Seismic Analysis of Facilities and Evaluation of Risk

Michael Salmon, LANL

Larry, Goen, LANL

Voice: 505-665-7244

Fax: 505-665-2897

salmon@lanl.gov

Purpose

- To discuss LANLs implementation of SAFER and lessons learned
- Background
- Results
- Lessons learned

SAFER Project

• Project Mission

- Conduct quantitative evaluation of seismic risk due to operations of Nuclear and High Hazard (DSA) Facilities at LANL operating under a Documented Safety Analysis/Safety Evaluation Report
- and Non-nuclear (BOP) Facilities operating under E.O. 12941.

Composition

SAFER comprised of two major efforts:

- Non-nuclear Facilities termed "<u>Balance of Plant" (BOP) Facilities</u>
 consisting of 29 facilities including NSSB
- Nuclear and High Hazard Facilities collectively termed "<u>Documented</u>
 <u>Safety Analysis (DSA) Facilities</u>" will analyze PF-4, Interim
 Radiography, RANT, RLWT, WCRR and WETF

DSA Scope

- For each facility operating under a DSA/SER (PF-4, Interim Radiography, RANT, WCRR, RLWT & WETF)
 - Identify safety function credited in DSA/SER for each SSC that performs a seismic safety function
 - Analyze the ability of that SSC to perform the safety function at the higher seismic load
 - Code type evaluations under new hazard
 - Successively remove conservatism to approximate collapse (e.g.)
 - Calculate actual performance achieved vs. performance desired
 - Facility Engineering Manager prepares Justification for Continued Operations (JCO) if needed

General Approach

- Use of code type evaluations specified in DOE-STD-1020-220 (F_{μ} =1.0)
- Eliminate conservatism where required $(F_{\mu} \ge 1.0,$ probabilistic approaches, nonlinear analysis tied to limit state defined in DSA)
- Walk downs of facilities to assess as-is condition.
- Condition assessment of existing facility should be undertaken if evidence of corrosion is significant

DSA Scope

PMF Comparison

Impact of PSHA Review

- SAFER involves conservative screens to show performance achieved
- Some SSCs will have failure rates calculated
 - Need to preserve fragility parameters (A_{med}, β_c)
 - Will recalculate failure for new hazard
 - Assumes similar spectral shape

ALAMOS.O5-HORIZONTAL FRACTILES: 100.0 HZ (PGA)

$$P_F = -\int_0^{+\infty} \left[\frac{\mathrm{d} H(a)}{\mathrm{d} a} \right] P_{F|a} \mathrm{d} a$$

SAFER Scope (PF-4)

• Identify SSCs credited with performing a seismic related safety function

SAFER Systems and Componets Methodology

- Develop Seismic Equipment List (SEL)
- Perform seismic screening
 - Perform DOE/EH-0545 seismic walkdowns
 - Perform structural and anchorage seismic analysis to DOE/EH-0545 criteria for 1.2g PSA seismic demand
 - Identify outlier components (not meeting DOE/EH-0545 criteria at 1.2g PSA)
- Calculate seismic fragilities for outlier components
- Calculate seismic failure probability using new seismic hazard curves

Seismic Equipment List

- Use plant documentation to identify and list individual components identified as safety class in DSA
- Identify safety function, functional requirements and seismic performance criteria for each component

Lessons Learned

- SEL
- Early involvement of cognizant systems engineers
- Need for close working agreement with seismic capability engineers and safety basis technical analysts
- Get management involved early

