Draft

Environmental Impact Statement

for the

Proposed Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas

Summary

U.S. Department of Energy
Golden Field Office
Office of Energy Efficiency and Renewable Energy

DOE/EIS-0407D

September 2009

Cover photos courtesy of (left to right):

Southeast Renewable Fuels, LLC DOE National Renewable Energy Laboratory Public domain

Draft

Environmental Impact Statement

for the

Proposed Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas

Summary

U.S. Department of Energy
Golden Field Office
Office of Energy Efficiency and Renewable Energy

DOE/EIS-0407D

September 2009

COVER SHEET

RESPONSIBLE AGENCY: U.S. Department of Energy (DOE)

COOPERATING AGENCY: The U.S. Department of Agriculture-Rural Development is a cooperating agency in the preparation of the Abengoa Biorefinery Project EIS.

TITLE: *Draft Environmental Impact Statement for the Abengoa Biorefinery Project near Hugoton, Stevens County, Kansas* (DOE/EIS-0407D) (Abengoa Biorefinery Project EIS).

CONTACTS:

For more information about this document, write or

call:

Office of Energy Efficiency and Renewable Energy

U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401

ATTN: Ms. Kristin Kerwin Telephone: (303) 275-4968

Fax: (303) 275-4790

For general information on the DOE National Environmental Policy Act (NEPA) process, write

or call:

Carol M. Borgstrom, Director

Office of NEPA Policy and Compliance (GC-20)

U.S. Department of Energy 1000 Independence Avenue, S.W.

Washington, DC 20585 Telephone: (202) 586-4600

Or leave a message: (800) 472-2756

Information about this document is available on the Internet at the Abengoa Biorefinery Project Web site at http://www.biorefineryprojecteis-abengoa.com/ and on the DOE NEPA Web site at http://www.gc.energy.gov/NEPA.

ABSTRACT: DOE's Proposed Action is to provide federal funding to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton, Stevens County, Kansas. If DOE decides to provide federal funding, it would negotiate an agreement with Abengoa Bioenergy to provide approximately \$85 million of the total anticipated cost of approximately \$300 million (2008 dollars). The biorefinery would use lignocellulosic biomass (corn stover, wheat straw) as feedstock to produce ethanol and biopower (electricity) sufficient to meet the needs of the biorefinery and produce excess electricity for sale to the regional power grid. DOE also evaluates an Action Alternative, under which the biorefinery would not produce excess electricity for sale to the regional grid, and a No-Action Alternative, under which the biorefinery would not be constructed. The draft Abengoa Biorefinery Project EIS evaluates the potential direct, indirect, and cumulative environmental impacts from the construction, operation, and decommissioning of the biorefinery.

PUBLIC COMMENTS: A 45-day public comment period on the draft Abengoa Biorefinery Project EIS begins with publication of the U.S. Environmental Protection Agency Notice of Availability in the *Federal Register*. DOE will consider all public comments postmarked or received during the public comment period. DOE will consider comments received after the 45-day period to the extent practicable. DOE will hold a public hearing to receive oral and written comments on the Draft EIS in Hugoton, Kansas at the date, time, and location announced in local media and in DOE's Notice of Availability published in the *Federal Register*. Written comments also may be submitted by mail to DOE at the above address in Golden, Colorado; via the Internet, kristin.kerwin@go.doe.gov; or by facsimile (303) 275-4790.

CONTENTS

Section	
S.1 Introduction	S-1
S.1.1 Purpose and Need	S-1
S.1.2 Background	
S.1.3 National Environmental Policy Act Process	
S.2 Proposed Action and Alternatives	S-6
S.2.1 Proposed Action	S-6
S.2.1.1 Construction	
S.2.1.2 Operations	S-8
S.2.2 Action Alternative	
S.2.3 Decommisioning and Destruction of the Biorefinery	S-11
S.2.4 Comparison of Design Features	S-11
S.2.5 No-Action Alternative	S-11
S.3 Environmental Impacts	S-12
S.3.1 Land Use	S-12
S.3.2 Air Quality	
S.3.3 Hydrology	
S.3.3.1 Surface Water	
S.3.3.2 Groundwater	S-17
S.3.4 Biological Resources	S-18
S.3.5 Utilities, Energy, and Materials	S-18
S.3.6 Wastes, Byproducts, and Hazardous Materials	
S.3.7 Transportation	
S.3.8 Aesthetics	
S.3.8.1 Visual Resources	
S.3.8.2 Noise	
S.3.8.3 Odor	
S.3.9 Socioeconomics	
S.3.10 Cultural Resources	
S.3.11 Health and Safety	
S.3.12 Facility Accidents and Sabotage	
S.3.13 Environmental Justice	S-26
S.4 No-Action Alternative	S-26
S.5 Cumulative Impacts	S-27
S.5.1 Reasonably Foreseeable Future Actions	S-27
S.5.2 Cumulative Impacts	
S.5.2.1 Land Use	
S.5.2.2 Air Quality	S-30
S.5.2.3 Hydrology	
S.5.2.3.1 Surface Water	

	S.5.2.3.2 Groundwater S.5.2.4 Utilities, Energy, and Materials S.5.2.5 Wastes and Hazardous Materials S.5.2.6 Transportation S.5.2.7 Aesthetics S.5.2.7.1 Visual S.5.2.7.2 Noise S.5.2.7.3 Odor S.5.2.8 Socioeconomics S.5.2.9 Health and Safety S.5.2.10 Accidents	. S-33 . S-34 . S-36 . S-37 S-37 S-38 . S-38
S.6	Mitigation	S-39
S.7	Conclusions	S-41
S	.1 Major Conclusions of the EIS	
	S.7.1.1 Summary of Beneficial Impacts	
	5.7.1.3 Differences Between the Proposed Action, Action Alternative, and No-Action	. 3-42
	Alternative	. S-43
	S.7.1.4 Areas of Controversy	
	LIST OF TABLES	
<u>Table</u>		<u>Page</u>
S-1	omparison of the design features and products of the biorefinery under the Proposed Action d Action Alternative	. S-12 . S-40
S-1 S-2	d Action Alternative	. S-12 . S-40
S-1 S-2	d Action Alternative	. S-12 . S-40
S-1 S-2 S-3 Figure S-1 S-2	d Action Alternative	. S-12 . S-40 . S-45
S-1 S-2 S-3 Figure S-1 S-2 S-3	d Action Alternative	. S-12 . S-40 . S-45

ACRONYMS AND ABBREVIATIONS

To ensure a more reader-friendly document, the U.S. Department of Energy (DOE or the Department) limited the use of acronyms and abbreviations in this Biorefinery Project EIS. In addition, acronyms and abbreviations are defined the first time they are used in each chapter. The acronyms and abbreviations used in the text of this document are listed below.

ABBK Abengoa Bioenergy Biomass of Kansas (also called Abengoa Bioenergy)

AERMOD American Meteorological Society/EPA Regulatory Model

°C degrees Celsius

CFR Code of Federal Regulations
CRP Conservation Reserve Program

dBA A-weighted decibels

DOE U.S. Department of Energy (also called the Department)

EIS environmental impact statement EPAct 2005 Energy Policy Act of 2005

EPA U.S. Environmental Protection Agency

°F degrees Fahrenheit FR Federal Register

GREET Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (Model)

K.A.R. Kansas Administrative RegulationNRCS Natural Resources Conservation Service

NEPA National Environmental Policy Act, as amended

 PM_{10} particulate matter with an aerodynamic diameter of 10 micrometers or less $PM_{2.5}$ particulate matter with an aerodynamic diameter of 2.5 micrometers or less

U.S.C. United States Code

USDA United States Department of Agriculture

USGS United States Geological Survey

TERMS AND DEFINITIONS

In this Biorefinery Project EIS, DOE has italicized terms that appear in the Glossary (Chapter 10) the first time they appear in a chapter.

UNDERSTANDING SCIENTIFIC NOTATION

DOE has used scientific notation in this Biorefinery Project EIS to express numbers that are so large or so small that they can be difficult to read or write. Scientific notation is based on the use of positive and negative powers of 10. The number written in scientific notation is expressed as the product of a number between 1 and 10 and a positive or negative power of 10. Examples include the following:

Positive Powers of 10	Negative Powers of 10
$10^1 = 10 \times 1 = 10$	$10^{-1} = 1/10 = 0.1$
$10^2 = 10 \times 10 = 100$	$10^{-2} = 1/100 = 0.01$
and so on, therefore,	and so on, therefore,
$10^6 = 1.000.000$ (or 1 million)	$10^{-6} = 0.000001$ (or 1 in 1 million)

Probability is expressed as a number between 0 and 1 (0 to 100 percent likelihood of the occurrence of an event). The notation 3×10^{-6} can be read 0.000003, which means that there are 3 chances in 1 million that the associated result (for example, a fatal cancer) will occur in the period covered by the analysis.

S.1 Introduction

The U.S. Department of Energy (DOE or the Department) is proposing to provide federal funding to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the final design,

construction, and startup of a biomass-to-ethanol and biomass-to-energy production facility (hereafter referred to as the Abengoa Biorefinery Project). The integrated biorefinery would use a combination of biomass feedstocks, such as corn stover and wheat straw, to produce ethanol and to generate sufficient electricity to power the facility and supply excess electricity to the regional power grid.

The Biorefinery Project site would be located adjacent to and west of the city of Hugoton, in Stevens County, southwestern Kansas (Figure S-1). The Project site comprises approximately 810 acres of row-cropped agricultural land. The biorefinery facilities would be developed on 385 acres of the Project site, and the remaining 425 acres would remain agricultural and act as a buffer between the biorefinery and the city of Hugoton (Figure S-2).

National Environmental Policy Act, DOE has prepared this Draft Environmental Impact Statement for the Proposed Abengoa Biorefinery Project near Hugoton,

In accordance with the implementing regulations of the

Stevens County, Kansas (DOE/EIS-0407D) (Abengoa Biorefinery Project EIS) to evaluate the potential environmental impacts of its proposal to use federal funds to support the Abengoa Biorefinery Project.

BIOREFINERY

Biorefineries are similar to petroleum refineries in concept: however, biorefineries biological use matter (biomass) as feedstock (raw materials), instead of petroleum feedstock, to produce transportation fuels (for example ethanol), industrial chemicals, and heat and power. Such transportation fuels, chemicals, and heat/power are referred to as biofuels, bioproducts, and biopower, respectively.

An integrated biorefinery uses combinations of biomass feedstocks (for example, corn and corn stover, wheat straw, and other nonfood crop residues) and conversion technologies to produce a variety of products, but typically biofuels.

In this EIS, the term "biorefinery" refers to structures. includina physical associated infrastructure, of the biomassto-ethanol and -energy production facility.

S.1.1 PURPOSE AND NEED

The Energy Policy Act of 2005 (EPAct 2005), Section 932, directs the Secretary of Energy to conduct a program of research, development, demonstration, and commercial application for bioenergy, including integrated biorefineries that can produce biopower, biofuels, and bioproducts. In carrying out a program to demonstrate the commercial application of integrated biorefineries, EPAct 2005 authorizes the Secretary to provide funds to biorefinery demonstration projects to encourage (1) the demonstration of a wide variety of lignocellulosic feedstocks; (2) the commercial application of biomass technologies for a variety of uses,

BIOENERGY TERMS

Biopower:

The use of biomass feedstock to produce electric power.

Biofuels:

Fuels made from biomass resources, or their processing and conversion derivatives.

Bioproducts:

Any products -- fuels, chemicals, raw materials -- made from renewable biomass resources.

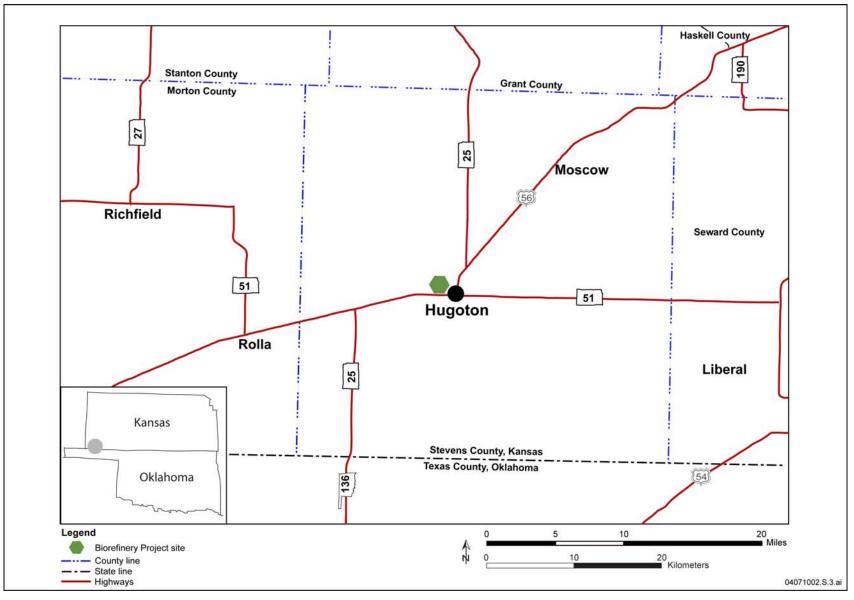


Figure S-1. Biorefinery Project site.

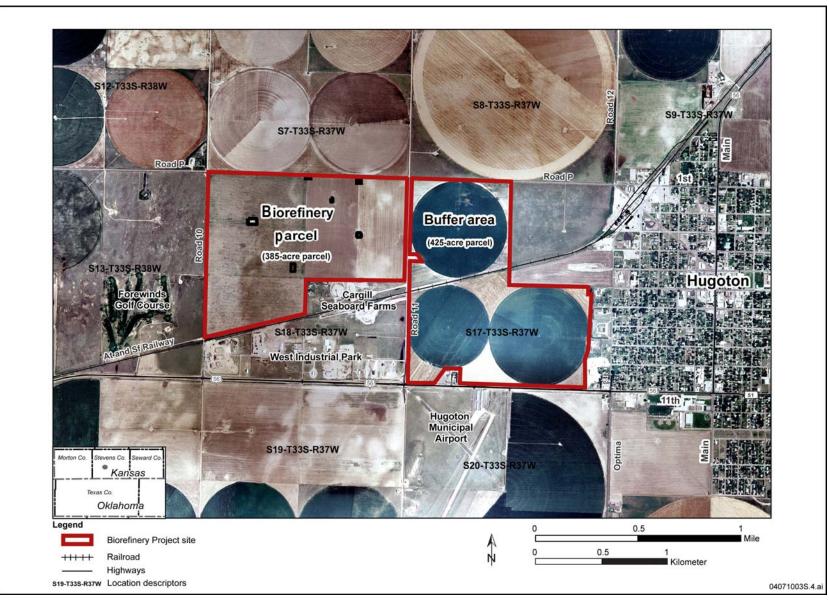


Figure S-2. Biorefinery Project site and vicinity.

including liquid transportation fuels, high-value bio-based chemicals, substitutes for petroleum-based feedstocks and products, and energy in the form of electricity or useful heat; and (3) the demonstration of the collection and treatment of a variety of biomass feedstocks

The Department's goal in implementing Section 932 of EPAct 2005 is to demonstrate that commercial-scale integrated biorefineries that use a wide variety of lignocellulosic feedstocks can operate profitably without direct federal subsidy after initial construction costs are paid and that these biorefineries can be easily replicated.

LIGNOCELLULOSIC FEEDSTOCK

Any portion of a plant or a byproduct used in the conversion of organic materials to energy, including crops, trees, forest wastes, and agricultural wastes not specifically grown for food. These would include, for example, barley grain, grapeseed, rice bran and hulls, soybean matter, corn stover, and organic materials that have been segregated from municipal solid waste.

Lignocellulosic (cellulosic) feedstocks would not include, for example, plant-based oils intended for human consumption, such as soy, canola, sunflower and peanut oils, or foods intended for human and animal consumption, such as corn.

Accordingly, DOE's purpose and need is to support the development of commercial-scale integrated biorefineries and the demonstration of the use of a wide variety of cellulosic feedstocks in the production of biofuels, bio-based chemicals, and biopower.

S.1.2 BACKGROUND

Under EPAct 2005, Congress has directed the Department to carry out a program to demonstrate the commercial application of integrated biorefineries for the production of biofuels, in particular ethanol, from lignocellulosic feedstocks. Federal funding for cellulosic ethanol production facilities is intended to further the government's goal of rendering ethanol cost-competitive with gasoline by 2012, and along with increased automobile fuel efficiency, reducing gasoline consumption in the United States by 20 percent within 10 years.

