additional information can be found in [FENTON],
[NASA], and [PSM].

4.1.1 Resources, Products, Processes

Software objects such as resources, products, and processes have attributes that
characterize software projects and are therefore of interest to measure. A software
measure is an objective assignment of a number (or symbol) to a software object to
characterize a specific attribute [FENTON].

Resources are inputs to processes. Such inputs specifically include personnel,
materials, tools, and methods. Resources for some processes are products of other
processes. An attribute of great interest that is relevant to all of these types of
resources is cost. Cost is dependent on the number of resources and the market price

 24

of each resource. For personnel, the cost is dependent upon the effort expended
during the process and the market price value of each person assigned to the process.

Processes are any software related activities such as requirements analysis, design
activity, testing, formal inspections, and project management. Processes normally
have time and effort as attributes of interest, as well as the number of incidents of a
specified type arising during the process. Certain incidents may be considered to be
defects in the process and may result in defects or faults in products.

Products are any artifacts, deliverables, or documents that are produced by software
processes. Products include specifications, design documentation, source code, test
results, and unit development folders. Products normally have size and inherent
defects as attributes of interest.

4.1.2 Direct and Indirect Software Measurement

Direct measurement of a software attribute does not depend on the measurement of
any other attribute. Measures that involve counting, such as number of SLOC and
number of staff hours expended on a process, are examples of a direct measure.

Indirect or derived measurement involves more than one attribute. Rates are typically
indirect measures because they involve the computation of a ratio of two other
measures. For example, software failure rate is computed by dividing the count of the
failures observed during execution by the execution time of the software. Productivity
is also an indirect measure since it depends on the amount of product produced
divided by the amount of effort or time expended.

Two other very important aspects of the measurement assignment are preservation of
attribute properties and mapping uniqueness. The mapping should preserve natural
attribute properties (e.g., such as order and interval size). If another assignment
mapping of the attribute is identified, there should be a unique relationship between
the first mapping and the second mapping. It is very difficult to ensure that measures
satisfy these preservation and uniqueness properties. This document will not consider
these issues in any detail. See [FENTON] for a more complete discussion.

4.1.3 Views of Core Measures

The three views (strategic, tactical, application) of the core measures illustrated in
Figure 4-2 identify important attributes from the viewpoints of the customer, project
management, or applications engineers, respectively. It is extremely important for the
measurement program to be consistent across the three views of core measures. There
must be agreement and consistency on what measures mean, what measures are
important, and how measures across the three views relate to and support each other.

Strategic View: This view is concerned with measurement for the long term needs of
the organization and its customers. Important measures include product cost (effort),
time to market (schedule), and the trade-offs among such quality measures as
functionality, reliability, usability, and product support. It may be critical to an
organization to establish new customers and solidify old customers through new

25

product capabilities -- with limited reliability and usability, but with a well-planned
support program. Time to market is usually a critical measure, and may become one
of upper management’s most important measures.

Tactical View: This view is concerned with short and long term needs of each
individual project’s management goals. The project measures that support the Tactical
View should be able to be aggregated to show a relationship to the organization’s
strategic goals. If not, then individual projects will appear to be “out of sync” with the
organization. The primary measures of interest to project management are schedule
progress and labor cost.

Application View: This view is concerned with the immediate resource, process and
product engineering needs of the project. Resources (e.g. personnel and support
equipment) are of some interest in this view, but the engineer is primarily interested in
the process activities to produce a high quality product. The engineering definitions of
process and product quality should be consistent with project management or upper
level organization management understanding. Product size, complexity, reliability,
and inherent defect measures are important to the engineers because they indicate
achievement of functional and performance requirements.

4.2 Use a Software Process Improvement Model

In order for a software measurement program to be successful, the measurement
activities should be conducted within the environment of continuous software process
improvement. Without such an environment measures will not be seen as value-added
and the measurement program will not be sustainable. Two models are important to a
software process improvement initiative and the integration of software measurement,
as illustrated in Figure 4-3. The IDEAL model [SEIIDEAL] provides an organization
with an approach to continuous improvement. The Capability Maturity Model
[SEICMM] can be used to establish a measurement baseline [SQAS-SPA].

Software Process Improvement Model
 - establish baseline assessment of project/organization
 - set and prioritize measurable goals for improvement
 - establish action plan with measures
 - accomplish actions and analyze results
 - leverage improvements through measurement

Leveraging

Acting

EstablishingDiagnosing
Initiating

IDEAL
Model

CMM
Model

Process Improvement Measures

Initial
Repeatable

Defined
Managed

Optimized

I
 R

 D M
O

none
project

cross-project
process control

dynamic

Figure 4-3. Software Process Improvement Models

 26

4.2.1 SEI IDEAL Model

The IDEAL model [SEIIDEAL] provides a framework for conducting process
improvement activities at the organization level and the project level. The IDEAL
model is similar to the Plan/Do/Check/Act model identified in [DEMING].

