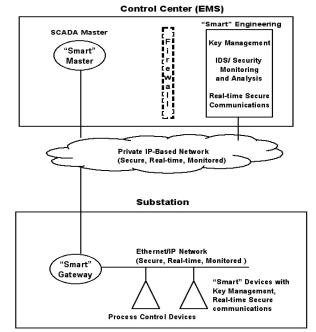


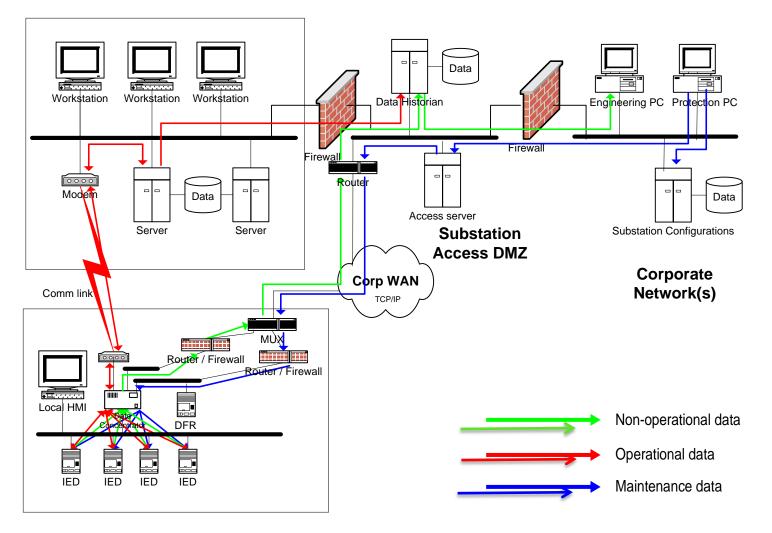
U.S. Department of Energy Office of Electricity Delivery and Energy Reliability

Cybersecurity for Energy Delivery Systems


2010 Peer Review

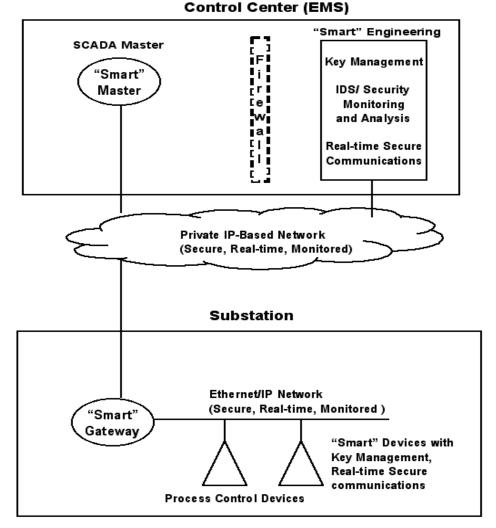
Alexandria, VA ♦ July 20-22, 2010

Himanshu Khurana University of Illinois TCIPG: Converged Networks for SCADA (Joint work with Erich Heine and Tim Yardley)


Summary Slide: CONES

- Outcomes: Specify and create an architecture and platform for maintaining real-time and secure communications for control in a converged network.
- Roadmap Challenge: Develop and Integrate Protective Measures
- Major Successes: CONES enhanced machines outperform nonenhanced machines in representative scenarios; major real-time constraints met.

- Schedule: Started 2/8, Design 8/8, Prototype 7/9, Experiments 4/10, Transitioned to TCIPG 2/10
- Level of Effort: \$250k DOE and TCIPG Funding
- Funds Remaining: TCIPG Funding
- Performers: University of Illinois
- Partners: PNNL


Background: Control Systems networks today

Source: Scott Mix Lecture 04/07

Research Problem

- Objective: Enable network convergence for Control system applications
 - Multiple traffic paradigms
 - SCADA and other control
 - Monitoring
 - Engineering
 - Enterprise
 - Understand and support communications requirements/properties for existing and emerging applications

Research Challenges

- Technical Challenges:
 - Resource management
 - Quality of Service, Real-time scheduling, Wide area network optimization
 - Security
 - Access control, Integrity, Availability
- Development and Integration challenges
 - Use commercial, off-the-shelf platforms and tools
 - Minimal use of custom software
 - Support legacy devices and applications
 - Support existing and emerging applications