To implement its responsibilities under EPAct 2005, DOE issued a funding opportunity announcement in February 2006 for the design, construction, and startup of commercial-scale integrated biorefineries. In February 2007, the Department selected Abengoa Bioenergy and five other applicants for negotiation of award. Abengoa proposed an innovative approach to biorefinery operations that would involve production of biofuel and energy in the form of steam that could be used to meet energy needs and displace fossil fuels, such as coal and natural gas. The proposal also included an integrated grain-to-ethanol facility.

In January 2009, Abengoa Bioenergy modified its proposal by omitting the integrated grain-to-ethanol facility, and including a steam-driven turbine that would generate sufficient electricity to power the production facility and supply excess electricity to the regional power grid. In addition, Abengoa applied for loan guarantees from the Department's Loan Guarantee Program pursuant to Title XVII of EPAct 2005, and from the U.S. Department of Agriculture Rural Development Biorefinery Assistance Program pursuant to Section 9003 of the *Food, Conservation, and Energy Act of 2008*. The Department of Agriculture Rural Development is a cooperating agency in the preparation of this EIS.

U.S. DEPARTMENT OF AGRICULTURE RURAL DEVELOPMENT

The U.S. Department of Agriculture Rural Development is an agency within the Department of Agriculture. The role of Rural Development is to increase economic opportunities for rural residents and improve their quality of life by forging partnerships with rural communities; funding projects that bring housing, community facilities, utilities, and other services; and by providing technical assistance and financial backing for rural businesses and cooperatives to create jobs in rural areas. Rural Development maintains general responsibility for renewable energy and energy-efficient improvements programs, one of which is the Biorefinery Assistance Program.

The Department considered Abengoa Bioenergy's proposed project changes and concluded that the project remained eligible for federal funding under Section 932 of EPAct 2005. On August 28, 2009, the Department determined, however, that it will not proceed with Abengoa's request for a loan guarantee. U.S. Department of Agriculture Rural Development also considered Abengoa's application for a loan guarantee and did not approve it for funding in Fiscal Year 2009. Should Abengoa submit an application for a loan guarantee in the future, Rural Development will use this EIS as part of its evaluation of project eligibility and sufficiency.

Accordingly, the Department is now proposing to negotiate a second agreement to provide federal funding to support the final design, construction, and startup of the Abengoa Biorefinery Project. If DOE decides to provide federal funding, it will do so under the provisions of the *American Recovery and Reinvestment Act of 2009*.

Based in part on the analyses in this Abengoa Biorefinery Project EIS, DOE will decide (1) whether to provide funding to support the final design, construction, and startup of the Biorefinery Project as proposed by Abengoa Bioenergy (the Proposed Action); (2) whether to provide funding to support the final design, construction, and startup of the Biorefinery Project for all elements of the facility as proposed by Abengoa, except for the portion dedicated to generating electricity for commercial sale (the Action Alternative); or (3) whether to provide funding for either the Proposed Action or Action Alternative, contingent on the implementation of environmental mitigation measures, which would be determined based on the environmental impact analysis in this EIS.

S.1.3 NATIONAL ENVIRONMENTAL POLICY ACT PROCESS

This Abengoa Biorefinery Project EIS is intended to comply with the *National Environmental Policy Act* (NEPA), the Council on Environmental Quality regulations (40 CFR Parts 1500 through 1508), and DOE's implementing procedures (10 CFR Part 1021) and provide DOE and other state and federal agency decisionmakers with information needed to make informed decisions in connection with the construction and startup of the proposed project.

In August 2008, DOE published in the *Federal Register* its "Notice of Intent to Prepare an Environmental Impact Statement and Notice of Wetlands Involvement for the Abengoa Biorefinery Project near Hugoton, KS" (73 FR 50001), opened a 45-day public scoping period, and held a public scoping meeting in Hugoton, Kansas. In April 2009, DOE re-opened public scoping and published in the *Federal Register* its "Amended Notice of Intent to Modify the Scope of the Environmental Impact Statement for the Abengoa Biorefinery Project near Hugoton, KS" (74 FR 19543). The amended notice informed the public about changes in the Project relevant to the scope of the ongoing EIS. The Department opened a

30-day public scoping period and held a second public scoping meeting in Hugoton, Kansas. During these scoping periods, the Department received oral and written scoping comments of the following three types: support for the project, statements of no negative environmental impacts, and requests for additional information from federal and state agencies and members of the public.

In response to the scoping comments, the Department conducted surveys of portions of the Biorefinery Project site and assessed biomass removal to estimate potential environmental impacts. The Department also evaluated socioeconomic, air quality, soil, and traffic and transportation impacts, as well as other impacts, in this Abengoa Biorefinery Project EIS.

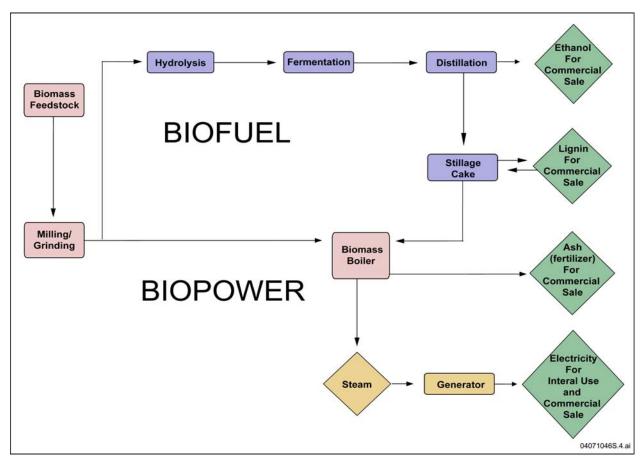
Additional information about the public scoping process, as well as the Abengoa Biorefinery Project EIS in general, is available on the Internet at http://www.biorefineryprojecteis-abengoa.com/.

S.2 Proposed Action and Alternatives

The biomass—to-ethanol and -energy facility proposed by Abengoa Bioenergy would use lignocellulosic biomass (biomass) as feedstock to produce biofuels. In more traditional grain-to-ethanol facilities, biofuel producers ferment the simple sugars contained in grains such as corn and milo (grain sorghum) to produce ethanol. Instead, in the proposed biorefinery, biomass such as corn stover, wheat straw, milo stubble, switchgrass, and other available materials would be harvested as feedstock and fermented to produce ethanol.

The biorefinery would also produce biopower, or bioenergy, in the form of electricity. The bioenergy generation facilities co-located at the site would use direct-firing (that is, using the biomass as a solid fuel in a boiler) and gasification (Action Alternative only) to produce steam. Gasification of biomass occurs when biomass is heated in a low-oxygen environment, producing a biofuel known as syngas. The syngas would be used as boiler fuel, which would lower the demand for natural gas at the biorefinery. Steam produced in the biomass boilers would be used for facility processes and to produce electricity.

S.2.1 PROPOSED ACTION


PREFERRED ALTERNATIVE

The Proposed Action presented in this Abengoa Biorefinery Project EIS is the Department's preferred alternative. To meet the mandates of EPAct 2005 and other governing policies, it is in the best interest of DOE to select and fund the most technologically and economically viable alternative. The Proposed Action represents this alternative.

DOE's Proposed Action is to provide federal funding of approximately \$85 million to Abengoa Bioenergy to support the design, construction, and startup of the biorefinery whose total anticipated cost is approximately \$300 million. The Proposed Action is the Department's preferred alternative in this Abengoa Biorefinery Project EIS.

Under the Proposed Action, the biorefinery would process approximately 2,500 dry short tons per day of feedstock, which would be obtained from producers within 50 miles

of the Biorefinery Project site. The biorefinery would produce up to 18 million gallons of denatured ethanol per year and 92 megawatts of electricity. Seventy megawatts of electricity would be sold commercially. Figure S-3 presents a simplified diagram of the process Abengoa Bioenergy would use to convert biomass feedstock to biofuel and biopower under the Proposed Action.

Figure S-3. Simplified diagram showing conversion of feedstocks to biofuel and biopower under the Proposed Action.

S.2.1.1 Construction

The biorefinery would be constructed on a 385-acre parcel near Hugoton, Kansas (Figure S-2). Abengoa Bioenergy has optioned an additional 425 acres immediately east of the biorefinery parcel, between the biorefinery and the Hugoton city limits, as a buffer area. The optioned parcel would continue to be used as agricultural land, and might be used to test production of biomass feedstocks. Water from the proposed wastewater treatment facility within the biorefinery would be used to irrigate that parcel.

Construction of the biorefinery would take approximately 18 months and would require infrastructure improvements, such as construction of site roads that would tie to Rural Road P, a 1.5-mile long electrical transmission line, and an approximately 0.5-mile railroad spur on the Biorefinery Project site that would tie into the Cimarron Valley Railroad. Temporary connections to utilities would include electricity, cable, telephone, and a nonpotable water line. Temporary potable water and sanitary facilities would be provided onsite until construction of permanent, onsite facilities.

S.2.1.2 Operations

Biomass for use as feedstock would be procured within 50 miles of the biorefinery. The primary feedstock would be corn stover; secondary feedstocks would include mile stubble, wheat straw, and switchgrass. Over time, switchgrass could replace corn stover as the primary feedstock. Corn stover, mile stubble, and switchgrass harvesting would begin mid-October and wheat straw harvesting would begin mid-June.

Harvested bales of biomass would be transported to a 10-acre onsite storage yard or to one of seven offsite storage sites to be located within 30 miles of the Biorefinery Project site. At each location, bales would be stacked to accommodate offloading of arriving trucks during the biomass harvesting season and loading of trucks for shipment to the biorefinery. Each offsite storage location would be about 160 acres and would have no permanent structures. These sites would store enough biomass to support biorefinery operations for up to 1 year.

Bales of corn stover and other biomass ready to be processed at the biorefinery would be transported to a bale barn and sent by conveyor to be ground to size and cleaned. The ground feedstock would then enter the production process or be stored temporarily in silos onsite. Approximately 2,500 dry short tons of biomass per day would be processed for feedstock.

FERMENTATION

Ethanol fermentation is the biological process of bacteria and yeast breaking down simple sugars for their cellular energy and producing ethanol and carbon dioxide as products.

The ethanol production process would involve the following steps: (1) enzymatic hydrolysis and fermentation, (2) distillation and dehydration, and (3) ethanol denaturant and storage (Figure S-3). During hydrolysis and fermentation, the feedstock would be treated with enzymes and genetically modified organisms (enzymatic hydrolysis) to simultaneously break down the cellulose and ferment the recovered sugars. The resulting "beer," which is 4 to 5 percent ethanol at that point, would then

be distilled and dehydrated to remove water and residual solids. Distillation would also destroy genetically modified and other organisms.

The facility design incorporates two 60,000-gallon-capacity shift tanks to hold the anhydrous ethanol produced during each 8-hour shift. Ethanol product not meeting required quality control specifications (for example, ethanol containing water) would be transferred back to the distillation, dehydration, and evaporation facility for reprocessing. Each tank in the storage area would be built onsite and would have an internal floating roof design. The storage tanks would be enclosed in a bermed area to contain spills.

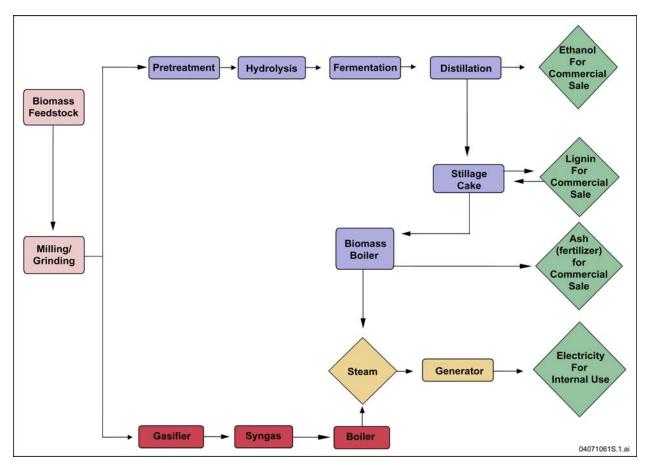
Gasoline would be added to denature the ethanol and make it unfit for human consumption prior to temporary storage and loading of the product into tanker railcars for shipment.

Soluble and insoluble solids would be recovered from the distillation process and separated. Soluble solids would be concentrated to a thin stillage syrup and combusted in biomass boilers. Approximately 117,000 dry short tons of insoluble solids, referred to as lignin-rich stillage cake, would be produced per year. The stillage cake would be transferred by conveyor to an onsite third-party lignin producer. After extracting the lignin, the lignin producer would return the lignin-poor stillage cake to the biorefinery and Abengoa Bioenergy would use it as fuel for the solid biomass boiler. Until a lignin extraction facility was built, Abengoa would burn the lignin-rich stillage cake as solid fuel in the biomass boiler. As an option,

Abengoa could use lignin-rich stillage cake as fuel for the solid biomass boiler during the life of the biorefinery.

The biomass receiving, grinding, and storage operations would be an enclosed system with a high-velocity, positive pressure collection system to transfer airborne particles to a dirt loadout tank. The loadout tank, grinding activities, and associated transfer points would have fabric filter dust collectors (baghouses). Volatile organic matter released during processing would be captured in a vent scrubber.

Electricity would be produced via the high-pressure, steam-condensing turbine generator. The gross power produced at the biorefinery would be 92 megawatts. Biomass boilers would be used to produce steam. Steam would be used for ethanol production processes and electricity production.


Approximately 1,900 dry short tons per day of biomass feedstock would supply the boilers. The biomass boilers would also burn much of the waste resulting from ethanol production, including fines collected during milling, stillage cake, and syrup from the distillation process. These processes would produce almost 80,000 tons of ash annually. This ash would contain potassium and phosphorous and would be marketed to the contracted feedstock producers as a soil amendment. If there is no market for the ash, it would be sent to landfills.

The biorefinery would also include the following support facilities and infrastructure:

- An emergency firewater tank and pump, emergency power backup generator, and diesel fuel storage tank;
- A chemical storage pad with a 30,400-gallon tank for ammonia, 10,000-gallon tank for sodium hydroxide, 13,300-gallon tank for urea, 50,400-gallon tank for sulfuric acid, 53,600-gallon tank for the hydrolytic enzyme cocktail, 53,000-gallon tank for corn syrup, 8,000-cubic-foot silo for lime storage, and storage capacity for 3,000 cubic feet of limestone;
- A wastewater treatment facility to treat all wastewater generated at the facility. Abengoa Bioenergy would apply approximately 7.5 to 10 gallons per minute of sludge from the treatment facility on agricultural fields in the buffer zone;
- A non-contact cooling tower. Wastewater from the cooling tower would be used to irrigate fields in the buffer zone;
- Paved in-facility haul roads;
- A railroad spur connecting the biorefinery to the Cimarron Valley Railroad;
- A new 115-kilovolt transmission line that would be about 1.5 miles long; and
- A system to deliver water from up to eight existing wells for which Abengoa Bioenergy has optioned irrigation water rights.

S.2.2 ACTION ALTERNATIVE

For the Action Alternative, DOE would provide federal funding to support the design, construction and startup of a biorefinery that would use a two-stage process to pretreat and hydrolyze and ferment sugars for bioethanol production and that would produce syngas using a gasification system. A syngas boiler as well as the biomass boilers would produce steam. Steam would be used for ethanol production processes and electricity production. Under the Action alternative, the biomass boilers and the turbines would be used to generate electricity solely to operate the plant and would be smaller than those for the Proposed Action. Figure S-4 presents a simplified diagram of the process Abengoa Bioenergy would use to convert biomass feedstock to biofuel and biopower under the Action Alternative.

Figure S-4. Simplified diagram showing conversion of feedstocks to biofuel and biopower under the Action Alternative.

Under the Action Alternative, the biorefinery would produce approximately 12 million gallons per year of denatured ethanol, 19,000 short tons per year of lignin-rich stillage cake, and 20 megawatts of electricity for use at the facility.

The milling process for Proposed Action and Action Alternative is the same. Once milled, the feedstock would be pre-treated with dilute acid to remove hemicellulose and pectin (the Proposed Action does not include pretreatment). The hemicellulose and pectin would be recovered as simple sugars and separated from the water-insoluble, cellulose-rich, lignin-rich fiber. The fiber would be treated with enzymes and

genetically modified organisms (enzymatic hydrolysis) to simultaneously break down the tougher cellulose and ferment the recovered sugars.