Organization Software Measurement. During the Initiate stage, the organization
goals and measures for the improvement are defined along with success criteria. The
Diagnose stage includes baselining the organization’s current process capability (e.g.,
using the SEI CMM during a Software Process Assessment) in accordance with the
measures inherent in the assessment process. The Establish stage provides focus on
identifying specific improvements that will be accomplished by action teams and the
measures for those improvements. Prioritized improvement actions are determined
and action teams are formed to develop specific plans that address the high priority
improvements. The Act stage includes implementation of the action team plan
including collection of measurements to determine if the improvement has been (or
can be) accomplished. The Leverage stage includes documenting the results of the
improvement effort and leveraging the improvement across all applicable organization
projects.

Project Software Measurement. During the Initiate stage, the project goals and
measures for success are defined along with success criteria. A project Software
Measurement Plan should be developed or included as part of the software project
management information (e.g., referenced as an appendix to a Software Development
Plan). The Diagnose stage includes documenting and analyzing the project’s
measures as a Measurement Case during the project life cycle in accordance with the
measures in the Measurement Plan. The Establish stage provides focus on identifying
specific project or organization improvements that might be accomplished.
Prioritized improvement actions are determined and assigned to project or
organization level, as appropriate. For more mature organizations, project teams can
accomplish the improvements during the project. For less mature organizations, the
identified improvements will serve as a lessons learned for future projects. Action
teams are formed (by the project or organization) and a plan developed to address the
high priority improvements. The Act and Leverage stages for the project are limited
to making mid-course project corrections based on the measurement information.
Such measurement data and the actions taken are recorded in the Measurement Case.
The project’s Measurement Case then becomes the complete documentation of the
project management and engineering measures, any changes to project direction based
on measurement analysis, and lessons learned for future projects.

4.2.2 SEI CMM

The SEI CMM serves as a guide for determining what to measure first and how to plan
an increasingly comprehensive improvement program. The measures suggested for
different levels of the CMM are illustrated in Table 4-1. The set of core measures
described in this document primarily address Level 1, 2 and 3 issues.

27

Table 4-1. Relationship of Software Measures to Process Maturity

Maturity
Level

Measurement Focus Applicable Core Measures

1 Establish baselines for planning and
estimating project resources and tasks

Effort, Schedule Progress
(Pilot or selected projects)

2 Track and control project resources and tasks Effort, Schedule Progress
(Project by project basis)

3 Define and quantify products and processes
within and across projects

Products: Size, Defects
Processes: Effort, Schedule
(Compare above across projects)

4 Define, quantify, and control subprocesses
and elements

Set upper and lower statistical control
boundaries for core measures. Use
estimated vs actual comparisons for
projects and compare across projects.

5 Dynamically optimize at the project level and
improve across projects

Use statistical control results
dynamically within the project to
adjust processes and products for
improved success.

Level 1 measures provide baselines for comparison as an organization seeks to start
improving. Measurement occurs at a project level without good organization control,
or perhaps on a pilot project with better controls.

Level 2 measures focus on project planning and tracking. Applicable core measures
are the staff effort and schedule progress. Size and defect data are necessary to
understand measurement needs for level 3 and level 4 and to provide a data base for
future evaluations. Individual projects can use the measurement data to set process
entry and exit criteria.

Level 3 measures become increasingly directed toward measuring and comparing the
intermediate and final products produced across multiple projects. The measurement
data for all core measures are collected for each project and compared to organization
project standards.

Level 4 measures capture characteristics of the development process to allow control
of the individual activities of the process. This is usually done through techniques
such as statistical process control where upper and lower bounds are set for all core
measures (and any useful derived measures). Actual measure deviation from the
estimated values is tracked to determine whether the attributes being measured are
within the statistically allowed control bounds. A decision process is put into place to
react to projects that do not meet the statistical control boundaries. Process
improvements can be identified based on the decision process.

Level 5 processes are mature enough and managed carefully enough that the
statistical control process measurements from level 4 provide immediate feedback to
individual projects based on an integrated decisions across multiple projects.

 28

Decisions concerning dynamically changing processes across multiple projects can
then be optimized while the projects are being conducted.