Technical Approach and Feasibility

Research Approach

- Gather requirements with industry input
- Establish SCADA emulation environment
- Prototype real-time middleware to support network convergence
- Evaluate performance in representative scenarios

• Design and Development approach

- Real-time, Secure Middleware for timeliness and availability
- Real-time: support tight timing guarantees
 - CPU scheduling, Network scheduling
- Middleware:
 - Common API for all systems
 - Coordinate multiple resource management component
 - Dynamic re-prioritization of QoS policies
- Secure: Access Control, Integrity (Future work)

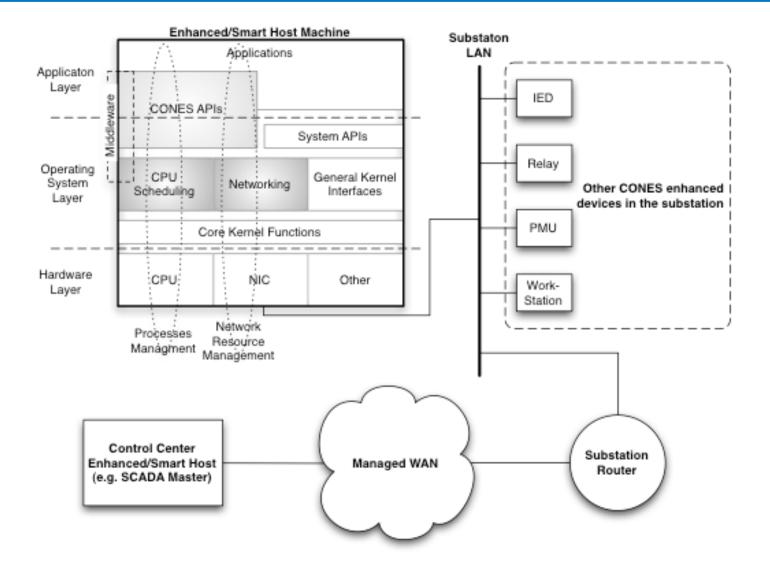
Development: Requirements

Power	Traffic	Traffic Path	Qualitative Quality of	Packet	Scalability	Stream Bandwidth
Systems	Туре		Service (QoS)	Characteristics	considerations	Characteristics
Application			Parameters	(size, timing) per device		(per device, total)
Protection/ Control	SCADA	IED(substation) -> Control Center	Low latency, high priority, no loss	Size: 256B – 1KB Frequency: 1 packet every 2-4s	~5 devices per bus	.5KB/s per device 2.5-5KB/s per bus
	SMV/ GOOSE	IED -> IED	High speed/low latency, high priority.	Size: typically less than 1 Ethernet frame Frequency:	1 event per second per bus	1-15KB per protection event
Monitoring	PMU	IED/PMU -> Phasor Data Concentrator (Control Center)	Low latency, medium priority.	Size: 128 Bytes Frequency: 30 – 120 samples/sec	2 PMUs per bus	30Kbps per device, 60Kbps per bus
	Other Monitoring Data	IED/master -> Control Center	Low latency, medium priority.	Size: 32-64 Bytes Frequency: 1 sample/sec	20-25 Devices/substat ion	256-512Kbps per device 1-5 Mbps per substation (not all data leaves the substation)
Engineering	Interactive	Control Center <-> Substation	Medium latency, medium priority	N/A (these are not critical timings and can vary greatly)		1M per occasional request
	Data Transfer	Control Center <-> Substation	Low priority	N/A (Big packets, but not a standard size)	A flow 1-2 times per day	1-5M per occasional request
Surveillance	Video	Substation -> Control Center	Medium – High Iatency, medium priority.	Varied video frame sizes and rates	2-10 cameras per substation.	100 Kb/s -1Mb/s per camera ~5Mbps per substation

