High Voltage Electrochemical Capacitor

presented at EESAT 2007 September 23-27, 2007 PEER Review San Francisco, CA D. Ingersoll, F.M. Delnick, and K.E. Waldrip Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185-0614

Objective

- New Start 7/07
- Increasing the energy of the system
- Energy = $1/2 \text{ CV}^2$
- Four general means to increasing energy
 - Increased surface area most common approach
 - A active area of electrode
 - $\quad \mbox{high surface area materials (carbon typically > 1000 \\ m^2/g)$
 - nanomaterials (e.g. carbon multiwalled nanotube)
 - Employ Faradaic processes psuedocapacitance
 - asymmetric capacitors
 - proton and lithium insertion reactions, eg RuO_x,
 - Increased Voltage not typically done
 - aqueous based < 2 V
 - nonaqueous 2.7 V
 - Working range of electrolyte
 - primary concern Faradiac processes
 - » oxidation/reduction of electrolyte
 - » corrosion of current collector
 - » oxidation/reduction of active electrode materials
 - Cell Resistance

- Increased C_d area specific capacitance
 - not typically done

C _d relatively constant for different systems TABLE 17.2 Double-Layer Capacitance on Hg		
Electrolyte	(µF cm ⁻²)	
EMIBF ₄	10.6	
EMICF ₃ SO ₃	12.4	
EMI(CF ₃ SO ₂) ₃ C	10.6	
EMI(CF ₃ SO ₂) ₂ N	11.7	
EMI(CF ₃ SO ₂) ₂ N	12.0 ^a	
EMI(CF ₃ SO ₂) ₂ N	11.4 ^b	
1.5 M EMI(CF ₃ SO ₂) ₂ N/PC	9.1	
1M Et ₄ NBF ₄ /PC	7.0	
0.1 M KCI/H ₂ O	15.1	
$3 \text{ M H}_2 \text{SO}_4 / \text{H}_2 \text{O}_4$	14.6	

a " glassy carbon

b - SpectraCarb 2220 yarn

M. Ue, Electrochemical Aspects of Ionic Liquids, H. Ohno ed., Wiley Interscience, 2005.

Motivation

- Ongoing program room temperature electrodeposition of reactive metals & alloys. (Joint program with LANL)
 - *highly* reactive metals
 - necessitates large electrolyte working range (large voltage)
 - low solution resistance
- ionic liquids (ILs)
 - neat
 - as electrolyte in other solvents
 - typical materials (eg EMI-Im, DMPI-Im)
 - new materials DMPIpA-Im
 - In general, IL working range is limited & resistance is relatively high.
- Typical battery & capacitor electrolytes
 - LiBOB, LiTFS, TEABF₄, etc, in DME, PC
- atypical electrolyte solutions
 - e.g. reactive metal salts in DMSO
- We have observed large working range of some of our systems. (8 V for data shown)

Engineered Ionic Liquids

- Have evaluated a variety of ILs (also utilize literature (eg Ue's work))
- Tailored properties of IL through control of structure
- Both anion and cation must be considered for:
 - stability
 - conductivity
 - viscosity
 - melting point
- Cation
 - small asymmetric species preferred
- Anion
 - smaller anions preferred from C_d standpoint
 - conductivity larger anions preferred

Data Collection and Interpretation Impedance

- Experimental data is typically ideal
- observe passive film in some instances
- determination of C_d at low frequency is:
 - not perturbed by passive film
 - frequency independent

C_d and Self Discharge Behavior

- C_d is on the order of 2.5 μ F/cm²
 - basal plane graphite $3-4 \mu F/cm^2$
 - edge plane of graphite 50-75 μ F/cm²
 - (Randin and Yeager, JEAC, 58, 313, (1975) and *ibid* 36, 257, (1972))
- graphitic type carbon
 - high conductivity
 - non-reactive basal plane
 - aren't working in restricted pore volume of high surface area carbons
- Of all of the ILs studied, DMPIp-Im (the tailored compound) has the lowest self discharge by an order of magnitude

	C _d in various ILs	
	Electrolyte	μ F/cm ²
		BET
	EMI-Im	2.5
	BMI-Im	2.7
	BMI-BF4	2.6
	DMPIp-Im	2.5
C	DMPI-Im	2.7
rity Admi	TEABF ₄ -AN	4.2

- continue to leverage select reactive metal work to electrochemical capacitors
- evaluate working range limits of tailored IL
- evaluate voltage dependencies of C_d
- fabricate laboratory prototype
- evaluation of laboratory prototype
- develop understanding (thermodynamic and kinetic) of the large working ranges observed

- Dr. Imre Gyuk, Department of Energy
- Drs. W.J. Oldham, W. Averill, D.A. Costa and M.E. Stoll Los Alamos National Laboratories

