Report to NEAC of the Fuel Cycle Subcommittee on its Meeting of 11/1-2/2012

Burton Richter, for the Subcommittee
Washington DC
12/6/2012

Fuel Cycle Options Study

☐ Objective – Narrow the Options for Future Systems to a few that are Affordable ☐ Create an Analytical Framework That Allows All Alternatives (over 5000) to be Evaluated Objectively Against a set of Criteria ☐ Methodology ☐ Group Options with Similar Characteristics (once through, single recycle, multi-recycle ☐ Identify Representative Option from Each Group (38) □ Develop Criteria (9) and Metrics (24) □ Evaluate and Rank Options

Fuel Cycle Options

The Nuclear Energy System, or "Nuclear Fuel Cycle"

Fuel Resources

- Uranium
- Thorium

Includes the effects of mining and other processes to obtain fuel resources

Nuclear Power Alternatives – Once-through & Recycle

Includes all facilities and processes used in the production of power from nuclear energy

- Uranium Enrichment
- Fuel Fabrication
- · Reactors (Critical / Subcritical)
- Storage (Spent or Used Fuel)
- Reprocessing
- Waste Production
- Storage (Products and Wastes)

Nuclear Waste Disposal

- Deep Geologic Isolation
- Near-surface burial (LLW)

Includes disposal of all nuclear waste

Summary of Criteria (9) and Evaluation Metrics (24) to Evaluate options

■ Nuclear Waste Management (5)

- Relative Mass of SNF + HLW disposed per energy generated
- Relative Activity of SNF + HLW (10E2 years) per energy generated
- Relative Activity of SNF + HLW (10E5 years) per energy generated
- Relative Mass of DU/RU disposed per energy generated
- Relative Volume of LLW per energy generated

■ Proliferation Risk (3)

- Maximum FOM₁ (nominal fuel cycle material)
- Maximum FOM₁ (material with misuse technology included in the fuel cycle)
- Maximum FOM₁ (material with clandestine use of any technology)

■ Nuclear Material Security (1)

Maximum FOM₁ (nominal fuel cycle material)

■ Safety (1)

Relative Safety Management Challenge

■ Financial Risk and Economics (1)

Levelized Cost of Electricity at Equilibrium

Environmental Impact (5)

- Land Use per unit of energy production
- Water Use per unit of energy production
- Radiological impact total estimated worker dose per unit of energy production
- Chemical impact chemical hazard index per unit of energy production
- Carbon impact CO₂ released per unit of energy production

Resource Utilization (2)

- Natural Uranium required per unit of energy production
- Natural Thorium required per unit of energy production

Development and Deployment Risk (4)

- Development time
- Development cost
- Compatibility with the existing infrastructure
- Existence of NRC regulations for the fuel cycle and familiarity with licensing

■ Institutional Issues (2)

- Compatibility with the existing infrastructure
- Existence of NRC regulations for the fuel cycle and familiarity with licensing

Subcommittee Observations

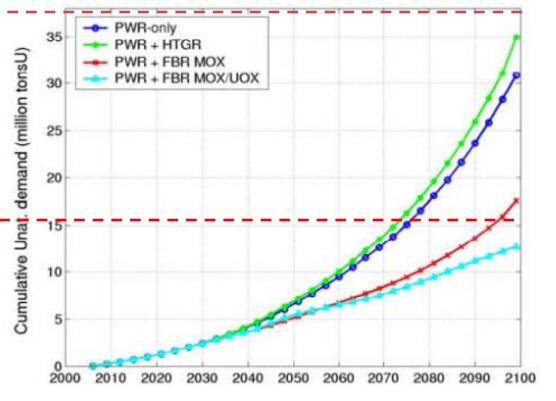
☐ Assessment Is proceeding well ☐ Dedicated team with good leadership ☐There will be an external review before the full evaluation (around April 2013) ☐ Some of the criteria need a tune up ☐ Report due before end 2013 □Current assessment Has a missing dimension that can Impact scoring – Reactor Technology ■ Need to include uncertainties; some of the criteria are qualitative

