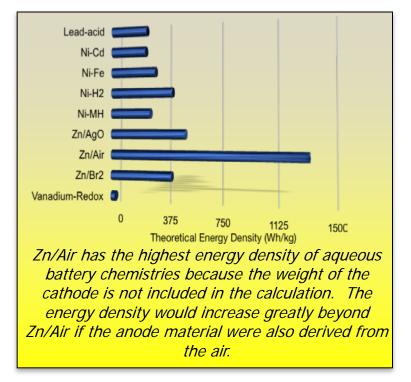


Advanced Development Concept

Nitrogen-Air Battery

F.M. Delnick, D. Ingersoll, K.Waldrip

Sandia National Laboratories Albuquerque, NM


presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010

Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories

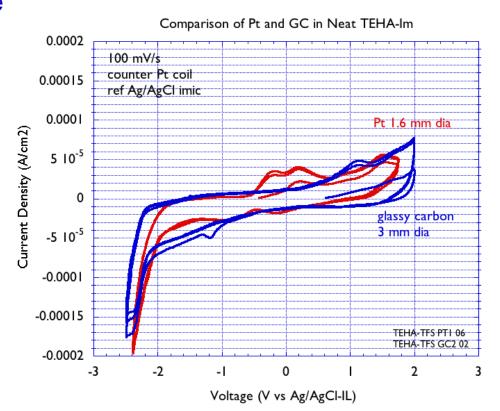
Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

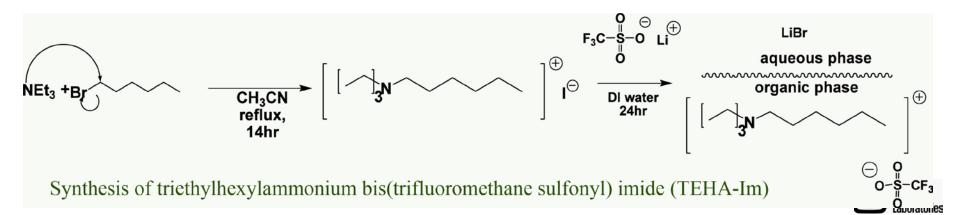
Full Air Breathing Battery Concept

- Year 1 objectives
- Focus on nitrogen
 - establish electrochemical behavior of nitrogen species
 - measure gas solubility in electrolyte solutions

- Concept is to use O₂ and N₂ as the electrodes in a battery
- Novel because N₂ is considered inert
- Our group routinely reacts N₂ electrochemically
- Challenging but appears feasible based on preliminary experimental results
- Enormous potential impact on stationary and mobile energy storage in both energy storage density and in economic value

- Nitrogen has a high energy density and low normalized cost
 - 6 electrons per molecule
 - 5743 mAh/g
 - low cost
 - benign (safe)
- N₂ reduction is highly complex
- Numerous other challenges
 - electrode structure
 - cell design
 - solubility
 - high reactivity of intermediates and products – e.g N³⁻
 - electrolyte
- Half-reaction in aprotic media


 $- N_2 + 6e^- = 2N^{3-1}$


Theoretical Calculations for the 6-e⁻ 6-H⁺ Reduction of Nitrogen Half-reaction $N_2 + 6e^- + 6H^+ = 2NH_3$

Electrolyte Working Range

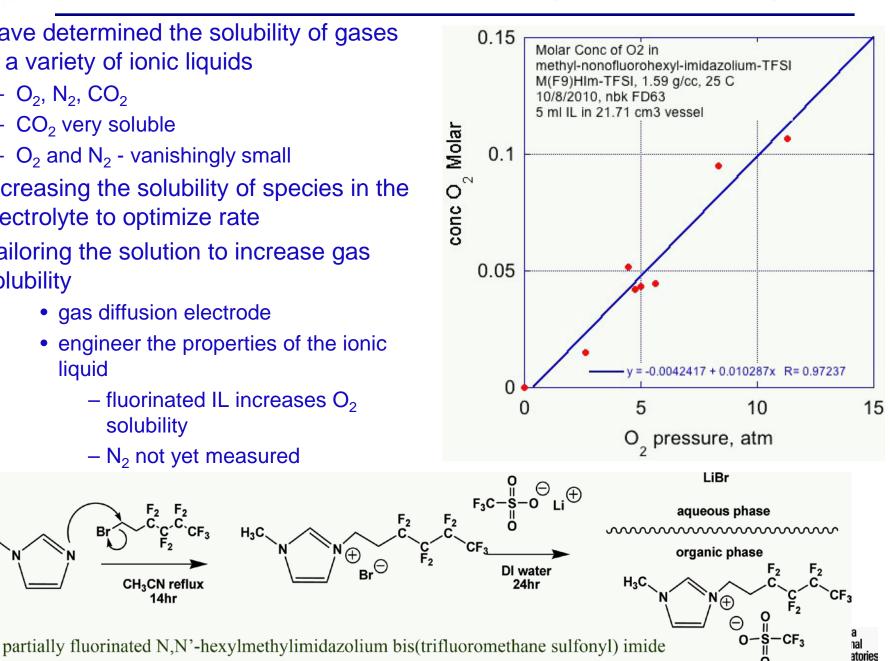
- Molten salt as baseline electrolyte
 - high temperature
 - room temperature ionic liquid (IL)
- Numerous criteria
 - Electrochemically stable over the requisite working range
 - have synthesized and evaluated a number of ionic liquids
 - some are stable
 - reasonable solubility of gases