4.3 Identify a Goal-Question-Metric (GQM) Structure

One of the organization’s or project’s most difficult tasks is to decide what to measure.
The key is to relate any measurement to organization and project goals. One method
for doing this is to use Basili's Goal-Question-Metric (GQM) paradigm described in
[BASILI] and illustrated in Figure 4-4 with a partial example related to software
reliability.

This method links software goals to corporate goals and derives the specific software
measures that provide evidence of whether the goals are met. Since such measures are
linked directly to organization goals, it is much easier to show the value of the
measurement activity and establish success criteria for measurement.

Goal

GQM Questions Measures

To achieve
a ten-fold
improvement
in post-release
defects in the
next 5 years

What is the
existing number of
operational faults?

How effective are
inspection
techniques during
development?

How effective are
acceptance tests?

How effective is
the test strategy?

What factors
affect reliability?

Number and
type of fault
reports

Number of
defects found,
number of
system failures
during testing

Figure 4-4. Basili's Goal-Question-Metric (GQM) Paradigm

The GQM method to software measurement uses a top down approach with the
following steps:

1. Determine the goals of the organization and/or project in terms of what is wanted,
who wants it, why it is wanted , and when it is wanted.

2. Refine the goals into a set of questions that require quantifiable answers.
3. Refine the questions into a set of measurable attributes (measures for data

collection) that attempt to answer the question.

29

4. Develop models relating each goal to its associated set of measurable attributes.
Some attributes of software development, such as productivity, are dependent on many
factors that are specific to a particular environment. The GQM method does not rely
on any standard measures and the method can cope with any environment.

This activity may be conducted concurrently with any other software measurement
activities and may be used to iteratively refine the software measurement program
model, core measurement views, and process improvement efforts.

4.4 Develop a Software Measurement Plan and Case

The software measurement program activities provide organization and project-
specific planning information and a variety of measurement data and analysis results.
These plans, data, and results should be documented through use of a software
measurement plan and software measurement case as illustrated in Figure 4-5.

Software Measurement Plan
1. Objectives for Collecting Measures
2. Use and Users of Information
3. Measures to be Collected
4. Collection of Measures
5. Analysis of Measures
6. Project Organization
 (may be in project plan)
7. Project Task Structure
 (may be in project plan)
8. Standards

Software Measurement Case
1. Measures & Actual Results
 Users (actual)
 Measures (actual)

Figure 4-5. Software Measurement Plan and Case

A software measurement plan defines:

• what measurement data are to be collected;
• how the data are to be analyzed to provide the desired measures; and
• the representation forms that will describe the measurement results.
Such a plan also provides information as to who is responsible for the measurement
activities and when the measurement activities are to be conducted. A software
measurement plan should be developed at an organization level to direct all
measurement activity and at a project level to direct specific project activity. In most
cases a project’s software measurement plan can be a simple tailoring of the
organizational plan. The organization’s software measurement plan can be a separate
document or might be an integrated part of the organization’s Software Management
Plan or Software Quality Plan. An example of an organization measurement plan
standard and plan outline is provided in Appendix C.

 30

A software measurement plan at either the organization or project level should relate
goals to specific measures of the resource, process, and product attributes that are to
be measured. The GQM method can be used to identify such measures. Improvement
in accordance with the SEI CMM key process areas should be an integrated part of the
derivation. The identified measures may be a core measure or derived from one or
more core measures. The integration of core measures with process improvement and
GQM is illustrated in Figure 4-6.

Core and Derived Measures

Organization
Commitment

(Goals)

Organization
Projects & Action Plans

(Objectives)

Organization
Improvement Measures

(map of Objectives to
Process Improvement Measures)

Organization

GOALS

OBJECTIVES/QUESTIONS

PROCESS IMPROVEMENT MEASURES

ORGANIZATION MEASURES

GQM
Measurement

Derivation
Technique

I R
D M O

Core Measures Derived Measures

Size / Effort / Schedule / Defects Productivity / Producibility / Progress
/ Stability / Reliability

Enterprise Evolution Flexibility L5

L4

L3

L2

L1Ad Hoc
Measurement

Project-Specific
Measurement

Cross-Project
Measurement

SPC Measurement

Optimizing
Measurement

Simple In-Process Metrics
No Feedback / Storage

Measurement Plan With Project
Management Data Collection &

Storage, Project Feedback

Analysis Using Multiple
Project Data, Organization Feedback

Project Decision-Making &
Control by Project SPC

Based on Organization SPC

Initial
Repeatable Defined Managed Optimized

Figure 4-6. Integration of Software Measurement and Process Improvement

The following activities are key to developing a software measurement plan:

1. Establish Program Commitment. Define why the program is needed, obtain
management approval, and identify ownership.

2. Determine Goals and Expected Results. Use software process assessment
results to set the improvement context.

3. Select Project Measurements. Apply the GQM method to derive project
measures.

4. Develop Measurement Plan. Document the measures to be collected, data
collection, analysis and presentation methods, and relationship to an overall
improvement program.