Uranium from Sea Water

Uranium Requirements Through 2100

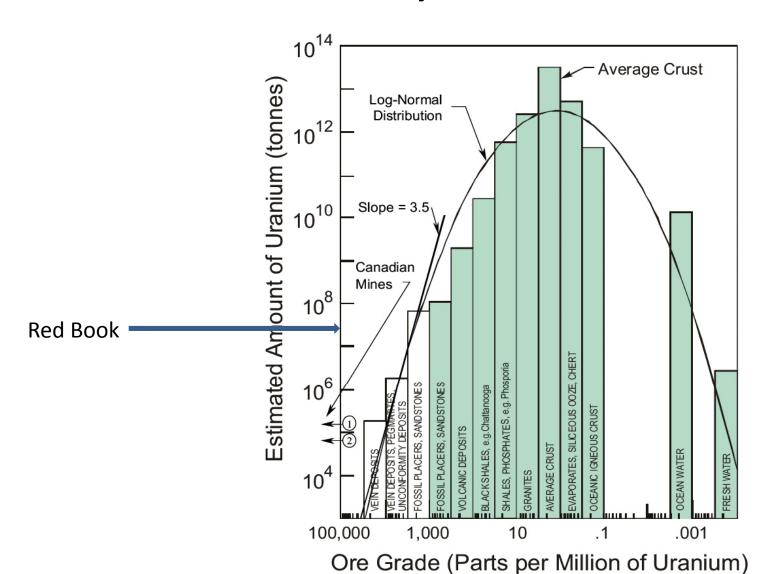
The figure* presents cumulative **world** uranium consumption for scenarios ranging from once through (30-35 MT) to a transition to breeders beginning in 2040 (13 MT). For this moderate growth scenario, *Redbook resources are exceeded in all but the most aggressive closed fuel cycle case.*

Redbook Resources


+

Phosphates

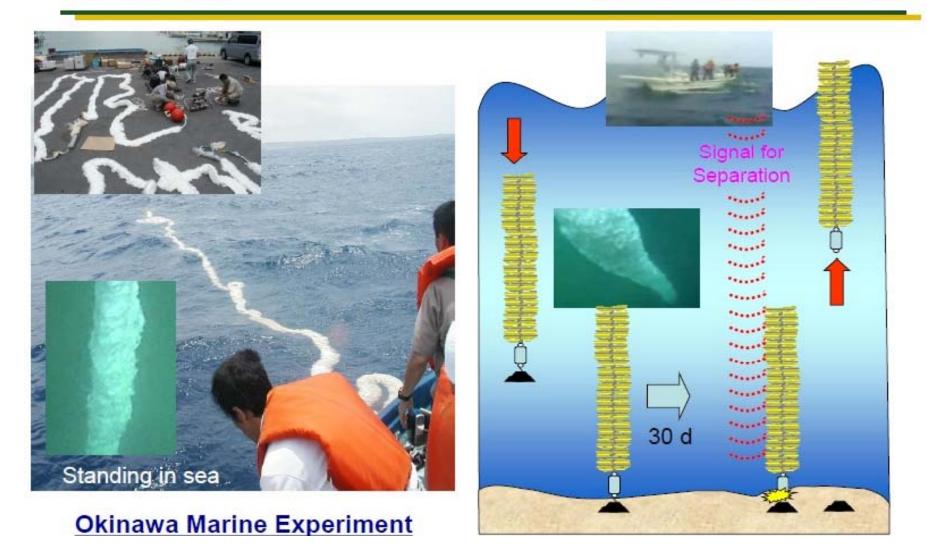
Redbook Resources


*Carre and Delbecq, "French Fuel Cycle Strategy and Transition Scenario Studies," *Proc. PHYSOR* 2006.

World nuclear power demand obtained from WEC/IIASA "Global Energy Perspectives" A-3 Scenario.

Crustal Distribution of Uranium by Grade

(after Deffeyes 1978, 1980)



Seawater Uranium Extraction Technology Development in Japan

Nuclear Energy

Dr. M. Tamada Presentation 2010

Subcommittee observations

- Cost Increase in U above today by \$200/kg ups electricity by 0.5 cent/kW-h (implies \$350/kg as limit)
- Environmental Issues You get more than just U absorbed. What happens to the bad stuff including the chemicals used to separate U?
- Are there techniques to extract lower grade ore to get at a larger resource?
- Are the comparative environmental benefits of sea water vs. mining important?
- Progress has been impressive.