The simple sugars recovered after pretreatment would be transferred to the fermentation tanks and mixed with genetically modified organisms to ferment. At the conclusion of the fermentation process, the "beer" would be conveyed to the distiller for purification. The beers from enzymatic hydrolysis and the fermentation process would be combined, distilled, and dehydrated.

Approximately 71,000 dry short tons per year of soluble and insoluble solids would be recovered from the bottom of the distillation column. The soluble solids would be concentrated to a thin stillage syrup in an evaporator and would be combusted in the biomass boilers. About 130 dry short tons per day of insoluble, lignin-rich stillage cake would be transferred to an onsite processing facility for extraction of lignin. After the lignin was extracted, the lignin producer would return the lignin-poor stillage cake to the biorefinery, and Abengoa Bioenergy would use it as fuel for the solid biomass boiler. Until the lignin extraction facility is built, Abengoa would burn the lignin-rich stillage cake as solid fuel in the biomass boiler. If recovery of lignin is not economically feasible, the lignin-rich stillage cake would be used as fuel in the biomass boiler.

Denaturing the produced ethanol and loadout for the Proposed Action and Action Alternative are the same.

Syngas produced in the gasification plant under the Action Alternative would operate a fire-tube boiler to produce steam. A small biomass solids boiler would also produce steam to power the biorefinery process operations only. Steam would be used to operate a small turbine that would produce 20 megawatts of power.

S.2.3 DECOMMISIONING AND DESTRUCTION OF THE BIOREFINERY

For the purposes of the analysis in this EIS, the projected life of the biorefinery is 30 years; however, Abengoa Bioenergy has not projected a life for the facility. The bioenergy industry is so new that no bioenergy facilities have been decommissioned. While there are no data on which to base the impacts associated with decommissioning and destruction of the biorefinery, DOE does not anticipate impacts to be greater than the impacts associated with construction.

S.2.4 COMPARISON OF DESIGN FEATURES

Table S-1 provides a comparative overview of the biorefinery design features and products under the Proposed Action and Action Alternative.

S.2.5 NO-ACTION ALTERNATIVE

Under the No-Action Alternative, DOE would not provide federal funding to Abengoa Bioenergy to support the design, construction, and startup of a biorefinery. Abengoa would not build a biorefinery and the biorefinery parcel would remain agricultural land. The Department recognizes, however, that Abengoa could pursue alternative sources of capital for development of the biorefinery.

Table S-1. Comparison of the design features and products of the biorefinery under the Proposed Action and Action Alternative.

Design features/products	Proposed Action	Action Alternative
Biomass feedstock	Approximately 2,500 dry short tons per day	800 dry short tons per day
Fermentation facility	One step feedstock hydrolysis/fermentation process	Feedstock pretreatment to remove simple sugar molecules followed by hydrolysis/fermentation process on the remaining cellulose
Gasifier	No	Yes, syngas production
Steam production	Larger biomass boiler	Smaller gas boiler and small biomass boiler
Ethanol production	18 million gallons per year	12 million gallons per year
Lignin-rich stillage cake (not including distiller's syrup)	117,000 dry short tons per year	45,000 dry short tons per year
Lignin production	45,000 dry short tons per year	19,000 dry short tons per year
Electricity production	92 megawatts	20 megawatts
Electricity purchase	None	10 megawatts (15 megawatts during peak demand)
Boiler ash	80,000 tons per year	11,000 tons per year
Gasifier ash	0	9,000 tons per year

S.3 Environmental Impacts

The potential environmental impacts of the Proposed Action and Action Alternative are summarized in the following section for 13 resource and subject areas considered by the Department in this Abengoa Biorefinery Project EIS. Impacts of the No-Action Alternative are summarized in Section S.6 and cumulative impacts are summarized in Section S.7.

S.3.1 LAND USE

Because production of crops and livestock forage is the primary use of land in the region surrounding the Biorefinery Project site, and because procurement of feedstock could alter agricultural practices in the region, the analysis of land use impacts focused on the potential changes that construction and operation of the biorefinery could have on agricultural land uses and land management practices.

Proposed Action. Operations of the biorefinery would require approximately 0.88 million dry U.S. short tons of lignocellulosic feedstock per year. Abengoa Bioenergy anticipates that, at the start of operations, about 82 percent of this feedstock would be corn stover, 7 percent grain sorghum stover, 7 percent wheat straw, and 4 percent switchgrass or from biomass harvested from lands in the Conservation Reserve Program. The Conservation Reserve Program, a major provision of the *Food Security Act of 1985*, is intended to reduce erosion and protect water quality on farmland. Biomass enrolled in the Reserve Program would be utilized in accordance with program rules.

DOE conservatively estimates that the total annual demand for crop residue by the biorefinery would equal about 55 percent of the targeted crop residues that could be sustainably removed from the 50-mile region surrounding the project site. The demand for irrigated corn residue would be about 75 percent of the amount that could be sustainably removed, and the demand for grain sorghum and wheat residue would be less than 20 percent of the sustainable amount. Thus, production of targeted crop residues exceed biorefinery demand and Abengoa would have flexibility in feedstock procurement. DOE anticipates the demand for crop residue by the biorefinery would have a negligible impact on changes in land use type, including use of lands in the Conservation Reserve Program, because there would be no incentive to alter land use type for the purpose of meeting demand.

DOE anticipates that, over time, at least some land would be converted to switchgrass production, but the magnitude is unknown. Land use changes associated with increased switchgrass production would result in minimal to beneficial environmental impacts. Switchgrass, a native perennial plant, would likely be grown on marginal lands thereby converting those lands to a crop that is resistant to many pests and plant diseases; uses relatively less water, fertilizer, and pesticides; and establishes deep roots that store carbon in the soil. The opportunity cost associated with increased switchgrass production would likely only impact the segment of livestock producers in the region that rely on land not under their control for their livestock forage needs. DOE does not consider the indirect opportunity cost to those non-landowners an adverse impact. Increased switchgrass production would not be expected to result in an adverse impact to land enrolled in the Conservation Reserve Program.

Contracts between Abengoa Bioenergy and producers of biomass would include a requirement that crop residues would be harvested in accordance with guidelines for minimizing wind erosion developed by the U.S. Department of Agriculture. Thus, biomass removal for the Proposed Action would not result in adverse levels of soil erosion. DOE concludes that, on a regional basis, removing crop residue following those guidelines would have a negligible adverse impact on soil organic matter content. On a field-by-field basis, crop residue removal would have a beneficial to minor adverse impact on soil organic matter content. Any adverse impact to soil organic matter content would be limited to land for which the producer was compensated for residue removal.

Biomass would be harvested using typical harvesting methods and equipment, would be independent of grain harvesting, and thus would not significantly impact cropping practices in the region. DOE anticipates that harvesting switchgrass and biomass from lands in the Conservation Reserve Program would have a negligible impact on soil conditions. Any associated opportunity costs would be negligible.

Seven 160-acre offsite biomass storage sites would be developed on marginal agricultural land near major roads. These sites would be developed in a manner that would not interfere with crop production or irrigation activities, and they would not affect prime farmland. DOE also does not anticipate adverse impacts to conservation programs, prime farmland, highly erodible soil, or public lands.

Development of the biorefinery would result in the irreversible conversion of 385 acres from agricultural to industrial use. The Proposed Action is consistent with existing land use and zoning at the site. The reduction in irrigated farmland associated with the water rights Abengoa Bioenergy would transfer to industrial use at the biorefinery would be a negligible change in irrigated cropland.

Action Alternative. Under the Action Alternative, the biorefinery would require about 0.27 million dry U.S. short tons of feedstock per year. Because the demand for crop residue would be substantially less

than the amount available in the region, there would be no incentive to alter land uses to meet the demand for biomass feedstock. In addition, DOE does not anticipate any changes in the amount of land in the Conservation Reserve Program.

DOE concludes the Action Alternative would not impact cropping practices in the region or cause substantial opportunity costs associated with harvesting crop residue. The offsite biomass storage sites would be developed in a manner that would not interfere with crop production or irrigation activities. Further, DOE does not anticipate adverse impacts to conservation programs, prime farmland, highly erodible soil, or public lands.

The Action Alternative is consistent with existing land use and zoning. Conversion of the Biorefinery Project site to industrial use and the reduction in irrigated farmland associated with water rights would have negligible impacts on land use.

S.3.2 AIR QUALITY

Due to the rural nature of the region surrounding the Biorefinery Project site, levels of air pollution are relatively low, and the area is in attainment with National Ambient Air Quality Standards.

Proposed Action. Construction of the biorefinery would cause emissions from various activities including use of heavy diesel-operated equipment, disturbance of the soil, grading activities, material transport, and material handling. These activities would be short term or intermittent in nature and would only occur during the 18-month construction phase. Best management practices would be employed to minimize these emissions.

Based on a design of the biorefinery completed in April 2009, the concentrations of criteria pollutants estimated to be released during operation of the biorefinery would be well below the National Ambient Air Quality Standards. The estimated concentrations from the biorefinery along with ambient background concentrations of pollutants in the region are about 60 percent of the National Ambient Air Quality Standard for 24-hour PM₁₀, 18 percent for nitrogen dioxide, and less than 10 percent of the standard for other pollutants. DOE therefore concludes that impacts to air quality would be less than levels deemed to be protective of human health and the environment and would not degrade the existing air quality.

Updated biorefinery design parameters and associated emissions for the Proposed Action will be finalized after publication of this Draft Abengoa Biorefinery Project EIS. The design parameters that are described in this Draft EIS, when compared with the April 2009 design that was used for air quality modeling, result in an increase in the amount of biomass handled, and ethanol and electricity production. DOE does not anticipate that these modifications will result in changes to the conclusions presented in this Draft EIS. Preliminary calculations show that when particulate matter, carbon monoxide, sulfur dioxide, and nitrogen oxide emissions are increased to match the anticipated biorefinery design parameters, the corresponding increase in pollutant concentrations will not approach and therefore not exceed the National Ambient Air Quality Standards.

The biorefinery also would be a source of greenhouse gases, with carbon dioxide being the most abundant. The boilers would be the main source of carbon dioxide, methane, and nitrous oxide. Carbon dioxide also would be emitted by the biomass fermentation and distillation processes.

GREENHOUSE GAS

Greenhouse gases exist in the earth's atmosphere and absorb outgoing infrared radiation, thus trapping heat in the atmosphere. Some greenhouse gases, such as water vapor, carbon dioxide, methane, and nitrous oxide, occur naturally and as a result of anthropogenic activities (resulting from or produced by human beings). Other greenhouse gases, such as hydrofluorocarbons, result only from anthropogenic activities. In the United States, energy-related carbon dioxide emissions represent the majority of the total greenhouse gas emissions from anthropogenic sources. The biorefinery would be a source of greenhouse gases, including carbon dioxide, methane, and nitrous oxide.

The total emissions of carbon dioxide equivalents (used to represent the contribution of all gases) would be 1.65 million tons per year. According to the DOE Energy Information Administration, the total U.S. greenhouse gas emissions in 2007 were 8,027 million tons of carbon dioxide equivalents, with 6,604 million tons of the total from energy-related carbon dioxide. The projected greenhouse gas emissions from the biorefinery would be 0.021 percent of the total U.S. carbon dioxide equivalent value.

Greenhouse gases emitted by the Abengoa biorefinery would mix and be stable in the atmosphere and would not result in any direct impacts to the Hugoton area. The emissions would pose no direct hazard to human health, such as from toxicity or asphyxiation, and any incremental climate change impacts attributable to the relatively small quantities of greenhouse gases the biorefinery would emit would be too small to observe, either globally or in the Hugoton area. However, the greenhouse gases the biorefinery would emit would add to past and future emissions from all other sources of U.S. and global greenhouse gas emissions, contributing to cumulative impacts on climate change, such as those described below.

While the scientific understanding of climate change is evolving, the Intergovernmental Panel on Climate Change Fourth Assessment Report *Climate Change 2007* states that warming of the earth's climate is unequivocal, and that warming is very likely attributable to increases in atmospheric greenhouse gas concentrations caused by human activities. The Fourth Assessment Report indicates that changes in many physical and biological systems, such as increases in global temperatures, more frequent heat waves, rising sea levels, coastal flooding, loss of wildlife habitat, spread of infectious disease, and other potential environmental impacts, are linked to changes in the climate system and that some changes may be irreversible. At present, there is no methodology that would allow DOE to correlate greenhouse gas emissions from the Proposed Action to any specific climate change impact..

Although the biorefinery would be a source of greenhouse gas emissions, operation of the biorefinery would provide a net reduction in greenhouse gas emissions when considering the emissions produced during the lifecycle of ethanol production and use relative to the lifecycle of gasoline production and use. To determine the level of greenhouse gas reduction from the Proposed Action, DOE used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) Model. The GREET Model examines "well-to-wheel" fuel lifecycles by taking into consideration factors such as producing raw materials for fuels, refining the raw materials into fuels, and using the fuel in vehicles.

The Abengoa Biorefinery Project would reduce greenhouse gas emissions not only by producing a fuel that displaces gasoline, but also by producing power that displaces electricity from other electricity generating sources. Combining these reductions and other factors into a single metric to express the net effect on greenhouse gas emissions on a lifecycle basis relative to a baseline scenario in which the

biorefinery is not built poses a challenge. The relatively large reduction attributable to electric power generation compared with the reduction from gasoline displacement contributes to the challenge. However, the GREET Model accounts for both sources of reduction and generates a relative percentage comparison, which is explained below.

DOE used the GREET Model to compare three ethanol-related scenarios with a gasoline-only baseline scenario, that is (1) vehicles fueled only by ethanol, (2) vehicles fueled by 85-percent ethanol and 15-percent gasoline (E85), and (3) vehicles fueled by 10-percent ethanol and 90-percent gasoline (E10). Based on the GREET Model, the use of biomass-produced ethanol and electricity under the first scenario would result in a 306-percent reduction in greenhouse gas emissions compared with the gasoline-only baseline. The reductions in greenhouse gas emissions are due largely to the emissions "credit" for the electricity being exported to the grid. The exported biopower would replace electricity that would have been produced largely through coal, nuclear, and natural gas. Thus, the greenhouse gas emission credit is essentially equal to the difference between the greenhouse gases from producing biomass-based electricity and greenhouse gases from producing coal, natural gas, and nuclear-based electricity. Because the majority of the electricity the biorefinery would produce would be exported rather than used for biorefinery operations, the greenhouse gases displaced by the biorefinery would be larger than the greenhouse gases emitted by biorefinery operations, thus causing a large overall decrease in greenhouse gas. In the second scenario (E85), DOE estimates a 296-percent reduction in greenhouse gas emissions, once again, primarily due to the emissions credit. In the third scenario (E10), DOE estimates that a 26percent reduction in greenhouse gas emissions could be achieved relative to the gasoline-only baseline.

Action Alternative. Construction impacts would be the same as those for the Proposed Action. Under the Action Alternative, the estimated concentrations of air pollutants from the biorefinery along with ambient background concentrations of pollutants in the region are about 50 percent of the National Ambient Air Quality Standard for 24-hour PM₁₀, 13 percent for nitrogen dioxide, and less than 10 percent of the standard for other pollutants. DOE therefore concludes that impacts to air quality in the Hugoton area would be less than levels deemed to be protective of human health and the environment and would not degrade the existing air quality.

DOE also used the GREET Model to compare the same three ethanol-related scenarios with a gasoline-only baseline scenario, as described above under the Proposed Action. Based on the GREET Model, the use of biomass produced ethanol and electricity under the first scenario would result in a 39-percent reduction in greenhouse gas emissions compared with the gasoline-only baseline. In the second scenario (E85), DOE estimates a 33-percent reduction in greenhouse gas emissions, and in the third scenario (E10), a 3-percent reduction in greenhouse gas emissions could be achieved relative to the gasoline-only baseline.

S.3.3 HYDROLOGY

There are no perennial streams within the region evaluated for surface waters. Throughout most of Stevens County, including the Project site, surface water drains internally to depressions, or playas, that are common throughout the region. Water for construction and operation of the biorefinery would be pumped from the High Plains Aquifer. Groundwater levels throughout much of that aquifer have been in decline for decades because of the high rate of withdrawals, primarily for irrigation.

S.3.3.1 Surface Water

Proposed Action. Wastewater, petroleum products, and hazardous chemicals could be released from the biorefinery. Planned releases of wastewater would be limited to the non-contact cooling water that would be used for irrigation of the buffer area during the growing season or held in an earthen-lined pond during winter. Petroleum products and hazardous chemicals used during construction and operations would be managed within secondary containment on the site, and there are no surface waters in the nearby area that would be affected by accidental releases.