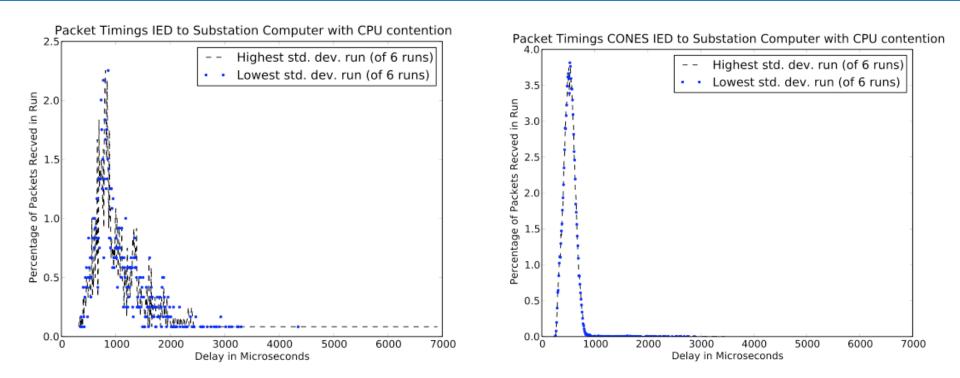
Tool selection and development

• Linux Operating System

- Easily available
- Open source, therefore extremely flexible
- Good networking support
- iDSRT: soft real-time kernel with network stack scheduling (previous UIUC tool)
 - Enhanced with socket options and more extensive process support
 - Guarantees of timeliness to network interface card level
 - Uses Earliest Deadline First scheduling
- *Results of study applicable to other platforms*


Control Network Emulation

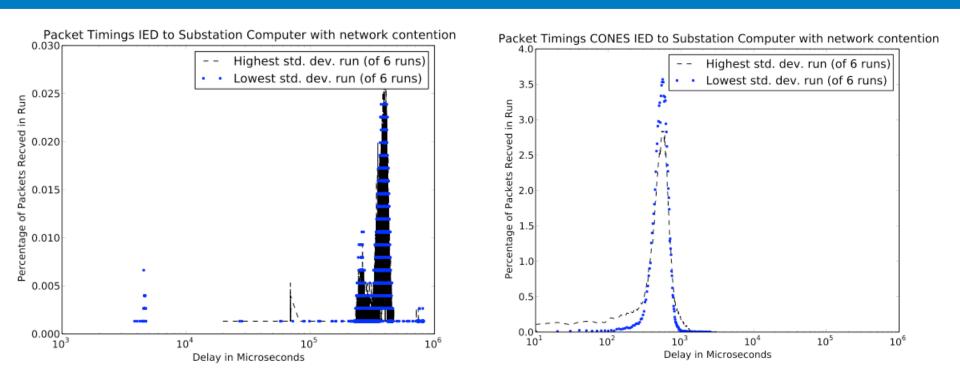
- Custom tools emulate networking conditions described above
- Allows fine grained testing


Wide area networking

- Use of common technologies, such as DiffServ and MPLS
- Chose Juniper routers for minimal added latency

Results: Architecture

Results: Performance



Packet latency timings with CPU contention

Left: unenhanced host

Right: CONES enhanced host

Results: Performance

Network latency timings with network interface contention.

Left: unenhanced host

Right: CONES enhanced host

Collaboration/Technology Transfer

• Plans to gather further industry input

- Work closely with industry partners such as Entergy, TVA, PJM and others to understand limitations, requirements and concerns about communications, particularly for control.
- Approach TCIPG partners for access to network traces and data to gather more accurate information for testing and development
- Alternative approach: industry standard set of reference data

Collaboration/Technology Transfer

• Plans to transfer technology/knowledge to end user

- CONES provides a good base for new devices and networks
 - Part of a full solution for new build-outs and complete overhauls
 - Integrates nicely with modern networking equipment
- Plan to use CONES and it's technological lessons in future prototypes and products for new networks such as NASPInet
- Release CONES open source
- Since CONES is built on commonly available and widely used technologies, it provides easy integration with modern communications networks, providing a simple transition path
- Interact with TCIPG vendor partners to discuss technology transfer opportunities

Next Steps

• Approach For the Next Year

- Improve timing measurements
- Implement security layers
- Release software under open source licensing
- Develop sample QoS policy specifications

• Follow-on work

- Spinoff project: Tools development
 - Attempt to create a standard set of tools and techniques to aid research on power system networks