Nuclear Fuel Storage and Transportation Planning Project established to respond to BRC recommendations

□□ Initial focus consistent with BRC recommendations for near-term actions
 Design of consent-based process, technical studies, siting, and preparation for transportation from shutdown sites to a pilot consolidated storage facility
 –□ Identify and promote opportunities for integration and standardization in waste management system
□□ Purpose is to make progress on this important national issue
 Build foundation that could be transferred to a new Nuclear Waste Management Organization
□ □ Activities consistent with BRC recommendations and existing
NWPA
Constraints (which need updating to do almost anything) Established FY2013 FY2013 Budget: \$22M

Used Fuel Storage – Background and Status

Nuclear Energy

- Utilities began to utilize dry storage in the 1980s when fuel pools began to reach capacity and no disposition path was available
 - Viewed as a temporary solution until a permanent disposal facility was made available
 - Currently, there is a need to store UNF for the foreseeable future

■ UNF Storage Near-Term Challenges

- NRC extended storage license licenses are issued for 20 years, with possible renewals for up to 60 years
 - Technical bases need to be developed to justify licensing
 - Key areas are retrievability and transportation of UNF after long-term storage
- Transportation of high burn-up fuel
 - Limited U.S. experience with storage and transportation of high-burnup fuel (>45 GWD/MTU)
- "Stranded" fuel at shut down reactor sites

(NL Dry Storage Characterization (DSC) Project

Storage Systems Used at Shutdown Sites

Nuclear Energy

Reactor Site (Shutdown Date)	ISFSI Load Dates	Storage System / Canister(s)	Transport Cask Status	Total Casks Fuel/GTCC	Total Assemblies
Big Rock Point 8/97	12/02-03/03	Fuel Solutions W150 Storage Overpack / W74 Canister	TS-125 Certificate expires 10/31/12. Never fabricated	7/1	441
Connecticut Yankee 12/96	05/04-03/05	NAC MPC / MPC-26 and MPC- 24 canisters	NAC-STC Certificate expires 5/31/14. Foreign use versions fabricated.	40/3	1019
Maine Yankee 8/97	08/02-03/04	NAC UMS / UMS-24 canister	NAC-UMS Certificate expires 10/31/12. Never fabricated	60/4	1434
Yankee Rowe 9/91	06/02-06/03	NAC MPC / MPC-36 canister	NAC-STC Certificate expires 05/31/14. Foreign use versions fabricated.	15/1	533
Rancho Seco 6/89	04/01-08/02	TN NUHOMS/FO-DSC, FC- DSC, FF-DSC	NUHOMS MP-187 Certificate expires 11/30/13. One cask fabricated. No impact limiters.	21/1	493
Trojan 11/92	12/02-09/03	TranStor Storage Overpack Holtec MPC-24E and MPC24- EF canisters	HI-STAR 100 Certificate expires 3/31/14. Units fabricated, No impact limiters.	34	780
Humboldt Bay 7/76	08/08-12/08	Holtec HI-STAR HB / MPC-HB (MPC-80)	HI-STAR HB Certificate expires 3/31/2014. Fuel in fabricated casks. No impact limiters.	5/1	390
La Crosse 4/87	07/12-09/12	NAC MPC-LACBWR / MPC- LACBWR canister	NAC-STC Certificate expires 5/31/2014. Foreign use versions fabricated.	5	333
Zion 1 and 2 7/98	Planned 2013	NAC MAGNASTOR / TSC-37 canister	NAC MAGNATRAN License under review. Never Fabricated	61/TBD (estimated)	2,226