Disturbed and built-up land areas would result in increased runoff; that runoff would be directed to natural low areas within the biorefinery parcel. Changes in infiltration would be minor and likely would be limited to small changes in the distribution of where infiltration would occur.

Alterations to surface water drainage would be limited to minor changes within the 385-acre parcel and possibly within the buffer area. Natural low areas where runoff accumulates would not be altered. No wetlands would be filled and no floodplains would be affected.

The Department concludes the potential for adverse impacts to surface waters from the Proposed Action is negligible.

Action Alternative. The amount and location of land disturbed under the Action Alternative, volume of non-contact cooling water applied, types and quantities of petroleum products and hazardous chemicals, hazardous materials management strategies and containment structures, and the storm water runoff control strategy would be the same or similar to those for the Proposed Action. DOE, therefore, concludes the potential for adverse impacts to surface waters from the Action Alternative is negligible.

S.3.3.2 Groundwater

Proposed Action. Construction of the biorefinery would require approximately 220 acre-feet of water, and operations would require about 2,120 acre-feet of water per year. DOE estimates that an additional 46 acre-feet of groundwater would be withdrawn per year by the City of Hugoton to meet the domestic needs of biorefinery workers, bringing the total annual estimated demand to support the biorefinery to 2,170 acre-feet per year.

Abengoa Bioenergy has optioned existing irrigation water rights from eight wells to meet the water demand for construction and operation of the biorefinery under the Proposed Action. The maximum permitted withdrawal associated with those water rights is about 7,240 acre-feet per year, and the total volume discharged from those wells in 2007 was about 4,240 acre-feet. Thus, use of those water rights for operation of the biorefinery would result in a reduction of more than 5,000 acre-feet compared with the permitted annual volume, and a reduction of more than 2,000 acre-feet compared with withdrawals during 2007. DOE concludes that operation of the biorefinery would result in a beneficial decrease in groundwater withdrawals from the High Plains aquifer.

As Section S.3.1 discusses, changes in cropping practices as a result of the Proposed Action are not expected to occur. Further, increases in water withdrawals for agricultural purposes in Kansas are limited by State water appropriation regulations, although increases in Oklahoma and Colorado may be allowed. Thus, DOE concludes that changes in water use in the region resulting from changes in land use to meet the demand of the biorefinery for biomass are not expected to occur.

Any spills of hazardous materials would be handled in accordance with a spill prevention, control, and countermeasure plan, which would minimize or eliminate potential impacts to the groundwater quality from construction and operation of the biorefinery.

Action Alternative. Under the Action Alternative, operation of the biorefinery would require a net annual demand of 850 acre-feet per year, including the domestic needs of workers. Under the Action Alternative, the maximum permitted withdrawal associated with the irrigation water rights Abengoa has optioned for three wells is about 2,220 acre-feet per year, and the total volume discharged from those wells in 2007 was about 1,500 acre-feet. Thus, use of those water rights for operation of the biorefinery would result in a reduction of more than 1,300 acre-feet compared with the permitted annual volume, and a reduction of more than 600 acre-feet compared with withdrawals during 2007. As with the Proposed Action, DOE concludes that operation of the biorefinery under the Action Alternative would result in a beneficial decrease in groundwater withdrawals from the High Plains aquifer.

Cropping patterns and associated use of groundwater under the Action Alternative would be similar to those for the Proposed Action, and DOE concludes that changes in water use in the region resulting from changes in land use to meet the demand of the biorefinery for biomass are not expected to occur.

S.3.4 BIOLOGICAL RESOURCES

Proposed Action. There are no federal- or state-endangered and/or threatened species, candidate species, or state species in need of conservation present on or within 1 mile of the Biorefinery Project site. DOE concludes that construction and operation of the biorefinery would have no impacts on threatened or endangered species or their designated critical habitat.

To construct the biorefinery, the biorefinery parcel, which is currently used for dry-land farming, would be converted to industrial use. There would be some minor, short-term adverse impacts to biological resources from the construction and some minor, long-term adverse impacts from the operation of the biorefinery, but these impacts would affect only common species on or within 1 mile of the Biorefinery Project site. The analysis of potential changes in land use resulting from the Proposed Action indicated that conversion of Conservation Reserve Program lands to tilled cropland from the Proposed Action is not expected, and other changes in land use would be minimal. Thus, DOE does not expect the Proposed Action to impact biological resources within the region surrounding the Project site.

Action Alternative. DOE concludes that construction and operation of the biorefinery under the Action Alternative would have no impacts on threatened or endangered species or their designated critical habitat. Impacts from construction and operation of the biorefinery on biological resources would be minor and would only affect common species within 1 mile of the Biorefinery Project site. DOE does not expect the Proposed Action to impact biological resources within the region surrounding the Project site.

S.3.5 UTILITIES, ENERGY, AND MATERIALS

Proposed Action. The domestic water needs of biorefinery workers and their families would be provided by the City of Hugoton water system. Those workers and their families would also rely on the City of Hugoton sewage system and the Stevens County landfill. The Hugoton water system would supply potable water for the biorefinery facilities. Process water, sewage, and solid waste would be managed

independently at the biorefinery, and the potential impacts of those processes are analyzed elsewhere in this EIS.

For purposes of analysis, DOE conservatively assumed that all construction workers and their families would live in Hugoton, which would increase demand on the City of Hugoton water system by approximately 50 gallons per minute during biorefinery construction. During operations, water consumption from that system would increase by about 30 gallons per minute to support workers and their families and to supply potable water to the Biorefinery Project site. These demands are well below the 190-gallon-per-minute excess capacity of the City water system.

The City of Hugoton sewage treatment lagoons were designed to accommodate 4,000 people and are currently used by approximately 3,400 people. During the 3-month peak of construction, up to about 480 additional people could be living temporarily in Hugoton, which would approach the capacity of the sewage lagoons. The addition of up to 140 people during operations would not stress the capacity of the lagoons. The sewage collection system in Hugoton has sufficient capacity to accommodate use of the system by construction and operations workers and their families.

The Stevens County landfill has a permit limit of 20 tons of solid waste per day, and currently receives about 13 tons per day. DOE estimates the amount of solid waste received at the landfill would increase to approximately 15 and 14 tons per day during construction and operations, respectively, due to the influx of workers and their families living in Hugoton.

The biorefinery would require no electric power from the regional grid during operations. Rather, the biorefinery would supply 70 megawatts of electricity to the grid during normal operations, which equals 5.4 percent of the production capacity in the western-central region of Kansas, but only about 0.2 percent of current summer demand in the Southwest Power Pool. The amount of natural gas and diesel fuel required for normal operation of the biorefinery is approximately 0.1 and 0.05 percent, respectively, of the amounts of these fuels used in Kansas and would not adversely impact their supply and distribution in the region.

The Proposed Action would involve a commitment of building materials, but with the possible exception of stainless steel, these materials would be available and their procurement would not decrease availability to other users in regional markets. Components used in stainless steel production (such as chromium and nickel) are in high demand and, at times, affect availability of stainless steel. However, the amount of stainless steel required for construction of the biorefinery is a very small portion of the amount that moves through the U.S. market annually.

Action Alternative. The increase in water consumption by the workforce and their families from the City of Hugoton water system would be 45 and 50 gallons per minute during construction and operations, respectively, which is well below the 190-gallon-per-minute excess capacity of that system. The Hugoton sewage system and Stevens County landfill have sufficient capacity to accommodate workers and their families.

Under the Action Alternative, the biorefinery would require electric power from the regional grid. The amount required would be a small portion (less than 1 percent) of the combined production capacity of Sunflower Electric Power Corporation and the Mid-Kansas Electric Company in the local region and a smaller portion (about 0.024 percent) of the average electricity demand within the Southwest Power Pool.

The additional electric needs would not be an adverse increase in demand on the regional distribution system.

The amount of construction materials required for the Action Alternative would be similar to or less than those evaluated for the Proposed Action. With the possible exception of stainless steel, there would be no availability issues, and the needs would not stress the regional market for these materials.

S.3.6 WASTES, BYPRODUCTS, AND HAZARDOUS MATERIALS

The wastes and byproducts the biorefinery would produce include construction wastes, wastewater, solid biomass boiler ash, distiller's residual biomass solids (stillage cake), stillage syrup, wastewater treatment plant sludge, lignin, genetically modified organisms, dirt and fines resulting from biomass processing, municipal solid waste, and hazardous waste.

Solid biomass boiler ash and lignin are byproducts that could be sold to consumers within the 50-mile region of influence. Abengoa Bioenergy would burn stillage cake, stillage syrup, and genetically modified organisms in the solid biomass boiler as part of the Proposed Action. Domestic and process wastewater would be treated in the onsite wastewater treatment facilities, and treated process wastewater would be recycled in the production process. Abengoa would apply non-contact wastewater and wastewater treatment facility sludge on the buffer area and would treat, recycle, and/or dispose of dirt and fines resulting from biomass processing, municipal solid waste, hazardous waste, and construction debris at permitted facilities within the region of influence.

Proposed Action. Up to 80 tons per day of solid waste would be generated during the 18-month construction period. The Stevens County landfill would not have adequate capacity to receive the construction wastes generated and maintain its small arid landfill exempt status (limited to 20 tons per day), and revising that permit would be expensive. The non-recycled construction waste streams could be split among other permitted landfills and transfer stations within 35 miles of the biorefinery without affecting their capacity, but permission for disposal would be required from those facilities (for example, Grant County construction and demolition landfill). To mitigate impacts to disposal facilities within the region of influence, the development of a waste management and pollution prevention plan should be considered prior to contracting the biorefinery construction.

About 96 tons per day of dirt and fines and less than 1 ton per day of other solid waste would be generated during the expected 30-year operating life of the biomass-to-ethanol and -electricity facility. This solid waste stream could also be split among the other permitted landfills and transfer stations within the region; however, splitting the operations phase solid waste among those landfills would require permission from the facilities to receive the wastes.

The onsite wastewater treatment facility would treat all process wastewater generated at the Biorefinery Project site and would not discharge any to the Hugoton wastewater system. Wastewater that would not be recycled and reused in the production process or treated onsite (non-contact wastewater) would be produced at a rate of 225 gallons per minute and would be used to irrigate biomass crops on the buffer area. During winter, this water would be stored in a 29-million-gallon pond. Sludge (approximately 65-percent moisture content) from the wastewater treatment facility (produced at a rate of 7.5 to 10 gallons per minute) would also be applied on the buffer area. Based on a hydrology analysis, the chemical composition of the wastewater and sludge, and the anticipated stipulations of a required discharge permit,

DOE does not anticipate adverse impacts from the land application of wastewater or sludge, including odor or aesthetic impacts. Abengoa Bioenergy would have to modify the facility water balance and wastewater treatment facility design if lignin was extracted from the stillage cake, thereby generating additional wastewater.

Chemicals required for operation of the biorefinery would be received by truck or rail and off-loaded and transferred by an enclosed chemical delivery system to storage tanks, silos, or other chemical storage facilities. Based on the availability of chemical supplies within the region of influence, DOE concludes that chemicals would have to be obtained from outside the region. The demand for chemicals for the biorefinery would be an insignificant percentage of the production in the United States.

The biomass-to-ethanol and -electricity facility would generate 2,000 pounds per year of hazardous waste (for example, gasoline, spent solvents, waste ethanol, and caustics). Those wastes would be collected and treated/disposed of by licensed hazardous waste facilities. DOE does not anticipate adverse impacts from the handling and disposal of hazardous wastes generated at the biorefinery if Abengoa Bioenergy's proposed hazardous waste management practices are implemented.

Genetically modified organisms used in the enzymatic hydrolysis process would be killed by a heat sterilization process and would be contained in the beer column bottoms. The bottoms stream would be dewatered and the residual solids sent to the solid biomass boiler for burning.

The solid biomass boiler would generate from 228 to 233 tons of ash per day (depending on whether lignin would be extracted or burned). Abengoa Bioenergy plans to sell the ash as a nutrient replacement co-product to biomass producers in the region. If the ash could not be sold, it would require disposal at a permitted solid waste disposal facility. Stevens County landfill would not have adequate capacity to receive this amount of ash without a permit modification. This waste stream could be split among permitted landfills and transfer stations within 35 miles of the biorefinery; permission would be needed from those facilities to receive the waste. Disposing of all the ash at the Seward County landfill would reduce the capacity of that landfill from 42 to 20 years; thus, the landfill would not have the capacity to receive all of the ash during the expected 30-year life of the biorefinery without expansion of the permitted landfill space. The loss of land used for landfill disposal of solid wastes generated during construction and operation of the biorefinery would be an irreversible and irretrievable loss of resources.

Action Alternative. The facility considered under the Action Alternative would produce up to 70 tons of construction waste per day, which is more than the current capacity of the Stevens County landfill. Non-recycled construction waste could be split among other permitted landfills within the region. Under the Action Alternative, about 25 tons of solid waste (primarily dirt and fines) as well as from 50 to 70 tons of ash would be generated daily. As with the Proposed Action, if the ash could not be sold as a nutrient replacement, it would have to be disposed of in a landfill. There is not adequate capacity at the Stevens County landfill to receive this amount of solid waste and ash without modification of its small arid landfill exempt status. With permission, the waste and ash could be split among the other landfills and transfer stations in the region.

Up to 115 gallons per minute of non-contact wastewater would be discharged and used for irrigation under the Action Alternative. This wastewater would be stored in a 15 million-gallon storage pond during winter. Treatment of wastewater, disposal of sludge and hazardous materials, and processing of genetically modified organisms would be treated in the same manner as that for the Proposed Action.

S.3.7 TRANSPORTATION

Proposed Action. There would be approximately 32,000 truck shipments of materials during construction, and about 102,000 truck and 1,300 rail shipments per year during the 30-year operating period of the biorefinery. DOE estimates there would be 32 traffic fatalities due to these shipments and the commuting of workers, the majority (30) of which would be due to shipments of biomass, chemicals, denatured ethanol product, and waste. For perspective, over the 30-year operations period, there would be an estimated 13,400 traffic fatalities in Kansas and 820 traffic fatalities in the 9 counties surrounding the Project site.

Based on the traffic impact analysis, no roadway improvements were identified as necessary to avoid congestion at intersections or improve access the biorefinery.

DOE estimates that 1,108 rail carloads of denatured ethanol and waste and 195 rail carloads of chemicals would be shipped from the biorefinery per year of operation, which is equivalent to about 51 additional trains per year. This would result in an increase in the approximately 600 trains per year that travel on the Cimarron Valley Railroad, but is less than the capacity of 40 to 60 trains per day on that line. Thus, the additional rail traffic for the Proposed Action would not adversely affect the operations of the Cimarron Valley Railroad.

Increased truck traffic would result in increased pavement deterioration. For biomass shipments associated with the Proposed Action, DOE estimated the annual cost of this pavement damage to be \$680,000. The shipping of other materials, such as chemicals and waste, would also result in pavement damage; the cost of that damage could not be estimated, as the cost of repairing damage to roads from those types of shipments has not been measured.

Action Alternative. Under the Action Alternative, there would be approximately 28,600 truck shipments of materials during construction, and about 30,500 truck and 1,300 rail shipments per year during operations. DOE estimates there would be 13 traffic fatalities due to those shipments and the commuting of workers. As with the Proposed Action, the majority of these fatalities (11) would be due to shipments of biomass, chemicals, denatured ethanol product, and waste.

No roadway improvements were identified as necessary to help truck and employee traffic access the biorefinery. As with the Proposed Action, the additional rail traffic from the Project site would not adversely affect the operations of the Cimarron Valley Railroad.

DOE estimated the annual cost of pavement damage associated with truck shipments of biomass under the Action Alternative to be \$210,000.

S.3.8 AESTHETICS

DOE considered the potential impacts of the Abengoa Biorefinery Project on views in the area surrounding the Biorefinery Project site and evaluated how noise and odor from the biorefinery could affect residents in the area.

S.3.8.1 Visual Resources

Proposed Action. The tallest structure at the biorefinery considered under the Proposed Action would be approximately 115 feet, but many of the other structures would be 40 feet tall or less. The biorefinery would be visually similar to the grain storage silos and elevators, chemical tanks, and other structures located adjacent to the Biorefinery Project site. Thus, implementation of the Proposed Action would result in additional but similar structures that would be visible from surrounding vantage points, such as the city of Hugoton and the Forewinds Golf Course

The biorefinery would operate 24 hours a day, 350 days a year, and thus would be a source of night lighting. Additional night lighting at the biorefinery may be noticeable to viewers in the city of Hugoton, but would be similar to night lighting at the nearby Hugoton Municipal Airport.