31

The software measurement case documents the actual data, analysis results, lessons
learned, and presentations of information identified in an associated software
measurement plan. The following activities are key to developing a Software
Measurement Case:

1. Implement Measurement Plan. Collect and analyze data, provide project
feedback, and modify project/program as necessary.

2. Analyze Measurement Results. Store project measurement results, analyze
results against historical project results.

3. Provide Measurement Feedback. Report results of analysis as project lessons
learned, update measurement and process improvement programs, and repeat the
process of developing/updating a Measurement Plan and Case.

 32

5. SUMMARY OF RECOMMENDATIONS

Specific software measurement actions on individual projects and within organizations
will depend on existing software capability and initiatives. The following
recommendations summarize the guidelines in this document.

5.1 Software Measurement Program

Adopt a measurement model appropriate to the organization. Identify core measures
of product, process, and resource attributes as a baseline model. Integrate
measurement as a part of a process improvement program. Baseline current process
and measurement practices using a model such as the SEI CMM. Initiate process
improvement activities following a model such as the SEI IDEAL. Use the Goal-
Question-Metric approach to link organization goals to software measures. Use the
CMM and the core measures to link the software measures to process improvement.
Develop organization and project measurement plans and document measurement
evidence as standard activities. Use the measurement evidence to influence
organization and project decision-making.

5.2 Core Measures

Define and collect the four core measures of size, effort, progress to schedule, and
defects for all projects.

Size. Some of the more popular and effective measures of software size are physical
source lines of code (noncomment, nonblank source statements); logical source
statement (instructions); function points (or feature points); and counts of logical
functions or computer software units (i.e., modules). Size measurements can be used
to track the status of code from each production process and to capture important
trends. It is recommended that projects adopt physical source lines of code or function
points as the principal measure for size.

Effort. Reliable measures for effort are prerequisites to dependable measures of
software cost. By tracking human resources assigned to individual tasks and
activities, effort measures provide the principal means for managing and controlling
costs and schedules. It is recommended that projects adopt staff hours as the principal
measure for effort.

Progress to Schedule. Schedule and progress are primary project management
concerns. Accordingly, it is important for managers to monitor adherence to
intermediate milestone dates. Early schedule slips often foreshadow future problems.
It is also important to have objective and timely measures of progress that accurately
indicate status and that can be used to project completion dates for future milestones.

At a minimum, the following information should be planned for and tracked:

· Major milestone completion progress -- estimates and actuals: requirements,
design, implementation, test, delivery;

33

· Intermediate milestone completion progress -- estimates and actuals: modules
coded, modules integrated;

· Estimated size progress -- estimates and actuals by date completed; and,
• Exit or completion criteria associated with each milestone date.

Defects. The number of problems and defects associated with a software product
varies inversely with perceived quality. Counts of software problems and defects are
among the few direct measures for software processes and products. These counts
allow qualitative description of trends in detection and repair activities. They also
allow the tracking of progress in identifying and fixing process and product
imperfections. In addition, problem and defect measures are the basis for quantifying
other software quality attributes such as reliability, correctness, completeness,
efficiency, and usability.

5.3 Automated Methods

In order to make the software measurement program as efficient as possible, it is
recommended to establish automated mechanisms for measurement data collection
and analysis. Automated methods should be a support resource of the
measurement process rather than a definition of the process. Regularly collect the
core measurements and additional measurements specific to the local goals in your
organization.

 34

APPENDIX A: DEFINITIONS, ACRONYMS, AND ABBREVIATIONS

A.1 Definitions and Terminology

Generic software terminology is defined in [IEEE610] and [SQAS-GLOSSARY].
Some terminology that is specific to this document is derived from [FENTON].
Customers of this document include:

Software Manager: The software manager is responsible for ensuring the project is
on schedule, is within budget, and has the requisite quality. The software manager is
concerned with in-process measures that can provide early warning information. The
software manager is responsible for the measurement planning information and for
ensuring the measurement evidence is collected, analyzed, used in project decisions,
and documented for lessons learned.

Software Engineer: The software engineer is responsible for collecting process and
product measurement data, analyzing the data to determine the impact on quality, and
ensuring the measurement data and analysis results are properly communicated to the
software quality engineer and software manager. The software engineer uses software
measurement data to determine whether process entry and exit criteria have been
achieved.

