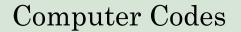
NSR&D STATUS

WORKSHOP SUMMARIES

Caroline Garzon Chief of Nuclear Safety Staff

NUCLEAR SAFETY R&D

• Perform a peer review of Risk Assessment Corporation WTP analysis by a team and identify


• Using other benchmarked dispersion codes, determine appropriate input parameters (including deposition velocity) for 95th percentile analysis using MACCS2 code by considering representative DOE Sites.

EFCOG SAFETY ANALYSIS WORKSHOP

Large interest in dispersion modeling topics

- Presentations in Tuesday & Wednesday, May 8-
 - 9, Technical Sessions
- Panel Session, Thursday, May 10
- Breakout Session, Thursday, May 10

DISPERSION MODELING TOPICS

Guidance

Conservatism

4

COMPUTER CODES

• Important to understand underlying code models:

- limitations, strengths, and the trade-off of level of accuracy and degree of complexity.
- Application of Gaussian Plume Model (GPM) generally adequate for most DOE offsite receptor calculations.
- Potential GPM Exceptions:
 - Terrain: This includes sites that have terrain with irregularities
 - Close-in modeling: that accounts for the effects of neighboring structures and implements improved modeling and validation

GUIDANCE

- What is the purpose of using the quantitative accident analysis results?
 - Accurate dose vs. regulatory gate
 - Facility design vs. evaluation of existing facility
- Use of generic X/Q curves or table
- Update Toolbox computer code guidance
- Accident Analysis Handbook- for standardization

CONSERVATISM

• Models "fit to be accurate" vs. "fit to be conservative"

GERMANTOWN WORKSHOP SITE PRESENTATIONS

- Bounding or average input parameters- What is conservative?
- Appropriateness of MACCS2/Gaussian plume model for calm winds (DOE guidance?)
- If using GENII for DV calculation, is it best to also use it for determination of χ/Q ? using one model
- Are we moving from a generally bounding/conservative approach to a more realistic/precise dispersion analysis?
- Are we driving our analysis to be extremely conservative by looking at parameters individually rather than looking at the entire analysis holistically?
- Selection of input parameters is inconsistent across the sites- is this a problem?
- Need to establish "ground rules"
- Screening models vs. more probabilistic approach

LIST OF TOPICS

Attachment 1: Potential Discussion Topics

SITE-SPECIFIC ISSUES:

SRS.

Y-12:

- Deposition velocity of tritium .
- Deposition velocity of particulates
- Surface roughness and how it applies to dispersion coefficients
- Dispersion coefficients- how to select the best set of coefficients for the site
- Dispersion coencients now to select the best set of coencients for the site
 Meteorology input file- acceptable methodology for obtaining data (includes normalization of data) SR looking to develop consistent multi-contractor meteorology base for dispersion – usable model for other

- Reasonable conservative site-specific calculation for DV (includes appropriate parameters, etc) Possible impact of calculation from one facility affecting another- possible change in controls Dispersion coefficients- how to select the best parameterization for the site
 - If more than 5% of data is in calms, is MACCS accurate?
- DR and ARFxRF values sufficiently conservative.

HSS:

- Needs to update MACCS2 guidance
- How to incorporate in standards and handbooks What level of detail in 3009
 - What to include in accident analysis handbook
- GENERAL ISSUES/COMMENTS:
 - MACCS2

 - Understanding of how MACCS2 calculates x/Q

 - Discussion of parameters in MACCS2 and their conservatism Overall conservatism and uncertainty in MACCS2 Identify other vulnerabilities in MACCS. When is it not an ideal tool?
 - - What does it improve
 - How to get into the HSS Toolbox
- How do we ensure a standardized, conservative approach in calculating dose? Comparison of Reg. Guide1.23 and EPA-454 methodology Can we develop a standardized approach to calculating deposition velocity? Or can we select a default value
- What are the implications of pursuing other models? (ie Lagrangian puff)
 - Appropriate guidance on which model to use when
- Appropriate guidance resulting in consistent application Guidance for use of deposition velocity outside of the limited DOE-STD-3009 setting

DISPERSION MODELING

Computer Codes

Accurate as possible determination of dose vs. an approximation for decision making

Guidance

Standardization vs. site-specific

Conservatism

How much conservatism and where is it (input parameters, overall dose calculation, comparison to EG, the analytical model you choose)

10

Depending on these things, you get very different answers

QUESTIONS

- Do we need site-specific methodologies?
- How do we establish appropriate conservatism?
- Where do the sites need to help resolving their specific issues?