The Proposed Action would require a new 1.5-mile-long transmission line. This transmission line would be visible from Road P and Road 11 near the Biorefinery Project site, but would result in minimal visual impacts to viewers from a distance.

Action Alternative. Under the Action Alternative, two groups of tall structures, comprising the biomass boiler operations and the turbine facilities, would not be constructed or would be smaller than those constructed for the Proposed Action. Thus, under the Action Alternative, fewer tall structures would be visible from surrounding vantage points; however, some additional structures that are similar to existing facilities in the area would be visible from surrounding vantage points.

The Action Alternative would be a source of night lighting, which might be noticeable to viewers in Hugoton. Finally, under the Action Alternative, the 1.5-mile-long transmission line would not be required

S.3.8.2 Noise

Proposed Action. Workers would be exposed to noise during construction from construction equipment and trucks traveling to and from the biorefinery construction site. Workers would also be exposed to noise from equipment and biorefinery processes during operations. Best management practices would be employed to limit noise, and a hearing conservation program would be implemented; therefore, permissible noise exposure levels are not expected to be exceeded.

The nearest residence to the Biorefinery Project site, approximately 0.6 mile away, may experience some annoyance from construction noise, but the impact would be small because at that distance, the noise would not be very loud (approximately 56 decibels) and would be temporary. Noise from biorefinery operations would attenuate to below background levels at the nearest residences, school, library, place of worship, and medical center. Therefore, DOE does not anticipate impacts to members of the public from construction or operation of the biorefinery due to noise.

During construction, there would be about 70 truck shipments to the biorefinery site per day, or about one truck arriving every 12 minutes (assuming all traffic occurs from 7:00 a.m. to 9:00 p.m.). During operations, 175 trucks per day are expected (one truck every 5 to 6 minutes). The routes taken by those trucks through and around Hugoton would vary, but it is anticipated that at least 50 percent of the traffic (one truck every 9 to 10 minutes during operations) would pass some residential areas daily. Along a route that passes the Stevens County Hospital, several schools, and places of worship, trucks are

anticipated to pass at a rate of one every 24 minutes during operations. Noise from these passing trucks would frequently interfere with outdoor conversations and cause annoyance indoors. The increase in rail traffic by about 51 trains per year would not add significant noise to the environment.

Action Alternative. Under the Action Alternative, noise from biorefinery construction and operations would be the same as that described for the Proposed Action, and DOE does not anticipate impacts to members of the public from construction or operation of biorefinery. The number of shipments by truck per day during operations would be approximately one-third of those for the Proposed Action. Along the most frequently traveled routes in and around Hugoton, trucks would pass residential areas about once every 30 minutes. Rail traffic for the Action Alternative would be similar to the rail traffic for the Proposed Action.

S.3.8.3 Odor

Odors emitted from the biorefinery generally would be volatile organic compounds, including ethanol, hazardous air pollutants, nitrogen dioxide, and sulfur dioxide. Engineered controls implemented to minimize these emissions would reduce odors from the biorefinery.

Proposed Action. Air dispersion modeling indicates that one odorous compound (nitrogen dioxide) might be detectable at the biorefinery parcel fence line, but no odorous compounds would be detected at offsite locations where the public would commonly be located. Therefore, DOE anticipates no impacts to the public from the release of odorous compounds.

Action Alternative. Odorous emissions under the Action Alternative would be the same as or less than those from the Proposed Action, and no odorous compounds would be detected at offsite locations where the public would commonly be located. Therefore, DOE anticipates no impacts to the public from the release of odorous compounds under the Action Alternative.

S.3.9 SOCIOECONOMICS

DOE evaluated the potential impacts of construction and operation of the biorefinery on socioeconomic variables, including population and housing, employment and income, taxes, and public services, in Stevens County and the three surrounding counties; that is, Morton and Seward counties in Kansas and Texas County in Oklahoma.

Proposed Action. The Proposed Action would require 256 workers at the peak of construction. About 190 of those positions likely would be filled by people who would migrate into the four-county region, which would result in a temporary increase in the population in the region of less than 1 percent. That small increase in population would have little impact on the availability or cost of housing. Construction of the biorefinery also would have little impact on public services, as there would be less than 1 percent increase in the ratio of law enforcement officers—to-residents, firefighters-to-residents, and residents-to-staffed hospital beds. DOE estimates that during construction, there would be about 110 additional students enrolled in local school districts. This represents a 1.0 percent increase in enrollment in the region. During the 12-month period of the most-intense construction activity, the region could experience an approximately \$17-million infusion of earnings, which equals about 1 percent of the 2006 per capita income in the region.

The anticipated life of the biorefinery is 30 years, during which it would employ 43 people. This would result in a regional increase in the local population of less than 0.1 percent, and would have little or no impact on housing, public services, or educational services. During operations, the region would experience an annual \$4.4 million infusion in earnings.

Action Alternative. Under the Action Alternative, about 230 workers would be employed during the peak of construction, and about 170 of those positions would be filled by workers who migrate into the region. Thirty-four workers would be employed during operations. Construction of the biorefinery would result in a temporary increase in the population of the four-county region of less than 1 percent, and operations would result in an increase of less than 0.1 percent. Thus, impacts on socioeconomic variables would be very small. During construction and operations, the region would experience an annual infusion in earnings of \$16 million and \$3.5 million, respectively.

S.3.10 CULTURAL RESOURCES

Proposed Action. No properties listed on the National Historic Register are within or on properties adjoining the Biorefinery Project site. Based on DOE review of published information, coordination with the State Historic Preservation Office, and the results of a Phase I/II investigation of a 160-acre portion (areas investigated were coordinated with the State Historic Preservation Office) of the Project Site, construction and operation of the biorefinery would not result in adverse impacts to State-preserved or National Historic Register sites, sites of prehistoric or early historic occupation, or historic resources of local significance. When selected, offsite biomass storage locations would be evaluated for cultural resources in coordination with the Kansas State Historical Preservation Office.

Action Alternative. Construction and operation of the biorefinery under the Action Alternative would not result in adverse impacts to State-preserved or National Historic Register sites, sites of prehistoric or early historic occupation, or historic resources of local significance.

S.3.11 HEALTH AND SAFETY

DOE estimated health and safety impacts to workers from industrial hazards using incidence rates for 2007 for both nonfatal occupational injuries and occupational fatalities from the U.S. Department of Labor, Bureau of Labor Statistics. Members of the public would not be located within the Biorefinery Project site and would not be affected by industrial hazards at the biorefinery.

Proposed Action. The potential for adverse impacts to health and safety from the Proposed Action would be very minor. During construction, the industrial health and safety impacts to workers are estimated to be 14 total recordable cases (that is, work-related deaths, illnesses, or injuries that result in the loss of consciousness, days away from work restricted work activity or job transfer, or required medical treatment beyond first aid), 7 days away from work, and 0.026 fatality. During operations, the total annual industrial health and safety impacts to workers from all operations at the biorefinery (such as, ethyl alcohol manufacturing, milling and grinding operations, and electric power generation) are estimated to be 2.7 total recordable cases, 0.94 day away from work, and 0.0014 fatality. Based on these results, DOE concludes that a fatality would be unlikely.

Action Alternative. During construction, the industrial health and safety impacts to workers are estimated to be 12 total recordable cases, 6.3 days away from work, and 0.023 fatality under the Action

Alternative. During operations, the total annual industrial health and safety impacts to workers from all operations at the biorefinery (such as, ethyl alcohol manufacturing and milling/grinding operations) are estimated to be 2.3 total recordable cases, 0.68 day away from work, and 0.0011 fatality. As with the Proposed Action, DOE concludes that a fatality would be unlikely under the Action Alternative.

S.3.12 FACILITY ACCIDENTS AND SABOTAGE

To evaluate impacts from accidents, DOE examined the hazardous materials associated with facility operations, evaluated external (for example, aircraft hazards and range fires) and internal events (such as a tank failure) to determine the frequency that selected hazardous materials could be released, and analyzed the consequences of such events, including blast effects and releases of toxic chemicals. DOE also considered acts of intentional destruction associated with operation of the biorefinery.

Proposed Action. Based on the operational history of existing ethanol plants, DOE concludes that the hazards of ethanol production to members of the public are minor, and that accidents during biorefinery operations are not likely to result in permanent health effects to offsite members of the public. In some accident scenarios, such as the failure of an ethanol or gasoline storage tank, workers could be injured or killed depending on the location of the worker at the time of the event.

DOE considered the most hazardous act of intentional destruction to be the deliberate destruction of a toxic chemical storage tank. The consequences of such an event would be similar to the accidental failure of a toxic chemical tank and would be limited to injury and, in unlikely circumstances, death to nearby workers.

Action Alternative. The Action Alternative includes a change in the amount of biomass used and elimination of the co-generation capability, but the same types of chemical would be stored at the biorefinery as under the Proposed Action. Thus, impacts would be as described above for the Proposed Action.

S.3.13 ENVIRONMENTAL JUSTICE

Proposed Action. No impacts to communities with high percentages of minority and low-income populations were identified that would experience impacts exceeding those identified for the general population. In addition, during the scoping process, DOE identified no unique exposure pathways, sensitivities, or cultural practices that would result in different impacts on minority or low-income populations. Disproportionately high and adverse impacts would be unlikely as a result of the Proposed Action.

Action Alternative. Impacts to populations in the region surrounding the Biorefinery Project site under the Action Alternative would be similar to those for the Proposed Action. Thus, the conclusions described for the Proposed Action also apply to the Action Alternative.

S.4 No-Action Alternative

Under the No-Action Alternative, none of the adverse impacts identified above for the two action alternatives (for example, emissions of air pollutants, use of land for disposal of solid wastes, increase in truck traffic, and associated increase in accidents and noise) or beneficial impacts (for example, increased employment, decrease in groundwater use, and increase in the electrical production capacity for the

region) would occur. Nor would any of the cumulative impacts identified below occur. Further, the benefits that would be gained from the development, demonstration, and commercial operation of an integrated biorefinery that uses lignocellulosic feedstocks would not be realized. In addition, no benefits would be realized from the development of a renewable energy system that would reduce air pollutants and sequester emissions of greenhouse gases. For example, the reductions in greenhouse gas emissions estimated to occur if the Proposed Action were implemented would not be realized with the continued use of gasoline instead of biofuel and no generation of biopower.

S.5 Cumulative Impacts

DOE evaluated public-and private-sector past, present, and reasonably foreseeable activities that could, when combined with the Proposed Action or Action Alternative, result in cumulative impacts. DOE considered reasonably foreseeable future actions that could have effects that coincide in time and space with the effects of the Abengoa Biorefinery Project and associated transportation activities. The Department identified those actions within and near a 50-mile radius of the Project site based on interviews with representatives of government and private

CUMULATIVE IMPACTS

A cumulative impact is "the impact on the environment which results from the incremental impact of the action when added to other past, present, and reasonably foreseeable future actions regardless of what agency (Federal or non-Federal or person undertakes such other actions" (Council on Environmental Quality Regulations, 40 CFR 1508.7). Cumulative impacts can result from individually minor but collectively potentially significant actions that occur over time.

organizations; reviews of resource, policy, land use, and other plans; and review of published media accounts.

S.5.1 REASONABLY FORESEEABLE FUTURE ACTIONS

The following actions were considered by the Department in the analysis of cumulative impacts. The first action, a grain-to-ethanol facility that could be constructed by Abengoa Bioenergy at the same location as the proposed biomass-to-ethanol facility, is described in some detail. This is done because many of the impacts of that facility would occur in the same locations, and some could be additive to that of the Proposed Action or Action Alternative. Brief descriptions of other reasonably foreseeable future actions follow.

Grain-to-Ethanol Facility. Abengoa Bioenergy has developed plans and designs to add a grain-to-ethanol facility to the proposed biomass-to-ethanol facility. As described in Section S.1.2, Abengoa has, at this time, eliminated from consideration the construction and operation of the grain-to-ethanol facility. However, the grain-to-ethanol facility could be developed in the future.

The grain-to-ethanol facility would be located on the same 385-acre parcel as the biorefinery. It would be constructed after, and would operate independently of the biomass-to-ethanol facility, although certain then-existing systems would be used. The grain-to-ethanol facility would produce approximately 88 million gallons of denatured ethanol based on a 350-day annual operating schedule. It would utilize approximately 31 million bushels of grain (corn, sorghum, and wheat) purchased from area farmers and from producers in the Midwest. Solids from the process would be converted to animal feed, which would result in the production of up to 782,000 tons per year of wet distiller's grains with solubles. The facility

would have the capability to dry up to 50 percent of the wet distiller's grains, producing a maximum of 152,000 tons per year of dried distiller's grains with solubles.

Grain would be received from trucks or rail cars and conveyed to storage silos and the grain milling operation, where it would be cleaned and ground. The ground grain, or meal, would be mixed with hot water to form a slurry. Baghouses and other technologies would be employed during this process to capture resuspended particles and other emissions. The slurry would be heated to liquefy and break down starches to sugars, and then sent to fermenter process vessels. Saccharifying enzymes, nutrients, and industrial antibiotics would be added to feed and control the fermentation process, and caustic or anhydrous ammonia, thin stillage recycle, or sulfuric acid would be added as required to control pH.

Gases generated during fermentation would pass through wet scrubbers, which collect ethanol vapors and provide emission control for volatile organic compounds and hazardous air pollutants. Carbon dioxide would be captured and pumped via pipeline to an offsite party for use in enhancing the amount of crude oil recovered from existing oil fields.

Fermented mash, called beer, would be transferred to the distillation column in which ethanol would be separated from the residual grain solids and water. The separated grain solids, known as stillage, would be further processed into wet or dry distiller's grain with solubles for use as cattle feed, and the water would be recycled. Ethanol vapor from distillation would be drawn and superheated using steam, which would be generated in natural gas-fired boilers. The superheated ethanol vapor would flow through molecular sieve units in a process known as dehydration to increase the ethanol to 98 percent by weight. Vent emissions would be equipped with vent condensers to control emissions, and volatile organic compounds and hazardous air pollutants produced when the distiller's grain is dried will be burned off.

Dried distillers grains with solubles would be stored indoors until shipped offsite by truck or rail to cattle feedlots. Wet distiller's grains with solubles would be stored outdoors on a concrete pad until shipped by truck to local feedlots, or transferred to the drying process.

Prior to shipping fuel-grade ethanol, it would be denatured with gasoline. Product loading would consist of submerged loading of natural gasoline (denaturant) and denatured ethanol to and from tanker trucks and tanker rail cars. The emissions from the tanker truck and rail car loadout would be collected by a vapor recovery system and routed to a carbon adsorption hydrocarbon vapor recovery system.

Truck Bypass. Stevens County may upgrade existing roads along a route from Kansas State Highway 25 north of Hugoton to U.S. Highway 56/Kansas State Highway 51 to reduce truck traffic through Hugoton and accommodate anticipated traffic during operation of the biorefinery.

Nexsun Ethanol and Biodiesel Facility. Nexsun Ethanol LLC plans to develop, in two phases, an integrated biorefinery in Ulysses, Grant County, Kansas. The first phase of the project would be a 44-million-gallon per year ethanol production facility that also would produce about 455,000 tons per year of wet distiller's grains and associated "syrup" that would be sold for animal feed. The second phase of the project would be a 3-million-gallon per year biodiesel plant at an adjacent location. Biodiesel would be produced from commercially available tallow and yellow grease (grease from restaurants and other similar sources).

Tallgrass Transmission, LLC Project. New 765 kilovolt transmission lines are planned in western Oklahoma to facilitate development and transmission of wind-generated electricity. One segment of the transmission lines would terminate in the vicinity of Guymon, Oklahoma, which is within the 50-mile region of influence for this Abengoa Biorefinery Project EIS.

Transportation Infrastructure Improvements. The Departments of Transportation for the states of Kansas, Texas, and Colorado maintain plans for improvements to the transportation system infrastructure in the region. These projects involve a range of actions including improvements to grade and drainage, road widening over relatively short distances, removal and replacement of damaged road surfaces (resurfacing), improvements to railroad crossings, and development of a rest area.