Software Quality Engineer: The software quality engineer is responsible for
ensuring quality is engineered into the engineering processes and resulting software
products as acquired, developed, supported, or used by an organization or project. The
software quality engineer may be part of a software organization or part of an
independent quality assurance group, and should provide expertise in establishing a
software measurement program. Measurement data provide in-process assurance and
qualification evidence that requisite software quality has been attained.

Software Process Improvement Group: The software process improvement group is
responsible for improving the software processes and resulting software products at an
organization level. Improvement requires a measurement baseline and a continuous
measurement program applied to organization projects to determine progress toward
improvement goals.

Software Customer: The software customer is any organization that receives a
software product from a supplier for the purpose of qualification review, acceptance
review, or operational use. The customer may be a Nuclear Weapons Complex
organization or site, a Department of Energy organization or site, or an organization
such as the Department of Defense. The customer is primarily interested in the cost of
acquiring the software, schedule time to achieve an operational software capability,
software product defects that may be in the delivered software product, and on-going
product support. The customer is responsible for the feedback of defects found during
operational use.

A - 1

A.2 Acronyms and Abbreviations

CMM Capability Maturity Model
COCOMO Con\structive COst MOdel
DOE Department of Energy
GQM Goal-Question-Metric
IDEAL Identify, Diagnose, Establish, Act, Leverage
IEEE Institute of Electrical and Electronics Engineers
NWC Nuclear Weapons Complex
SEI Software Engineering Institute
SLOC Source Lines of Code
SQAS Software Quality Assurance Subcommittee
WBS Work Breakdown Structure

 A - 2

APPENDIX B: REFERENCES AND BIBLIOGRAPHY

[BASILI] Basili, V. and Weiss, D.M., “A Methodology for Collecting Valid
Software Engineering Data,” IEEE Transactions on Software
Engineering, vol. SE-10, No. 6, November 1984, pp. 728-738.

[BOEHM] Boehm, B. W., Software Engineering Economics. Prentice Hall,

Englewood Cliffs, NJ, 1981.

[BROOKS] Brooks, F. P., The Mythical Man-Month: Essays on Software

Engineering, Addison-Wesley, Reading, MA, 1975.

[DEMING] Deming, W. E., Out of the Crisis, MIT Press, Cambridge, MA, 1986.

[DODCORE] Carleton, A.D., Park, R.E., Goethert, W.B., Florac, W.A., Bailey, E.K.,

Pfleeger, S.L., Software Measurement for DoD Systems:
Recommendations for Initial Core Measures (CMU/SEI-92-TR-19),
Software Engineering Institute, Pittsburgh, PA, 1992.

[DOESEM] Software Engineering Methodology, U.S. Department of Energy, March

1996.

[DREGER] Dreger, J. Brian, Function Point Analysis, Prentice Hall Advanced

Reference Series, Prentice Hall, Englewood Cliffs, New Jersey, 1989.

[FENTON] Fenton, N. E., Software Metrics A Rigorous Approach, Chapman &

Hall, London, England, 1991.

[GRADY87] Grady, R. B. and Caswell, D.L., Software Metrics: Establishing a

Company-Wide Program, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[GRADY92] Grady, R. B., Practical Software Metrics for Project Management and

Process Improvement, Prentice-Hall, Englewood Cliffs, NJ, 1992.

[IEEEstds] IEEE Software Engineering Standards Collection: 1994 Edition, Wiley-

Interscience, New York, NY, 1994.

[IEEE610] IEEE Std-610.12-1990, "IEEE Standard Glossary of Software

Engineering Terminology (ANSI)," IEEE Software Engineering
Standards Collection: Spring 1991 Edition, Wiley-Interscience, New
York, NY, 1991.

[IEEE982] IEEE-Std-982.1-1988, “Standard Dictionary of Measures to Produce

Reliable Software,” Institute of Electrical and Electronic Engineers,
Inc., Washington, DC, 1988.

B - 1

[IFPUG] International Function Point Users Group Standard, Function Point

Counting Practices Manual, Release 4.0, 1994.

[ISO9000-3] ISO 9000-3:1991, "Quality Management and Quality Assurance

Standards - Part 3: Guidelines for the Application of ISO 9001 to the
Development, Supply and Maintenance of Software," International
Standards Organization (ISO), 1991.

[KAN] Kan, S. H., Metrics and Models in Software Quality Engineering,

Addison-Wesley Publishing Company, Reading MA, 1995.

[KITSON] Kitson, D. and Masters, S., An Analysis of SEI Software Process

Assessment Results (CMU/SEI-92-TR-24), Software Engineering
Institute, Pittsburgh, PA, July 1992.