Recent noteworthy activities

Nuclear Energy

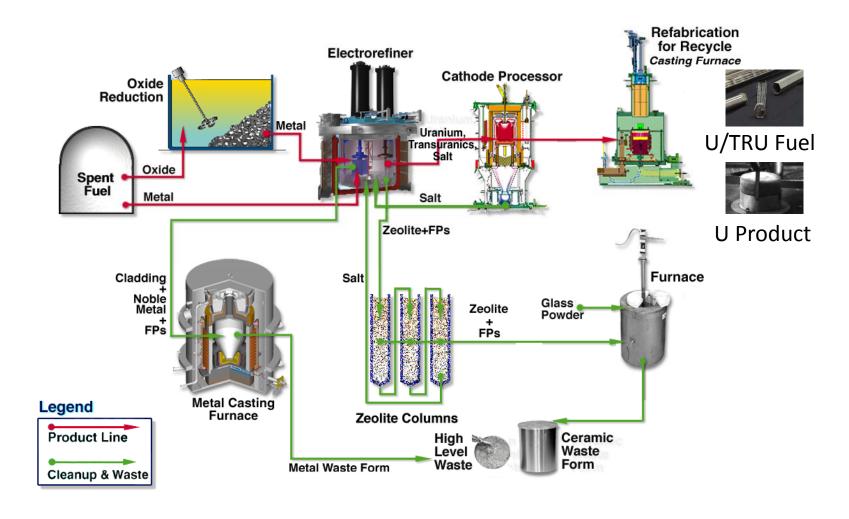
- 9/25-26 Conducted contractor Progress Review meetings related to Task
 Order 11 design concepts for Consolidated Storage Facility
 - Energy Solutions, Shaw and Areva
- Week of 9/24 Awarded contracts to Areva and Energy Solutions related to Standardized Canisters
- 10/3-4 Meeting with State Regional Group Staff and Committee Chairs to plan FY13 Transportation Institutional activities
- 10/17 Presentations to NWTRB
 - Logistical and Operational Issues Associated with the Transport of Stranded Fuel, J. Williams
 - System Architecture Evaluation, M. Nutt
- 10/23 Presentation to NTSF (National Transportation Stakeholders Forum)
 - Department of Energy Transportation and Storage Activities, J. Williams

Subcommittee Observations

- The project is going in the right direction in laying the ground work for consolidated interim storage and transportation of the used fuels from the shut down sites
- In light of the Fukushima accident, attention should also focus on moving the SNF with the highest density packing in wet pools to dry cask storage. Is this a DOE or NRC issue?
- It is important to determine the integrity lifetime of all containers for dry cask interim storage. Some time ago, DOE did a study the integrity of old fuel-containing canisters stored at INL. Perhaps it is time for another look.

What to do with the UsedFuel Inventory

Assuring support for DOE-NE FCT mission


- Quantity sufficient to accommodate projected RD&D needs and practical considerations
- Access to a representative sample of diverse commercial UNF inventory to support UNF storage, transportation, and disposal
- Access to high-burnup UNF representative of future discharges in quantities sufficient to support fuel cycle technology development
- Retention of sufficient margin to provide assurance that future retrieval from disposal will not be necessary for research or reuse purposes
- Timeframe, material needs, projections for energy growth, and cost considerations to deploy potential alternative fuel cycles
 - For example, evaluated Pu needs to support fast reactor deployment
- Possible uses of UNF to support national security interests

Assessment Supports a Comprehensive National Nuclear Fuel Cycle Strategy

- Disposes ~98% of the total <u>current</u> inventory (by mass)
 - UNF can proceed to permanent disposal without the need to ensure postclosure retrievability for reuse or research purposes
- 2. Does not preclude the option of recycling at a future date
 - Since ~2000 MTHM of commercial UNF is generated annually and could provide the feedstock needed for deployment of alternative fuel cycles
- Retains a small fraction ~0.04% (by mass; excess HEU UNF) with inherent and/or strategic value for potential recycle
 - Supporting national security missions
- 4. Retains ~ 2.4% (by mass) to support RD&D needs for:
 - UNF management and alternative fuel cycle development
- An appropriate portion of the UNF generated in the future will be evaluated for potential benefits of reprocessing

Simplified Electrochemical Flow-sheet

- Program focusing on critical path issues
- High recovery efficiency and throughput are necessary, although the fast spectrum reactor can accommodate impurities in metal fuel (except for some Lns); lab-scale tests of spent ternary fuel (10% Zr) has shown that actinide dissolution efficiencies of >99.9 wt % can be obtained.
- Electrochemical technology development activities associated with EBR-II fuel treatment (demonstrated at 1 t/year throughput) may be helpful for improving the feasibility of EC processing and fabrication of metal fuels for recycle in fast reactors.

Subcommittee Observations

- There are science issues (e.g. lanthanide separation) as well as technical ones. Engaging the universities via NEUP could be helpful.
- EC technology is advancing not yet at the point of assessing the viability of this technology compared to aqueous process
- International collaboration (especially with South Korean KAERI in this field) should be pursued and reinforced.
- Will have to eventually have an engineering scale test