U.S. Department of Agriculture Biomass Crop Assistance Program. This program was created by The Food, Conservation, and Energy Act of 2008 (2008 Farm Bill) to support the establishment and production of crops for conversion to bioenergy and to assist with the collection, harvest, storage, and transport of eligible material for use in a biomass conversion facility. In general, agricultural producers in project areas will receive a payment of up to 75 percent of establishment costs. Further, the Department of Agriculture will match dollar-for-dollar what the biomass collector is paid by the biomass user facility for the collection, harvest, storage, and transport to the biomass conversion facility, up to \$45 per dry ton. At this time, there is insufficient information available for DOE to assess potential cumulative impacts from the implementation of the Biomass Crop Assistance Program. Even so, the Department has identified the program as a reasonably foreseeable future action because of the potential for cumulative impacts to occur during the lifetime of the biorefinery under either the Proposed Action or Action Alternative, and because information regarding the program rules may become available in the relatively near future.

S.5.2 CUMULATIVE IMPACTS

This section summarizes the potential incremental impacts of the reasonably foreseeable future actions relative to the Proposed Action and the Action Alternative. Impacts to biological resources, cultural resources, and environmental justice are not discussed, as the impacts to those resources and subject areas under the Proposed Action and Action Alternative would be negligible, and impacts from the addition of the reasonably foreseeable future actions would not change.

S.5.2.1 Land Use

Grain-to-Ethanol Facility. Construction of the grain-to-ethanol facility would expand the footprint of the Biorefinery Project site relative to the Proposed Action and Action Alternative. The buffer area would continue to be used for irrigated crop production. Use of those sites would be consistent with planned zoning. Operation of the grain-to-ethanol facility would not result in cumulative land use impacts to the Project site and would result in a small change in land use in the buffer area because there would be an increase in the amount of non-contact wastewater disposed of on the buffer site through the existing irrigation system. Infrastructure-related impacts, such as improvements to roads or installation of utility supply lines, would be confined generally to existing transportation and utility corridors. The associated minor impacts are related to short-term loss of use during construction.

To meet the increased need for water to operate the facility, some irrigated cropland near the Biorefinery Project site would be converted to dryland farming, in addition to that converted for the Proposed Action

or Action Alternative. Because the amount and type of converted cropland would be small relative to the amount within the region, the cumulative impact would be minor.

About 2 to 3 percent of the corn produced in the region would be consumed annually by the grain-to-ethanol facility, and DOE does not expect demand of such a low portion of production to result in noticeable land use changes. Current production of grain sorghum in the region would meet a large portion, but not all, of the anticipated demand for that grain by the grain-to-ethanol facility. The amount of grain sorghum produced in the region probably would increase to meet that demand. That increase in production likely would come from a shift in grain sorghum production at the expense of other crops currently grown on cropland and not result in conversion of less-intensive lands. Grain sorghum requires less fertilizer and water than corn so a long-term shift in increased production has the potential to have a net beneficial impact.

The grain-to-ethanol facility would not change biomass demand for the biorefinery, so impacts resulting from that demand would be unchanged relative to the Proposed Action and Action Alternative. The grain-to-ethanol facility would not have a noticeable cumulative impact on soil conditions, and the cumulative impact to conservation programs would be negligible because biomass demand is not anticipated to result in land use conversion.

Other Future Actions. Incremental impacts from construction of the other reasonably foreseeable future actions on land use are expected to be small. Infrastructure construction related impacts would be confined generally to existing transportation and utility corridors. The Tallgrass Transmission, LLC project would likely be constructed across agricultural land, but the amount of land taken out of production is expected to be limited to construction of the towers that support the transmission lines and substations. Since approximately 97 percent of the land within the region of influence is in farms, construction of the transmission project would have a negligible impact on land use. Land use between the towers and beneath the transmission lines would largely remain unaffected. Construction of the Nexsun Ethanol and Biodiesel Facility would be expected to impact land use similarly to construction of Abengoa Biorefinery Project, which would be small. Therefore, DOE anticipates the incremental impact of construction of these projects would be small.

Operation of the Nexsun facility, in addition to the grain-to-ethanol facility at the Abengoa Biorefinery Project site, would result in an incremental increase in the demand for grain in the region. The increased demand for corn is not anticipated to have a noticeable impact on land use because the amount of corn produced in the region greatly exceeds the cumulative incremental demand. However, the demand for grain sorghum would exceed production of that grain in the region. DOE anticipated that some of the grain sorghum for that facility may be shipped in from outside the region. Any increase in grain sorghum product in the region would likely come from increased production on existing cropland.

S.5.2.2 Air Quality

Grain-to-Ethanol Facility. DOE anticipates that the cumulative impacts to the air quality resulting from emissions during construction of the grain-to-ethanol facility would be only slightly greater than the impacts that would occur solely due to the operations of the Proposed Action or Action Alternative.

The grain-to-ethanol facility would involve additional processes that would result in air emissions, including grain handling and milling, grain fermentation and distillation, production of distiller's grains

with solubles, increased volume of stored denatured alcohol, additional traffic, and additional boilers for steam production. In addition, the grain-to-ethanol facility would increase the production of denatured alcohol (from 18 millions gallons per year to 114 million gallons per year), which would result in a corresponding increase in air emissions from the storage tanks and denatured ethanol loadout. These additional processes would result in an increase to ambient air concentrations for most of the pollutants relative to those of the biorefinery considered under the Proposed Action and Action Alternative. However, predicted cumulative concentrations, plus existing background concentrations, remain less than the National Ambient Air Quality Standards (for example, predicted concentrations for the grain-to-ethanol facility and Proposed Action for 24-hour PM₁₀ are about 60 percent, nitrogen dioxide 19 percent, and other pollutants less than 10 percent of National Ambient Air Quality Standards). Consequently, the cumulative concentrations would not degrade the ambient air quality to levels that pose a risk to the public.

Greenhouse gas emissions would increase by about 14 percent over those from the Proposed Action. However, the additional production of ethanol from the grain-to-ethanol facility would be beneficial to the overall greenhouse gas lifecycle because the ethanol would displace the use of fossil fuels. Based on results from the GREET Model, replacing conventional gasoline with ethanol from the grain-to-ethanol facility would result in a 69-percent reduction in greenhouse gas emissions. This reduction would be in addition to the 306-percent reduction that would occur due to the biomass-to-ethanol facility under the Proposed Action.

The emissions from the Action Alternative would be less than the emissions from the Proposed Action because under the Action Alternative, the biorefinery would not produce excess power. Although a source of greenhouse gas emissions, the addition of the grain-to-ethanol facility with carbon dioxide capture to the biorefinery under the Action Alternative would remain beneficial to the overall greenhouse gas lifecycle, in that it would result in an increased reduction in greenhouse gas compared with the baseline gasoline scenario.

Other Future Actions. Construction of the truck bypass and the biomass-to-ethanol facility could occur simultaneously. Emissions from these construction activities would be temporary, and due to the spatial separation of the projects, the cumulative effects would be small. Because of the distance between the Nexsun Ethanol and Biodiesel Facility, the Tallgrass Transmission, LLC project, and the biorefinery proposed by Abengoa Bioenergy, emissions from these future actions would not cause cumulative impacts to air quality.

S.5.2.3 Hydrology

S.5.2.3.1 Surface Water

Grain-to-Ethanol Facility. Activities associated with the grain-to-ethanol facility that would affect surface water would be very similar to those described for the Proposed Action and Action Alternative. Any incremental impacts would be minor because there are limited surface water features in the immediate area of the proposed biomass-to-ethanol facility. The increase in potential for accidental releases of hazardous materials would be minor, and possible impacts would be no different than those for the Proposed Action or Action Alternative.

During combined operations of the biomass and grain-to-ethanol facilities, the only planned release would be non-contact cooling water. The amount of non-contact cooling water generated would increase from a nominal rate of 225 gallons per minute under the Proposed Action to a rate of 460 gallons per minute with the addition of the grain-to-ethanol facility. Under the Action Alternative, the amount of water released would increase from 115 to 350 gallons per minute. The holding pond constructed for collection of non-contact cooling water during winter months would be expanded for the increased production rate.

The volumes and types of hazardous materials that would be present at the site would generally increase with incorporation of the grain-to-ethanol facility. However, measures developed for the Proposed Action and Action Alternative to contain hazardous material and control drainage from material transfer areas would be expanded as necessary to accommodate the increased inventory.

The size of the area disturbed during construction would increase by about 5 acres, and the built-up area at the Biorefinery Project site that would have little or no infiltration and heavy runoff would double for the grain-to-ethanol facility, relative to both the Proposed Action and Action Alternative. However, any increase in runoff would be controlled within the site or within adjacent parcels. Even with the grain-to-ethanol facility, there would be no effects on surface water drainage or on runoff and infiltration rates on the land areas outside of the Project site.

Other Future Actions. Construction of the truck bypass could have minor impacts to surface waters that, in some locations, would be cumulative with those associated with the biorefinery. In most areas, the new bypass would be constructed over existing roadways, so once the road construction was complete, runoff would be similar to existing conditions. At points closest to the Biorefinery Project site, the bypass likely would result in minor amounts of additional runoff during precipitation events, but this additional water would not adversely impact the runoff management features planned for the biorefinery.

Neither the Nexsun Ethanol LLC facility nor the Tallgrass Transmission, LLC project actions would involve surface water impacts that could be cumulative with those of the biomass and grain-to-ethanol facilities.

S.5.2.3.2 Groundwater

Grain-to-Ethanol Facility. Construction of the grain-to-ethanol facility would require about 60 acre-feet of water during a 30-week period. The increased demand would be cumulative to the demand of the operating biorefinery.

The total water demand for operation of the biorefinery (Proposed Action) with the addition of the grain-to-ethanol facility would be about 3,730 acre-feet per year, which is 1,560 acre-feet per year more than that required for the Proposed Action. Abengoa Bioenergy has optioned 7,240 acre-feet per year of existing irrigation water rights from eight wells to meet the water demand of the biorefinery plus grain-to-ethanol facility. The total volume withdrawn from those wells in 2007 was 4,240 acre-feet. Thus, use of those water rights for operation of the biorefinery and grain-to-ethanol facility would result in a reduction of about 3,510 acre-feet compared with the permitted annual volume, and a reduction of more than 510 acre-feet compared with withdrawals during 2007. A similar reduction would occur under the Action Alternative. DOE therefore concludes that there would be no adverse cumulative effects from the addition of the grain-to-ethanol facility.

DOE also evaluated the potential for impacts to groundwater resources attributable to changes in land use within the region to meet the demand for grain for the grain-to-ethanol facility. DOE concluded that the potential exists for changes in cropping patterns and associated changes in water use for irrigation (see Section S.7.2.1); however, these changes would be limited and would not create adverse cumulative effects on groundwater resources.

Other Future Actions. Groundwater required for construction of the truck bypass likely would be provided by the City of Hugoton or would be obtained from existing water supply wells in Stevens County. Incremental cumulative impacts from the withdrawal of a small amount of groundwater for construction of the proposed truck bypass are expected to be minor.

Water required for the construction and operations of the Nexsun Ethanol LLC facility could be obtained from the same aquifer used to supply the biorefinery. Groundwater withdrawals near Ulysses, Kansas, for that facility would be subject to Kansas water appropriation regulations and would not be expected to impact groundwater availability in and around Hugoton. Changes in land use and increases in irrigation to meet the demand for grains are not expected to be substantial, and water appropriation regulation would tend to limit increased irrigation and, thus, incremental effects on groundwater resources.

The Tallgrass Transmission, LLC project is a considerable distance from the Biorefinery Project site, and there would be little or no cumulative effects on the availability of groundwater near the Project site.

S.5.2.4 Utilities, Energy, and Materials

Grain-to-Ethanol Facility. The grain-to-ethanol facility would require a peak workforce of 148 persons during construction and 74 persons during operations. This would be an addition to the 110 (Action Alternative) to 140 (Proposed Action) people working at the operational biorefinery.

During biorefinery operations, including the grain-to-ethanol facility, the total demand for potable water from the City of Hugoton water system would be about 80 gallons per minute (for the Proposed Action or Action Alternative). Demand would be less during construction of the facility. These additional water demands are within the 190-gallon-per-minute excess capacity of the water system, and there would be no adverse cumulative impact to that system.

The City of Hugoton sewage treatment lagoons are designed to support 4,000 people and currently are used by about 3,400 people. A total of up to 426 workers and family members would be living in Hugoton during construction of the grain-to-ethanol facility and biorefinery operations, and up to 381 people would be living there after completion of the grain-to-ethanol facility. Thus, there would be no adverse cumulative impact to the sewage treatment system.

DOE estimates that the total amount of solid waste received by the Stevens County landfill from all biorefinery construction and operations workers and their families (grain-to-ethanol facility and Proposed Action or Action Alternative), plus all other residents and businesses using the landfill, would be about 14 tons per day. This is below the permit limit of 20 tons per day and would not result in an adverse cumulative impact to operation of the landfill.

Operation of the grain-to-ethanol facility would involve average and peak electrical demands of 10 and 15 megawatts, respectively. Thus, the amount of electricity provided to the regional grid by the biorefinery

under the Proposed Action would decrease from an average of 70 to 60 megawatts during normal operations. This decrease represents 0.8 percent of the production capacity in the western-central region of Kansas and 0.02 percent of the current summer demand within the Southwest Power Pool. Under the Action Alternative, the electricity demand for the biorefinery would increase from 10 to 20 megawatts under normal conditions with the addition of the grain-to-ethanol facility. Twenty megawatts is 0.05 percent of the summer load within the Southwest Power Pool, and this increase in demand would have minimal effect on the regional capacity.

The small amounts of natural gas, other fossil fuels, and petroleum products required for construction of the grain-to-ethanol facility, along with operation of the biorefinery (Proposed Action or Action Alternative) would not cumulatively impact the availability of those products in the region.

Construction of the grain-to-ethanol facility would require a notable increase in the total quantities of materials required for the project. Stainless steel is the only materials for which there would be a relatively high risk of unavailability in the market, but the need for those materials would be minor percentage (about 0.006 percent) of the U.S. production capacity.

Other Future Actions. The cumulative amount of electricity, natural gas, other fossil fuels, and petroleum products required by the biorefinery under the Proposed Action or Action Alternative and the other future actions considered would be a small portion of the quantities available within the region, and this demand is not expected to adversely impact the availability of these products.

The only construction material required by the biorefinery and the other future actions that may not be easily available is stainless steel. The cumulative demand for steel for the biorefinery and the Nexsun Ethanol LLC facility (the only future action requiring a substantial amount of stainless steel) would be about 23,000 tons, a small portion of 107 million tons of steel produced annually in the United States.

S.5.2.5 Wastes and Hazardous Materials

Grain-to-Ethanol Facility. Up to 100 tons per day of waste would be generated during construction of the grain-to-ethanol facility. There is insufficient capacity at the Stevens County landfill to handle that waste in addition to the waste generated during operation of the biomass—to-ethanol and -electricity facility. The construction waste could be split among other permitted landfills and transfer stations in the region, where there is adequate disposal capacity to receive that waste. It is likely the bulk of the construction waste would be disposed of at the Grant County construction and demolition landfill. Thus, there would be no adverse cumulative impacts from the disposal of construction waste from the grain-to-ethanol facility and operation of the biomass-to-ethanol facility.

Consumption of wet and dry distiller's grain, byproducts of the grain-to-ethanol facility, that would be sold as livestock feed would require approximately 350,000 head of cattle. Market research indicates that there is sufficient capacity in the region of influence for consumption of those products. If much of the distiller's grain must be shipped farther away, the facility would have the capacity to dry up to 50 percent of the product (dry distiller's grain has a longer storage life and can be shipped longer distances). Alternatively, a portion of the distiller's grain could be used as a substitute for biomass feedstock to the solid biomass boiler.

Management and treatment strategies for wastes and byproducts produced by operation of the grain-to-ethanol facility would be the same as those for the biomass-to-ethanol facility, as discussed in Section S.5.6. Operation of the grain-to-ethanol facility would generate additional municipal solid waste and construction debris (57 tons per year), non-contact wastewater (235 gallons per minute), wastewater treatment plant sludge (2.5 to 5 gallons per minute), and hazardous waste (0.5 ton per year). DOE concludes that the Stevens County landfill would not have adequate capacity to dispose of municipal solid waste generated from operation of the grain-to-ethanol facility and the facilities considered under the Proposed Action and Action Alternative. These waste streams could be divided among the other landfills and transfer stations within the region, with permission from the operators of those facilities. Because there is adequate capacity within the region to receive those wastes, DOE concludes there would be no adverse cumulative impacts to landfills from the addition of the grain-to-ethanol facility if a biorefinery waste management plan was implemented. The additional wastewater generated by the grain-to-ethanol facility would require a larger winter storage pond, but based on the quantity of wastewater and sludge to be applied as well as the composition of the sludge, DOE does not anticipate adverse cumulative impacts from this land application.

