Implementing Sustainable Manufacturing:

Recent Progress, Challenges and Opportunities

I. S. Jawahir

James F. Hardymon Chair in Manufacturing Systems,
Professor of Mechanical Engineering, and
Director of Institute for Sustainable Manufacturing (ISM)

www.ism.uky.edu E-mail: <u>is.jawahir@uky.edu</u>

Sustainable Manufacturing: Definitions

- □ *Numerous definitions* and descriptions exist for sustainable manufacturing:
- US Department of Commerce, 2009
- NACFAM, 2009
- NIST, 2010
- US-EPA, 2012
- ASME, 2011, 2013
- NSF 2013
- ISM, 2014
- □ Sustainable manufacturing offers a new way of **producing functionally superior products using innovative sustainable technologies and manufacturing methods** through the coordination of capabilities **across the entire supply chain, not just the process chain**
- ☐ Sustainable manufacturing must enable **sustainable value creation for all stakeholders**.

Sustainable Manufacturing: Revised Definition

Sustainable manufacturing at *product*, *process and* systems levels must:

- demonstrate reduced negative environmental impact,
- offer improved energy and resource efficiency,
- generate *minimum quantity of wastes*,
- provide operational safety, and
- offer improved personnel health

while maintaining and/or improving the *product and process quality* with the overall *life-cycle cost benefits*.

Source: Jawahir et al. (2014) and Jayal et al. (2010) – Adapted from US Department of Commerce (2009)

Sustainable Manufacturing: Basic Elements

Expectations:

- Reducing *energy consumption*
- Reducing waste
- Reducing *material utilization*
- Enhancing *product durability*
- Increasing *operational safety*
- Reducing toxic dispersion
- Reducing health hazards/Improving health conditions
- Consistently improving *manufacturing quality*
- Improving recycling, reuse and remanufacturing
- Maximizing sustainable sources of renewable energy

Integral Elements of Sustainable Manufacturing

Product Recovery as a Starting Point for Multi Life-cycle Products

Source: Jawahir and Bradley (2015)

From Circular Economy to Sustainable Value Creation

Overview of Existing Sustainability Measurement Systems (Cont.)

Comparison of the existing measurement systems

Product | Process | Facility | Corporation | Sector | Country | World
Application domain unit

Source: Feng et al. (2010)

Product and Process Metrics for Sustainable Manufacturing: NIST-sponsored Project (2010-14)

Project Title: Development of Metrics and Framework for Products and

Processes in Sustainable Manufacturing

Project Team:

Faculty: Dr. I.S. Jawahir, Dr. F. Badurdeen, Dr. O.W. Dillon, Dr. K. Rouch

Graduate Students: T. Lu, M. Shuaib, X. Zhang, A. Huang, C. Stovall

Sponsor:

NST

Industry partners:

TOYOTA

LEXMARK.

Project Objective:

To develop and implement tools and principles for quantitative evaluation of manufactured products and their manufacturing processes from the aspect of sustainable manufacturing

Product Sustainability Clusters

Example Metrics for Product Clusters and Life-cycle Stages

Metrics Clusters	Example Metrics	Unit (D/L dimensionless)	PM (pre- mfg.)	M (mfg.)	U (use)	PU (post- use)
Residues	Emissions Rate (carbon-dioxide, sulphuroxides, nitrous-oxides etc.)	mass/unit	√	√	\checkmark	√
Energy Hee and Efficiency	Remanufactured Product Energy	kWh/unit			$\sqrt{}$	√ √
Energy Use and Efficiency	Maintenance/ Repair Energy	kWh/unit			√	
Product End-of-Life Management	Design-for-Environment Expenditure	\$/\$ (D/L)		√		
Material Use and efficiency	Restricted Material Usage Rate	mass/unit				√
Water Use and Efficiency	Recycled Water Usage Rate	gallons/unit				√
Cost	Product Operational Cost	\$/unit			\checkmark	
Innovation	Average Disassembly Cost	\$/unit				√
Profitability	Profit	\$/unit		√		
Product Ovelity	Defective Products Loss	\$/unit		√		
Product Quality	Warranty Cost Ratio	\$/unit			V	
Education	Employee Training	Hours/unit	√	√		√
Customer	Repeat Customer Ratio	(D/L)		√	1	
Satisfaction	Post-Sale Service Effectiveness	(D/L)			V	
Product End-of-Life Management	Ease of Sustainable Product Disposal	\$/unit			V	
Product Safety	Product Processing Injury Rate	incidents/unit	√	√		√
and Societal Well-being	Landfill Reduction	mass/unit	√	√	1	√

Process Sustainability Elements

Source: Wanigarathne et al. (2004)