[MUSA] Musa, J. D., Ianinno, A. and Okumoto, K., Software Reliability:

Measurement, Prediction, Application, McGraw Hill, New York, NY,
1987.

[NASA] NASA-GB-001-94, Software Measurement Guidebook, National

Aeronautics and Space Administration, August 1995.

[PSM] Practical Software Measurement, Joint Logistics Commanders joint

Group on Systems Engineering, Version 2.1, March 1996.

[P1045] IEEE-P1045/D5.0, “Standard for Software Productivity Metrics

(draft),” Institute of Electrical and Electronic Engineers, Inc.,
Washington, DC, 1992.

[P1061] IEEE-P1061, “Standard for Software Quality Metrics Methodology,”

Institute of Electrical and Electronic Engineers, Inc., New York, NY,
1990.

[SEICMM] Paulk, M.C., Curtis, B., Chrissis, M.B., and Weber, C.V., Capability

Maturity Model for Software, Version 1.1 (CMU/SEI-93-TR-024),
Software Engineering Institute, Pittsburgh, PA, 1993.

[SEIIDEAL] McFeeley, B., IDEAL: A User’s Guide for Software Process

Improvement (CMU/SEI-96-HB-001), Software Engineering Institute,
Pittsburgh, PA, February 1996.

[SEITR20] Park, R.E., Software Size Measurement: A Framework for Counting

Source Statements (CMU/SEI-92-TR-20), Software Engineering
Institute, Pittsburgh, PA, July 1992.

B - 2

[SEITR21] Goethert et al., Software Effort & Schedule Measurement: A Framework
for Counting Staff hours and Reporting Schedule Information
(CMU/SEI-92-TR-21), Software Engineering Institute, Pittsburgh, PA,
July 1992.

[SEITR22] Florac, W.A., Software Quality Measurement: A Framework for

Counting Problems and Defects (CMU/SEI-92-TR-22), Software
Engineering Institute, Pittsburgh, PA, 1992.

[SELLERS] Henderson-Sellers, B., Object-Oriented Metrics: Measures of

Complexity, Prentice Hall, Upper Saddle River, NJ, 1996.

[SEMATECH] Software Measurement for Semiconductor Manufacturing Equipment,

Technology Transfer #95012684A-TR, SEMATECH, March 31, 1995.

[SQAS-GLOSS] SQAS-90-001, "NWC Glossary of Preferred Software Engineering

Terminology," Software Quality Assurance Subcommittee, October
1990.

[SQAS-PRACT] SQAS93-003, “Preferred Practices for Software Quality within the

Nuclear Weapons Complex,” June 1993.

[SQAS-SPA] SQAS-95-001, "Planning for a Software Process Assessment," Software

Quality Assurance Subcommittee, May 1995.

[SQAS-SURVEY] SQAS90-002, "Software Within the NWC: 1989 Software Engineering

Survey," Software Quality Assurance Subcommittee, October 1990.

B - 3

Blank Page

B - 4

APPENDIX C: EXAMPLE MEASUREMENT PLAN STANDARD

Abstract

This document contains an example of a standard defining the contents and structure of
a Software Measurement Plan for each project of an organization. The term
Measurement Plan will be used throughout.

Table of Contents

1. Introduction

2. Policy

3. Responsibility and Authorities

4. General Information

5. Thematic Outline of Measurement Plan

C - 1

 C.1 Introduction
This standard provides guidance on the production of a Measurement Plan for
individual software projects.

 C.1.1 Scope
This standard is mandatory for all projects. Assistance in applying it to existing projects
will be given by the Organization Measures Coordinator.

 C.2 Policy
It is policy to collect measures to assist in the improvement of:

• the accuracy of cost estimates;
• project productivity;
• product quality; and,
• project monitoring and control.
In particular, each project will be responsible for identifying and planning all activities
associated with the collection of these measures. The project is responsible for the
definition of the project's objectives for collecting measures, analyzing the measures to
provide the required presentation results, and documenting the approach in an internally
approved Measurement Plan. The project is also responsible for capturing the actual
measurement information and analysis results. The form of this actual measurement
information could be appended to the Measurement Plan or put in a separate document
called a Measurement Case.

 C.3 Responsibility and Authorities
The Project Leader/Manager shall be responsible for the production of the project
Measurement Plan at the start of the project. Advice and assistance from the
Organization Measures Coordinator shall be sought when needed.

The Measurement Plan shall be approved by the Project Leader/Manager (if not the
author), Product Manager, Organization Measures Coordinator and Project Quality
Manager.