Chemicals needed for operation of the grain-to-ethanol facility, and the facilities considered under the Proposed Action or Action Alternative, would need to be imported from suppliers outside the 50-mile region of influence. DOE concludes that the chemical needs of the grain-to-ethanol facility would have no adverse cumulative impacts on chemical users or suppliers within the region of influence because the annual demands for the chemicals would be insignificant percentages of annual U.S. production quantities.

Other Future Actions. Potentially significant waste streams or use of hazardous materials would not be anticipated for the truck bypass or Tallgrass Transmission project. Most of the wastes and hazardous materials impacts anticipated due to other future actions would be associated with the construction and operation of the Nexsun Ethanol LLC proposed ethanol/biodiesel production facility. It is anticipated that the Nexsun facility will generate approximately one-half the construction and operation wastes estimated for the Abengoa Bioenergy grain-to-ethanol facility (as it would generate about one-half the ethanol as the Abengoa facility).

The Nexsun Ethanol LLC facility construction wastes likely would be disposed of at the Grant County construction and demolition landfill. The construction wastes from the Proposed Action, Action Alternative, and grain-to-ethanol facility also likely would be disposed of at the Grant County construction and demolition landfill. Based upon an interview with the landfill operator, the landfill has adequate capacity to receive the wastes; therefore, the cumulative adverse impact of Proposed Action, Action Alternative, grain-to-ethanol facility, and other future actions is considered negligible.

Similar to the Abengoa Bioenergy grain-to-ethanol facility, the Nexsun Ethanol LLC facility would produce wet distiller's grain with solubles. There would be adequate capacity of cattle feedlots in the region of influence to consume that additional livestock feed.

DOE does not anticipate adverse impacts from the handling and disposal of the additional hazardous waste generated during operation of the Nexsun Ethanol LLC facility, and the demand for chemicals for that facility would have no adverse cumulative impacts. Municipal sewage and process wastewater generated by the Nexsun facility would be disposed of in different facilities or on different lands than

those Abengoa Bioenergy would use, and would have no cumulative impacts relative to the Proposed Action, Action Alternative, or grain-to-ethanol facility.

S.5.2.6 Transportation

Grain-to-Ethanol Facility. Construction and operation of the grain-to-ethanol facility would substantially increase the number of truck and rail shipments to and from the biorefinery as well as the associated number of fatalities. Based on a traffic impact analysis, no roadway improvements were identified as necessary to reduce congestion at intersections or improve access if the grain-to-ethanol facility were constructed.

Operation of the biorefinery and grain-to-ethanol facility would add about 170 additional trains per year carrying denatured ethanol and waste, and 120 additional trains per year carrying chemicals and grain, or a total of 290 additional trains per year. The capacity of single-track rail lines is generally 40 to 60 trains per day; thus, this additional rail traffic would not adversely affect operations of the Cimarron Valley Railroad.

Construction of the Proposed Action and grain-to-ethanol facility would require an estimated total of about 49,800 shipments of materials. Operation of those facilities would require 240,500 shipments of materials per year, an incremental increase of 138,800 shipments per year over that of the Proposed Action (and Action Alternative). DOE estimates that, during construction and the 30-year operational life of the biorefinery, there would be about 120 traffic fatalities due to truck and rail shipments, an increase of 85 fatalities over the Proposed Action. The majority of the fatalities (110) would be from shipments of biomass, chemicals, denatured ethanol product, and waste.

Construction of the Action Alternative and grain-to-ethanol facility would require an estimated total of 46,300 shipments of materials. Operation of those facilities would require 169,300 shipments of materials per year. DOE estimates that, during the 30-year operational life of the biorefinery, there would be about 97 traffic fatalities due to truck and rail shipment, an increase of 85 fatalities over the Proposed Action. The majority of the fatalities (94) would be from shipments of biomass, chemicals, denatured ethanol product, and waste.

The increased traffic associated with the grain-to-ethanol facility would result in increased pavement deterioration. Shipments of grain, which comprise more than 60 percent of the shipments to the grain-to-ethanol facility, would not increase pavement damage in the region because, in the absence of that facility, grain shipments would have to be made to grain elevators. Shipping other materials, such as chemicals and waste, would result in some additional pavement damage. The cost of that damage could not be estimated, as the cost of repairing damage to roads from those types of shipments has not been measured.

Other Future Actions. Over the expected 30-year operations phase of the biorefinery, there would be an estimated 13,400 traffic fatalities in Kansas and 820 traffic fatalities in the nine counties surrounding the Biorefinery Project site. The Nexsun Ethanol LLC facility, Tallgrass Transmission, LLC project, and Stevens County truck bypass could result in increased traffic fatalities in those counties and elsewhere in Kansas. Traffic fatalities for these projects have not been estimated. However, based on the descriptions of these projects, it is anticipated that additional traffic fatalities from these projects would be minimal. In addition, the Stevens County truck bypass would reduce traffic congestion, and potential traffic

accidents leading to transportation-related fatalities, within the city of Hugoton currently caused by truck traffic.

S.5.2.7 Aesthetics

S.5.2.7.1 Visual

Grain-to-Ethanol Facility. The grain-to-ethanol facility would require additional structures at the Biorefinery Project site. Some of these structures, such as the grain storage silos, would be about 100 feet tall, but would be visually similar to silos and other tall structures south of the Project site. Thus, construction of the grain-to-ethanol facility would result in additional, similar structures visible from surrounding vantage points.

Other Future Actions. Construction of the truck bypass at the same time as construction of the biorefinery would result in a minor, temporary cumulative increase in fugitive dust. DOE does not anticipate other cumulative impacts to visual resources from the other future actions.

S.5.2.7.2 Noise

Grain-to-Ethanol Facility. By complying with occupational health and safety requirements and employing best management practices, no cumulative noise impacts to biomass facility workers or workers from constructing the grain-to-ethanol facility would be expected.

At the nearest residence to the biorefinery, noise from construction of the grain-to-ethanol facility, along with noise from ongoing operations of the biomass-to-ethanol and -energy facilities, would attenuate to about 55 decibels, the level recommended by the U.S. Environmental Protection Agency for avoidance of annoyance. Noise from operations of all of these facilities concurrently would attenuate to about 40 decibels at the nearest residence. These noise levels would not result in adverse cumulative impacts to residents living near the Biorefinery Project site.

Truck traffic to the biorefinery would be higher if the grain-to-ethanol facility were to be constructed. During construction of that facility, an additional 11 trucks per day would pass through a residential area in the northwest corner of the city of Hugoton. There would be a total of about 99 truck passes per day there, or one truck every 8 to 9 minutes, during construction of the grain-to-ethanol facility and operation under the Proposed Action, and a total of about 38 truck passes per day (one truck every 22 minutes) during construction of the grain-to-ethanol facility and operation under the Action Alternative.

During operations, there would be an increase of 264 trucks per day over the Proposed Action and Action Alternative. Assuming 50 percent of all trucks travel to the biomass-to-ethanol facility from the northeast on US-56 and pass through the residential area in the northeast corner of the city of Hugoton, these residences would experience 220 truck passes per day, or one truck every 3 to 4 minutes under the Proposed Action. Under the Action Alternative, there would be 159 trucks passing per day, or about one truck every 5 to 6 minutes. Noise from these trucks would be sufficient to interfere with outdoor conversations and cause annoyance indoors at some residences and facilities. The cumulative amount of truck traffic for the grain-to-ethanol facility and Proposed Action or Action Alternative could be frequent enough to cause almost continuous annoyance at some locations.

Operation of the grain-to-ethanol facility and biorefinery would require the handling of about 7,650 railcars per year. The grain-to-ethanol facility would require about 294 trains per year, compared with 51 trains per year for the Proposed Action and 28 trains per year for the Action Alternative. A rail loop would be built on the western portion of the biomass-to-ethanol facility site that would come within approximately 500 feet of the residence at the northwest Project site boundary. Movement of trains on that rail loop would increase noise levels in the area and may cause annoyance at the nearby residence.

In summary, the cumulative noise produced by passing trucks and trains would be of sufficient frequency and magnitude so as to interfere with outdoor conversation and likely would be an annoyance indoors to the nearest resident, as well as to other receptors (for example, residences, places of worship, and schools) along the transportation routes.

Other Future Actions. The truck bypass would avoid the more heavily populated areas of Hugoton than currently available routes and thus would decrease traffic and noise for most residences and facilities. However, there are two residences along the bypass. It is expected that about half of the daily truck traffic (or 186 trucks per day) to the biorefinery would use the bypass. This is equivalent to one truck about every 5 minutes. Noise at the two residences from passing trucks would be sufficient to interfere with outdoor conversations and cause annoyance indoors. Because the traffic would be almost constant, it would be more likely to be an annoyance.

The Nexsun Ethanol LLC facility and Tallgrass Transmission, LLC project are not close enough to cause noise impacts to the same receptors as those for the Proposed Action or Action Alternative. Therefore, DOE concludes that no cumulative noise impacts would occur.

S.5.2.7.3 Odor

Grain-to-Ethanol Facility. The addition of the grain-to-ethanol facility would increase the amount of some odorous compounds released by the biorefinery and introduce additional sources of odors such as grain fermentation and distillation, drying of wet distiller's grain with solubles, and storage and loadout of distiller's grain with solubles. Air dispersion modeling indicates that two odorous compounds (acetaldehyde and nitrogen dioxide) might be detectable at the biorefinery fence line, but neither of those compounds would be detected at offsite locations where the public would commonly be located. Therefore, DOE anticipates no cumulative impacts from the release of odorous compounds from the grain-to-ethanol facility.

Other Future Actions. Construction of the truck bypass would cause temporary emissions from diesel construction equipment and newly laid asphalt at the same time that the biorefinery is being constructed. DOE anticipates that the cumulative odorous emissions would be minor and temporary. The Nexsun Ethanol LLC facility and Tallgrass Transmission, LLC project are distant from the Bioenergy Project site and would not result in cumulative impacts from odorous emissions.

S.5.2.8 Socioeconomics

Grain-to-Ethanol Facility. Construction of the grain-to-ethanol facility would require a maximum of about 150 workers for 3 months and fewer workers for the balance of the construction phase. About 73 additional workers would be employed at the biorefinery to operate the grain-to-ethanol facility. Under the Proposed Action and Action Alternative, this would result in an increase of less than 1 percent of the population in Stevens County and the adjacent three counties, and less than a 1-percent change in other

socioeconomic variables or conditions in the region. Thus, cumulative socioeconomic impacts from the grain-to-ethanol facility would be very small.

Other Future Actions. Because of the duration (few months) and nature of the truck bypass (principally grading and resurfacing of existing roads), DOE anticipates that its construction would not require hiring additional workers by Stevens County. The Nexsun Ethanol LLC facility and Tallgrass Transmission, LLC project are far enough away from the Biorefinery Project site that there would be no cumulative socioeconomic impacts.

S.5.2.9 Health and Safety

Grain-to-Ethanol Facility. DOE estimates that 150 construction workers at the grain-to-ethanol facility would experience about 8 additional total recordable cases, about 4.1 additional days away from work, and about 0.015 additional fatality. About 5 additional total recordable cases, about 1.4 additional days away from work, and about 0.0017 additional fatality would occur during operations of the grain-to-ethanol facility. These statistics are in addition to the approximately 3 total recordable cases, 1 day away from work, and 0.001 fatality estimated to occur annually during operation of the biorefinery (Proposed Action and Action Alternative).

Other Future Actions. Construction and operations of additional future actions would create the potential for injuries or fatalities to workers involved in those actions. However, the details of such projects are not yet sufficiently developed for the number of workers, and likewise for the health and safety impacts to be estimated.

S.5.2.10 Accidents

One additional toxic chemical, phosphoric acid, would be stored and used at the Abengoa Biorefinery Project site if the grain-to-ethanol facility were to be constructed and operated. That chemical is not combustible; has a moderate toxicity; and a harmful contamination of the air would not, or would only very slowly, be reached. Therefore, DOE concludes that failure of the phosphoric acid storage tank and subsequent release of phosphoric acid vapors would not result in any lasting health effects to workers or members of the public. DOE also concludes that any changes in the size and number of the ethanol storage tanks, or other chemical storage tanks, required for the grain-to-ethanol facility would not result in a meaningful increase in accident impacts to either workers or the public when compared to the Proposed Action or Action Alternative.

S.6 Mitigation

The Department identified two categories of measures to mitigate adverse environmental impacts from the construction and operation of the biorefinery: best management practices and mitigation measures. DOE would consider these measures in developing a Record of Decision about whether to provide federal funds for the design, construction, and startup of the biorefinery.

MITIGATION MEASURES

Mitigation measures are defined by the Council on Environmental Quality regulations (40 CFR 1508.20) as:

- a) Avoiding the impact altogether by not taking a certain action or parts of an action
- b) Minimizing impacts by limiting the degree or magnitude of the action and its implementation
- c) Rectifying the impact by repairing, rehabilitating, or restoring the affected environment
- d) Reducing or eliminating the impact over time by reservation and maintenance operations during the life of the action
- e) Compensating for the impact by replacing or providing substitute resources or environments.

For the purposes of this EIS, best management practices are defined as the practices, techniques and methods, and processes and activities commonly accepted and used throughout the construction and ethanol- and energy-production industries to facilitate compliance with applicable requirements, and that provide an effective and practicable means of avoiding or reducing the potential environmental impacts of the Proposed Action and Action Alternative. Best management practices are integral to the design, construction, and operation of the biorefinery, and thus are incorporated into the description of the Proposed Action and Action Alternative. In general, best management practices include actions taken in compliance with other government agency regulations, stipulations, or guidance; coordination with other agencies and interested parties; implementation of Departmental policies and orders; implementation of industry practices and policies; and monitoring of relevant ongoing or future activities.

DOE regards mitigation measures as activities or actions that would be above and beyond (in addition to) best management practices and, therefore, does not include them in the Proposed Action and Action Alternative, but rather addresses them separately. Table S-2 lists the mitigation measures being considered for the Proposed Action and Action Alternative.

Table S-2. Mitigation measures under consideration.

Air quality

• Use well-maintained construction equipment having appropriate emissions controls.

Visual resources

- Maintain the current visual status of the buffer area over time by only utilizing the land in the buffer area for agricultural activities.
- Reduce the impacts from night lighting at the biorefinery by using downward-facing or directional lighting and the minimum amount of lighting needed for safe operation.

Odor

• Control odorous emissions through the use of an odor control plan, which would identify sources of odorous emissions, controls used on those sources, operation and maintenance plans with schedules for routine maintenance of the control equipment, and a response plan if any of the control equipment fails to meet specifications. The operation and maintenance plans and schedules would be evaluated and updated over time to ensure improvements are recognized and incorporated as appropriate.

Table S-2. Mitigation measures under consideration (continued).

Socioeconomics

 Initiate timely communication with local and regional organizations to disseminate information relative to the construction schedule and expected worker influx to assist in planning for increased demand on community services.

Wastes and hazardous materials

- Develop a waste management and pollution prevention plan prior to contracting facility construction.
- Identify landfills for the disposal of solid and industrial wastes during construction and operation of the biorefinery. Construction specifications should direct contractors where to recycle/dispose construction generated wastes.

Transportation

- Stagger workforce schedules to minimize traffic delays and congestion on nearby roadways.
- Develop safety-based criteria to be used, in part, to select carriers (truck). Criteria should include elements
 of the Federal Motor Carrier Safety Administration regulations (see next bullet), as well as provisions for
 drivers to be paid hourly and receive bonuses for accident-free driving, mandatory safety training, and
 avoidance of teen-age drivers and drivers having less than 5-years experience.
- Require carriers and drivers to meet the Federal Motor Carrier Safety Administration regulations that
 establish: commercial driver license standards, requirements, and penalties; general qualifications for
 drivers and rules for driving a commercial motor vehicle: hours of service limits for drivers; safety fitness
 standards; motor carrier safety regulations; minimum levels of financial responsibility for motor carriers;
 requirements to test drivers for controlled substance and alcohol use; and driver training requirements.
- Require safety training protocols/programs for selected carriers.
- Ensure the onsite rail system is sufficient to handle unit trains without blocking railroad crossings near the Biorefinery Project site for long periods of time.
- Maximize the use of rail for shipments to and from the Project site.