Process Sustainability Clusters and Sub-clusters

Process Sustainability Metrics

Environmental Impact	Energy Consumption	Cost
GHG emission from energy consumption of the	In-line energy consumption (kWh/unit)	Labor cost (\$/unit)
line (ton CO ₂ eq./unit)	Energy consumption on maintaining facility	Cost for use of energy (\$/unit)
Ratio of renewable energy used (%)	environment (kWh/unit)	Cost of consumables (\$/unit)
Total water consumption (ton/unit)	Energy consumption on transportation into/out of	Maintenance cost (\$/unit)
Mass of restricted disposals (kg/unit)	the line (kWh/unit)	Cost of by-product treatment (\$/unit)
Noise level outside the factory (dB)	Ratio of use of renewable energy (%)	Indirect labor cost (\$/unit)
Operator Safety	Personnel Health	Waste Management
Operator Safety Exposure to Corrosive/toxic chemicals	Personnel Health Chemical contamination of working environment	Waste Management Mass of disposed consumables (kg/unit)
		•
Exposure to Corrosive/toxic chemicals	Chemical contamination of working environment	Mass of disposed consumables (kg/unit)
Exposure to Corrosive/toxic chemicals (points/person)	Chemical contamination of working environment (mg/m³)	Mass of disposed consumables (kg/unit) Consumables reuse ratio (%)
Exposure to Corrosive/toxic chemicals (points/person) Exposure to high energy components	Chemical contamination of working environment (mg/m³) Mist/dust level (mg/m³)	Mass of disposed consumables (kg/unit) Consumables reuse ratio (%) Mass of mist generation (kg/unit)

Three-level Process Sustainability Metrics for Energy Consumption

ProdSI and **ProcSI** Evaluation

$$ProcSI = \frac{1}{6} \mathop{\mathring{o}}_{i=1}^{6} C_{i} = \frac{1}{6} \mathop{\mathring{c}}_{i}^{6} C_{1} + C_{2} + \frac{1}{5} \mathop{\mathring{o}}_{i=10}^{14} w_{i}^{sc} SC_{i} + \frac{1}{4} \mathop{\mathring{o}}_{i=15}^{18} w_{i}^{sc} SC_{i} + \frac{1}{3} \mathop{\mathring{o}}_{i=19}^{21} w_{i}^{sc} SC_{i} + \frac{1}{2} \mathop{\mathring{o}}_{i=22}^{23} w_{i}^{sc} SC_{i} \mathop{\mathring{o}}_{i=22}^{23} w_{i}^{sc} SC_{i} \mathop{\mathring{o}}_{i=1}^{23} w_{i}^{sc} S$$

$${}^{\mathbb{Z}}SC_n = \mathring{a} w_j^m M_j^{"} j$$

Examples of ProdSI and ProcSI

(b) ProcSI

Sustainability Improvement in Products and Processes

Case studies were conducted on three major manufactured products

Automotive Product

Aerospace Product

Consumer Product

Metrics Hierarchy – Products/Processes/Systems

Performance Measurement Framework

Triple Bottom Line Emphasis

- Economic impacts
- · Environmental impacts
- Societal impacts

6R Methodology

- Reduce •
- Remanufacture
- Reuse
- Redesign
- Recycle Recover

Total Life Cycle Focus

- · Pre-manufacturing
- Manufacturing
- Use
- Post-use

Sustainable Manufacturing Philosophy

System Metrics – Production Line Level

Production line: Example: Satellite Dish Production Line

Line-level Sustainability Evaluation

E	Cycle time
Economic Sustainability Evaluation	Changeover time
	Uptime
	Inventory

Ei	Raw material usage	
Environmental Sustainability Evaluation	Process water consumption	
	Process energy consumption	
	Transportation energy consumption	

Societal	Physical Load Index (PLI)
Sustainability	Noise
Evaluation	Risk Circle

Systems Metrics – Enterprise Level

Enterprise/Corporate Level

Sub-index	Clusters	Sample metrics		
	Internal business process	Indirect cost ratio Cash flow margin		
Economy	Financial perspective	Return on capital employed Financial robustness		
	Customer perspective	Order fill rate On-time delivery ratio		
	Learning & growth	Recovery cost Cost of recycling		
	Residues	GHG emission rate Solid emission rate		
Environment	Energy	Energy efficiency rate Renewable energy ratio		
	Resource (other than energy)	Restricted raw material usage Water usage rate		
	Anti-corruption Anti-competitive behavior index Employee awareness on anti-competitive			
	Supplier development and training/practices	Supplier compliance index supplier training intensity index		
	Employee development and trainning	Employee training intensity index Employee reward ratio		
Society	Customer satisfaction/awareness	Repeat customer ratio Product customization ratio		
	Community development	Local community hiring ratio Community contribution ratio		
	Diversity and equal opportunity	Diversity ratio Employees conflict ratio		
	Compliance and product responsibility	Product compliance ratio Compliance incidence rate		

Implementing Product and Process Sustainability Metrics

Limitations:

- Slow progress and limited effectiveness in implementing sustainable practices --- Lack of economic benefit studies, standards, or best practices
- No comprehensive tools and techniques for total life-cycle evaluation
- Complexity in measuring and quantifying sustainability in products and processes, and greater difficulty in evaluating at system/enterprise level

Outlook and Opportunities:

- Metrics-based sustainability evaluation of products, processes and systems offers an new opportunity for implementation in manufacturing
- Innovative methods for achieving improved resource efficiency (energy, materials, water, etc.) and end-of-life (EOL) management
- Improved manufacturing productivity and greater economic returns through sustainable value creation for all stakeholders