 C.4 General Information

 C.4.1 Overview Of Project Measures Activities
The collection and use of measures must be defined and planned into a project during
the start up phase. The haphazard collection of measures is more likely to result in the
collection of a large amount of inconsistent data that will provide little useful
information to the project management team, or for future projects.

The following activities shall be carried out at the start of the project:

• Define the project's objectives for collecting measures.
• Identify the users of the measures derived information, as well as any particular

requirements they may have.
• Identify the measures to meet these objectives or provide the information. Most, if

not all, of these should be defined at the Organization level.

 C - 2

• Define the project task structure, e.g., Work Breakdown Structure (WBS).
• Define when each measure is to be collected, in terms of the project task structure.
• Define how each measure is to be collected, in terms of pre-printed forms/ tools,

who will collect it and where/ how it will be stored.
• Define how the data will be analyzed to provide the required information, including

the specification of any necessary algorithms, and the frequency with which this will
be done.

• Define the organization, including the information flow, within the project required
to support the measures collection and analyses activities.

• Identify the standards and procedures to be used.
• Define which measures will be supplied to the Organization.

 C.4.2 Purpose Of The Measurement Plan

The project’s Measurement Plan is produced as one of the start up documents to record
the project's objectives for measures collection and how it intends to carry out the
program. The plan also:

• Ensures that activities pertinent to the collection of project measures are considered
early in the project and are resolved in a clear and consistent manner.

• Ensures that project staff are aware of the measures activities and provides an easy
reference to them.

The Measurement Plan complements the project's Quality and Project Plans,
highlighting matters specifically relating to measures. The Measurement Plan
information can be incorporated into the Quality and/or Project Plans. Information and
instructions shall not be duplicated in these plans.

 C.4.3 Format
Section 5 defines a format for the Measurement Plan in terms of a set of headings that
are to be used, and the information required to be given under each heading. The front
pages shall be the minimum requirements for a standard configurable document.

 C.4.4 Document Control
The Measurement Plan shall be controlled as a configurable document.

 C.4.5 Filing
The Measurement Plan shall be held in the project filing system.

 C.4.6 Updating
The Measurement Plan may require updating during the course of the project. Updates
shall follow any changes in requirements for collecting measures or any change to the
project which results in change to the project WBS. The Project Leader/Manager shall
be responsible for such updates or revisions.

 C.5 Contents Of Measurement Plan
This section details what is to be included in the project’s Measurement Plan. Wherever
possible, the Measurement Plan should point to existing Organization standards, etc.,

C - 3

rather than duplicating the information. The information required in the Plan is detailed
below under appropriate headings.

For small projects, the amount of information supplied under each topic may amount to
only a paragraph or so and may not justify the production of the Measurement Plan as a
separate document. Instead, the information may form a separate chapter in the Quality
plan, with the topic headings forming the sections/ paragraphs in that chapter. On larger
projects a separate document will be produced, with each topic heading becoming a
section in its own right.

Thematic Outline for a Measurement Plan

Section 1. Objectives For Collecting Measures
The project's objectives for collecting measures shall be described here. These will also include the relevant
Organization objectives. Where the author of the Measurement Plan is not the Project Leader/Manager,
Project Management agreement to these objectives will be demonstrated by the fact that the Project Manager
is a signatory to the Plan.

Section 2. Use and Users Of Information
Provide information that includes:

• Who will be the users of the information to be derived from the measures.
• Why the information is needed.
• Required frequency of the information.

Section 3. Measures To Be Collected
This section describes the measures to be collected by the project. As far as possible the measures to be
collected should be a derivative of the Core Measures. If Organization standards are not followed,
justification for the deviation should be provided. Project specific measures shall be defined in full here in
terms of the project tasks.

A Goal-Question-Metric (GQM) approach should be used to identify the measures from the stated project
objectives. The results of the GQM approach should also be documented.

Section 4. Collection of Measures
Provide information that includes:
• Who will collect each measure.
• The level within the project task against which each measure is to be collected.
• When each measure is to be collected in terms of initial estimate, re-estimates and actual measurement.
• How the measures are to be collected, with reference to proformas, tools and procedures as appropriate.
• Validation to be carried out, including details of the project specific techniques if necessary, and by

whom.
• How and where the measures are to be stored - including details of electronic database/ spreadsheet/

filing cabinet as appropriate, how the data is amalgamated and when it is archived, who is responsible for
setting up the storage process, who is responsible for inserting the data into the database.

• When, how and which data is provided to the Organization Measures database.