Gas Solubility in the Electrolyte

- Have determined the solubility of gases in a variety of ionic liquids
 - O_2, N_2, CO_2

H₃C

- CO₂ very soluble
- O₂ and N₂ vanishingly small
- Increasing the solubility of species in the electrolyte to optimize rate
- Tailoring the solution to increase gas solubility
 - gas diffusion electrode
 - engineer the properties of the ionic liquid
 - fluorinated IL increases O₂ solubility


N⊕

 Br^{Θ}

 $-N_2$ not yet measured

CH₃CN reflux

14hr

Chemistry of Nitrogen and Reaction Products

 $\bullet Understanding$ the chemistry of N_2 and the species involved in its reduction is critical

•We have used a variety of techniques to characterize these species •spectroscopy of N³⁻ in ILs

•IR TGA of $Li_{13}Si_4$ in Ar and N_2 •Raman 115 •UV-Vis gas 100 ml/min •NMR equilibrate 50 C 10 min 5 C/min to 700 C •Thermal hold 700 C 10 min nitrogen •TGA 110 •DTA Weight Change (%) •DSC •others 105 100 argon onset of nitride formation 95

100

0

200

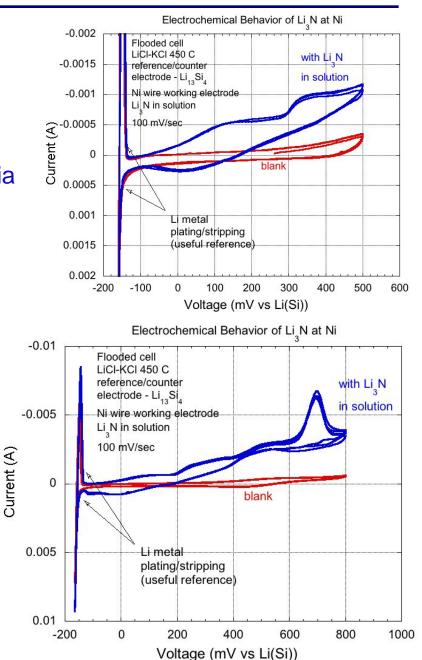
300

Temperature (C)

400

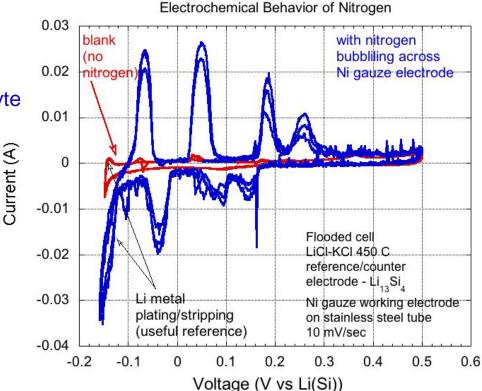
500

700


600

Electrochemistry of Nitrogen Nitride Oxidation

- The electrochemical behavior of nitrogen species is most important
 - thermodynamics (voltage)
 - kinetics (power)
 - mechanism (power, reversibility, etc)
- Basic electrochemical process in aprotic media


 $- N_2 + 6e^- = 2N^{3-}$

- We have completed preliminary electrochemical evaluation of nitride (N³⁻) and nitrogen
 - Two cell configurations
 - flooded cell design
 - pressed pellet configuration
 - High temperature molten salt electrolyte
 - LiCl-KCl (45:55), 352 $^\circ\,$ C melting point
 - Li₁₃Si₄ ref and counter electrode
 - solid at high temperature, stable reversible couple, 149.2 mV vs Li
 - also deposited Li at working to provide another reference
 - Ni foam and Ni wire working electrode

Electrochemistry of Nitrogen Nitrogen Reduction

- Reduction of N₂
 - $N_2 + 6e^- = 2N^{3-}$
- Experimental Details
 - flooded cell design
 - Ni foam on stainless steel tube as the working electrode
 - High temperature molten salt electrolyte
 - LiCl-KCl (45:55), 352 $^\circ\,$ C melting point
 - Li₁₃Si₄ ref and counter electrode
- nitrogen bubbled over Ni foam electrode
 - numerous redox process evident
 - reduction a very negative potentials
 - retain high energy

- The electrochemistry of nitrogen is clearly non-trivial
- However, nitrogen can be reversibly reduced and oxidized at voltages consistent with high energy systems
- a path forward for increased solubility of gases in room temperature ionic liquids has been identified
- Select ionic liquids have the requisite electrochemical stability to allow their use as a room temperature electrolyte

- continue investigations of nitrogen electrochemistry
- continue low temperature electrolyte development
- develop oxygen cathode

- Dr. Imre Gyuk
 - Office of Electricity Delivery and Energy Reliability
 - Department of Energy

- synthesis and characterization of ionic liquids
 - Cy Fujimoto
 - Michael Hibbs
 - Mike Stoll