S.7 Conclusions

S.7.1 MAJOR CONCLUSIONS OF THE EIS

In this Abengoa Biorefinery Project EIS, the Department has assessed the environmental impacts of the construction and operation of a commercial-scale integrated biorefinery to be located in southwestern Kansas. Under the Proposed Action, the biorefinery would use lignocellulosic biomass to produce up to 18 million gallons of ethanol per year. It would also produce sufficient electricity to meet the electrical needs of the facility and to sell excess electricity to the regional power grid. DOE also evaluated the impacts of the Action Alternative under which the biorefinery would produce 12 million gallons of ethanol per year, but would produce only sufficient electricity to power the biorefinery.

S.7.1.1 Summary of Beneficial Impacts

Construction and operation of the integrated biorefinery would result in some beneficial changes to the environment. The following are the most important beneficial impacts DOE identified.

Economic Stimulus. The biorefinery would employ up to 230 to 260 workers (Action Alternative and Proposed Action, respectively) during the peak of construction, and would employ from 34 to 43 workers during the expected 30 years of operations. This would result in an annual infusion of earnings into the regional economy of about \$16 to \$16.6 million dollars per year during construction and \$3.5 to \$4.4 million dollars per year during operations.

Reduction in Greenhouse Gas Emissions. The overall regional greenhouse gas emissions would be reduced through the production of biopower and biofuel; and emissions from burning of residual crop material, a common practice in the region, would be reduced. DOE estimates the Proposed Action would result in an approximately 306-percent reduction in greenhouse gas emissions compared with the continued use of gasoline instead of biofuel and no generation of biopower. The Action Alternative would result in an approximately 39-percent reduction in greenhouse gas compared with the continued use of gasoline.

Use of Groundwater. Under the Proposed Action, up to 2,170 acre-feet of groundwater would be pumped per year from eight wells near the Biorefinery Project site. This is about 5,000 acre-feet less than the currently permitted annual volume for those wells. Under the Action Alternative, up to 850 acre-feet would be pumped per year from three wells, which is 1,300 acre-feet less than the currently permitted annual volume. Thus, operation of the biorefinery would result in a decrease in groundwater use at the Project site.

S.7.1.2 Summary of Adverse Impacts

In general, adverse impacts of constructing and operating the biorefinery would be small. For example, DOE does not anticipate that there would be substantial changes in land use practices in the region surrounding the Biorefinery Project site (such as conversion of marginal cropland or lands in the Conserve Reserve Program) to meet the biomass demand of the biorefinery. Many of the adverse impacts that could occur, especially those resulting from construction, would be temporary and local. The following are the major adverse impacts, including cumulative impacts, of the Proposed Action and Action Alternative.

Traffic Fatalities. Under the Proposed Action, there would be approximately 32,000 truck shipments of materials during construction, and about 102,000 truck and 1,300 rail shipments per year during the 30-year operating period of the biorefinery. DOE estimates there would be 32 traffic fatalities due to these shipments and the commuting of workers. Under the Action Alternative, there would be approximately 28,600 truck shipments of materials during construction, and about 30,500 truck and 1,300 rail shipments per year during operations, and an estimated 13 traffic fatalities due to those shipments and the commuting of workers. For perspective, over the operations phase, there would be an estimated 13,400 traffic fatalities in Kansas and 820 traffic fatalities in the 9 counties surrounding the Biorefinery Project site.

Construction and operation of a grain-to-ethanol facility at the Biorefinery Project site at a point in the future would substantially increase the cumulative number of truck shipments to and from the biorefinery, and the associated number of fatalities. Over 240,000 truck shipments per year would be required for construction and operation of the Proposed Action and grain-to-ethanol facility, and over 169,000 shipments per year for the Action Alternative and grain-to-ethanol facility. DOE estimates that 97 to 120

(Action Alternative and Proposed Action, respectively) fatalities would occur as a result of the cumulative truck shipments, as well as railroad shipments, to and from the biorefinery and grain-to-ethanol facility.

Traffic Noise. Truck shipments to the biorefinery would result in an increase in noise at some locations in and around the city of Hugoton. For the Proposed Action, about 175 truck shipments per day would pass through and around Hugoton to support the biorefinery operations. Along the most frequently traveled routes to the biorefinery, trucks would pass residential areas about once every 9 to 10 minutes. Trucks would travel a route that passes the Stevens County Hospital, several schools, residences, and places of worship along US-56/K-51 about once every 24 minutes. The noise from each passing truck would be sufficient to interfere with nearby outdoor conversations and cause annoyance indoors at some residences and facilities. Fewer shipments of biomass would be required to support the Action Alternative (50 per day), but trucks would still pass residential areas about once every 30 minutes.

If Abengoa Bioenergy were to construct the grain-to-ethanol facility at some time in the future, the cumulative impacts of truck traffic and associated noise would be substantially greater. Up to 440 truck shipments per day would be needed to support the Proposed Action and the grain-to-ethanol facility. Trucks would pass some residences in Hugoton and the residence at the northwest property boundary about once every 3 to 4 minutes and would pass the hospital and other facilities about once every 9 to 10 minutes. For the Action Alternative and grain-to-ethanol facility, there would be up to 320 truck shipments per day, and they would pass nearby residences every 5 to 6 minutes. The cumulative amount of truck traffic for the grain-to-ethanol facility and the Proposed Action or Action Alternative would cause almost continuous annoyance at some locations in and near Hugoton.

The truck bypass under consideration by Stevens County would avoid more heavily populated areas in and around Hugoton. It is expected that 50 percent of all truck traffic to and from the biorefinery during operations would use the bypass, which would avoid facilities in Hugoton and the residential area in the northwest corner of the city. However, two residences north of Hugoton would be along the bypass. Those residences, and a residence at the northwest boundary of the Biorefinery Project site, would experience about one truck passing every 5 minutes.

Landfill Capacity. Up to 78 tons per day of solid waste would be generated during the 18-month construction phase, and about 96 tons of solid waste (primarily dirt and fines) would be generated daily during the expected 30-year operations phase. In addition, if ash from the solid biomass boiler (228 tons per day under the Proposed Action) was not sold as a soil nutrient replacement, it would require disposal at a permitted solid waste disposal facility. The Stevens County landfill would not have adequate capacity to receive the construction wastes generated and maintain its existing permit (limited to 20 tons per day), and revising that permit would be expensive. These waste streams could be split among two permitted landfills and one transfer station within 35 miles of the Biorefinery Project site, but permission for disposal would be required from those facilities. Disposing of a substantial portion of the solid waste in one of the landfills, the Seward County municipal solid waste landfill, would substantially reduce the long-term capacity of that facility.

S.7.1.3 Differences Between the Proposed Action, Action Alternative, and No-Action Alternative

Table S-3 summarizes the potential impacts of the Proposed Action, Action Alternative, and No-Action Alternative. In general, the differences between the two action alternatives are minor. Because fewer

shipments of biomass and other materials would be required for the Action Alternative, DOE anticipates there would be fewer traffic fatalities and less noise impacts to local residents. Under the Proposed Action, about 10 percent more workers would be employed at the biorefinery, and thus more earnings would be spent in the local economy.

S.7.1.4 Areas of Controversy

No information was obtained during the development of this EIS that would suggest the Proposed Action or Action Alternative is controversial. Impacts of constructing and operating the biorefinery generally would be small. Scoping comments generally were in support of the project, or were requests for information to be provided in the EIS.

S.7.1.5 Issues to be Resolved

The U.S. Department of Energy must decide whether to provide \$85 million (of the \$300 million total anticipated cost) to support the design, construction, and startup of the biorefinery under Section 932 of EPAct 2005. If funds are to be provided, the Department must also decide whether those funds would be used for the Proposed Action, which includes the generation of electricity for sale to the regional grid, or the Action Alternative, which includes generation of sufficient electricity only to support the needs of the biorefinery.

Table S-3. Comparison of potential impacts under the Proposed Action, Action Alternative, and No-Action Alternative.

Resource area	Proposed Action	Action Alternative	No-Action Alternative
Land use			
	Conversion of 385 acres to non-agricultural production.	Same as Proposed Action.	Land use for the 385 acres would remain agricultural.
	No change to land use or agricultural practices to meet demand for biomass feedstock.		
	No changes to land in Conservation Reserve Program, prime farmland, highly erodible land, or public lands.		
	No change in soil erosion.		
	Minor adverse impact on soil organic content in some fields. No regional impact on agricultural production.		
	Biorefinery consistent with local zoning and land use.		
Air quality			
	Short-term and intermittent emissions during construction.	Same as Proposed Action.	There would be no construction.
	Concentration from operations, along with background concentrations, are about 60% of the National Ambient Air Quality Standards for 24-hour PM ₁₀ , 18% for nitrogen dioxide, and less than 10% of the standards for other pollutants.	Concentration from operations, along with background concentrations, are about 50% of the National Ambient Air Quality Standard for 24-hour PM_{10} , 13% for nitrogen dioxide, and less than 10% of standards for other pollutants.	There would be no changes in air emission from current background levels.
	Emissions of nitrogen oxide (0.14 pound per million British thermal units) exceed limits specified in EPAct of 2005 (0.08 pound per million British thermal units).		
	Estimated reduction in greenhouse gas emissions of 306% by replacing gasoline fuel in vehicles with biomass-derived ethanol.	Estimated reduction in greenhouse gas emissions of 39% by replacing gasoline fuel in vehicles with biomass-derived ethanol.	There would be no reduction in greenhouse gas emissions.
Surface water			
	Minor changes to drainage patterns on the Biorefinery Project site.	Same as Proposed Action.	There would be no changes in drainage patterns on the Biorefinery Project site.

Table S-3. Comparison of potential impacts under the Proposed Action, Action Alternative, and No-Action Alternative (continued).

Resource area	Proposed Action	Action Alternative	No-Action Alternative
	Runoff and planned releases of wastewater limited to the Project site.		
	No surface waters would be affected by accidental spills.		
	No floodplains or wetlands would be affected.		
Groundwater			
	Water Requirements:	Water Requirements:	Water withdrawal from the affected wells
	• Construction phase – 220 acre feet	• Construction phase – 210 acre feet	would continue to be used for crop irrigation. There would be no net reduction in water
	• Operations phase – 2,170 acre-feet annually	• Operations phase – 850 acre-feet annually	withdrawal from the High Plains aquifer (i.e., 5,000 acre-feet from the Proposed Action or
	Net operations water demand is 5,000 acre-feet per year less than permitted for eight supply wells, thus there would be a beneficial decrease in water withdrawals from the High Plains aquifer.	Net operations water demand is 1,300 acre-feet per year less than permitted for three supply wells, thus there would be a beneficial decrease in water withdrawals from the High Plains aquifer.	1,300 acre-feet from the Action Alternative).
Biological resources			
	Minor short-term and long-term impacts to common species from construction and operations within 0.5 mile of the biorefinery.	Same as Proposed Action	No impacts to biological resources.
	No threatened or endangered species would be impacted by the construction and operation of the biorefinery.		
Utilities, energy, and	l materials		
	Maximum domestic and potable water demand about 25% of unused capacity of Hugoton water system.	Same as Proposed Action	There would be no impact on the Hugoton water system.
	Design capacity of Hugoton sewage lagoons approached during construction, but not exceeded.		There would be no increase in the sewage load (beyond current loads) to the Hugoton sewage lagoons.
	Energy: Needs of biorefinery generated onsite, and 70 megawatts of electricity supplied to regional grid (equal to 5.4% of production capacity in western-central Kansas).	Requires electrical power from regional grid, equal to less than 1% of production in local region.	No additional electrical power would be needed and no electricity would be supplied to the regional grid.

Table S-3. Comparison of potential impacts under the Proposed Action, Action Alternative, and No-Action Alternative (continued).

Resource area	Proposed Action	Action Alternative	No-Action Alternative
	Construction materials: With possible exception of stainless steel, no availability issues, and needs would not stress regional market for materials.	Same as Proposed Action.	No additional demand (beyond current levels for construction materials.
Waste, byproducts,	and hazardous materials		
	Stevens County landfill would not have adequate capacity to receive construction or operations wastes generated and maintain its small arid landfill exempt status. This waste could be split among other landfills and a transfer station in the region.	Same as Proposed Action.	There would be no wastes, byproducts or hazardous materials generated.
	Ash not used as a soil amendment would be disposed of among the landfills and transfer stations in the region.		
	No adverse impacts from land application of wastewater or sludge.		
	No adverse impacts if proposed hazardous waste management practices are implemented.		
Transportation			
	32 estimated traffic fatalities from shipments and commuting workers.	13 estimated traffic fatalities from shipments and commuting workers.	There would be no shipments or commuting workers and thus no associated traffic fatalities.
	\$680,000 annual cost of pavement damage from biomass shipments.	\$210,000 annual cost of pavement damage from biomass shipments.	There would be no shipments or commuting workers and thus no associated pavement damage.
	No adverse impacts to operation of local railroad.	No adverse impacts to operation of local railroad.	
	No roadway improvements required to reduce congestion or improve access to site.	No roadway improvements required to reduce congestion or improve access to site.	

Table S-3. Comparison of potential impacts under the Proposed Action, Action Alternative, and No-Action Alternative (continued).

Resource area	Proposed Action	Action Alternative	No-Action Alternative
Visual resources			
	Several structures, including a 115-foot-tall structure, visible from surrounding vantage points.	Fewer tall structures than Proposed Action, thus less visible from surrounding vantage points.	No structures would be built on the Biorefinery Project site and visual resources would be unchanged.
	Source of night lighting.	Source of night lighting.	No source of night lighting.
	A 1.5-mile-long transmission line visible from Road P and Road 11.	No new transmission line.	No new transmission line.
Noise			
	Noise exposure to workers would be minimized through implementation of a hearing conservation program.	Same as Proposed Action.	There would be no change in noise from background levels.
	Construction and operations noises would be near background levels at the nearest residences.		
	Nearby residences and a hospital, churches, and other facilities in Hugoton would experience noise from passing trucks about every 9 to 24 minutes, which would interfere with conversations outdoors and cause annoyance indoors.	Trucks would pass residences and facilities in Hugoton every 30 minutes or less, which would interfere with conversations outdoors and cause annoyance indoors.	There would be no trucks passing and thus n interference with conversations outdoors and annoyance indoors.
Odor			
	Odors would not be detectable offsite.	Same as Proposed Action.	There would be no odors.
Socioeconomics			
	Up to 256 workers employed during construction and 43 during operations.	Up to 230 workers employed during construction and 34 during operations.	There would be no increase in employment above current levels.
	1% increase in the population of the region during construction, and 0.1% increase during operations.	0.9% increase in the population of the region during construction, and 0.1% increase during operations.	
	Little impact to public services.	Little impact to public services.	There would be no impact on public services
	\$17 million annual infusion of earnings during construction and \$4.4 million annually during operations.	\$16 million annual infusion of earnings during construction and \$3.4 million annually during operations.	There would be no annual infusion of earnings.
Cultural resources			
	No adverse impacts	Same as Proposed Action.	Same as Proposed Action.

Table S-3. Comparison of potential impacts under the Proposed Action, Action Alternative, and No-Action Alternative (continued).

Resource area	Proposed Action	Action Alternative	No-Action Alternative
Health and safety	•		
	Public not affected by industrial hazards.	Same as Proposed Action.	There would be no hazards to the public.
	Construction workers: 13.5 total recordable cases, 7 days away from work cases, and 0.026 fatality estimated.	Construction workers: 12.1 total recordable cases, 6.3 days away from work cases, and 0.023 fatality estimated.	
	Operations workers: 2.7 total recordable cases, 0.94 day away from work, and 0.0014 fatality estimated.	Operations workers: 2.3 total recordable cases, 0.68 day away from work, and 0.0011 fatality estimated.	
Accidents			
	Accidents during operation of the biorefinery would be unlikely to impact the general public.	Same as the Proposed Action.	There would be no potential for accidents and thus no hazards to the general public.
Environmental just	ice		
-	No impacts to communities with high percentages of minority and low-income populations.	Same as Proposed Action.	There would be no environmental justice impacts.
	No unique exposure pathways, sensitivities, or cultural practices that would result in different impacts on minority or low-income populations.		
	Disproportionately high and adverse impacts would be unlikely.		