Thematic Outline for a Measurement Plan

 C - 4

(continued)

Section 5. Analysis Of Measures
Provide information that includes:

• How the data is to be analyzed, giving details of project specific techniques if necessary, any tools
required and how frequently it is to be carried out.

• The information to be provided by the analysis.

• Who will carry out the analysis.

• Details of project specific reports, frequency of generation, how they are generated and by whom.

Section 6. Project Organization
Describe the organization within the project that is required to support the measurement activities. Identify
roles and the associated tasks and responsibilities. These roles may be combined with other roles within the
project to form complete jobs for individual people.

The information flow between these roles and the rest of the project should also be described.

Section 7. Project Task Structure
Describe or reference the project's the project task structure. It should be noted that the project's measurement
activities should be included in the project task structure.

Section 8. Standards
Describe the measurement standards and procedures to be used by the project must be given, indicating which
are Organization standards and which are project specific. These standards will have been referenced
throughout the plan, as necessary. If it is intended not to follow any of the Organization standards in full, this
must be clearly indicated in the relevant section of the Measurement Plan, and a note made in this section.

C - 5

Blank Page

 C - 6

APPENDIX D: EXAMPLE PROJECT CORE MEASURES

This appendix provides examples, summarized in Table D-1, that illustrate the use of the
recommended core measures (with some minor variations) for a variety of software
projects.

Table D-1. Core Measures for Example Projects

Core
Measures

Project A:
Large
Embedded
Development

Project B:
Commercial
Purchase

Project C:
Information
System
Development

Project D:
Simulation
Analysis Code
Support

Project E:
Graphical User
Interface Small
Development

Size SLOC
(reused & new)

Disk Space
(utilized)

Function Points
(reused & new)

SLOC
(total, new &
modified for each
release)

Function Points
(reused & new)

Effort Staff Hours
(development)

Staff Hours
(installation &
updates)

Staff Hours
(development)

Staff Hours
(total, change
request for each
release)

Staff Hours
(development)

Progress
to
Schedule

Total Months
(estimated &
actual)

Task Months
(estimated &
actual)

Task Completion
Ratio per
reporting period

Installation Time
(estimated &
actual for initial
release and
updates)

Total Months
(estimated &
actual)

Task Months
(estimated &
actual)

Task Completion
Ratio per
reporting period

Total Months
(estimated &
actual for each
release)

Task Months
(estimated &
actual for each
release)

Task Completion
Ratio per
reporting period

Total Months
(estimated &
actual)

Task Months
(estimated &
actual)

Task Completion
Ratio per
reporting period

Defects Inspection Defects
(major & minor)

Test Failures
(major & minor)

Operational
Problem Reports
(all)

Operational
Failures (all)

Operational
Problem Reports
(all)

Inspection Defects
(major & minor)

Test Failures
(major & minor)

Operational
Problem Reports
(all)

Inspection Defects
(major & minor)

Test Failures
(major & minor
total and in
modified code)

Operational
Problem Reports
(all and for
modified code)

Test Failures
(major & minor)

Operational
Problem Reports
(all)

D - 1

Blank Page

D - 2

	1. INTRODUCTION
	1.1 Background -- The Need For Software Measurement
	1.2 Purpose of These Guidelines
	1.3 Scope of Application and Audience
	1.4 Overview of This Document
	1.5 Owner and Updates
	 2. RECOMMENDED CORE SOFTWARE MEASURES
	2.1 Size
	2.2 Effort
	2.3 Progress to Schedule
	2.4 Defects

	 3. IMPLEMENTING AND USING THE CORE MEASURES
	3.1 Establishing Project Feasibility
	3.2 Evaluating Plans
	3.2.1 Size
	3.2.2 Effort
	3.2.3 Progress to Schedule
	3.2.4 Defects

	3.3 Tracking Progress
	3.4 Improving the Process
	3.4.1 Evaluating the Impact of Design and Code Inspections
	3.4.2 Improving Maintenance

	3.5 Calibrating Cost Models

	 4. ESTABLISHING A SOFTWARE MEASUREMENT PROGRAM
	4.1 Adopt a Software Measurement Program Model
	4.1.1 Resources, Products, Processes
	4.1.2 Direct and Indirect Software Measurement
	4.1.3 Views of Core Measures

	4.2 Use a Software Process Improvement Model
	4.2.1 SEI IDEAL Model
	4.2.2 SEI CMM

	4.3 Identify a Goal-Question-Metric (GQM) Structure
	4.4 Develop a Software Measurement Plan and Case

	 5. SUMMARY OF RECOMMENDATIONS
	5.1 Software Measurement Program
	5.2 Core Measures
	5.3 Automated Methods

