

Nuclear Energy

Advanced Reactor Technologies– Instrumentation, Control, and Human-Machine Interface (ICHMI) Technology Area Overview

Richard Wood
Oak Ridge National Laboratory

Presented during

2015 Nuclear Energy I&C Review U.S. Department of Energy – Webinar October 28, 2015

Nuclear Energy

ICHMI Technology Area Focus is on Achieving Goals and Resolving Challenges for Advanced Reactors

- DOE-NE R&D Objective #2 [Develop improvements in the affordability of new reactors...] establishes the primary goal for ART ICHMI research
 - ICHMI is the equivalent of the central nervous system for nuclear power plant and contributes significantly to
 - Achieving cost-competitiveness
 - Ensuring safety
 - Enabling licensability for operation
- Advanced Reactor Concepts TRP Report lists some ICHMIrelated technical issues requiring resolution to establish an Advanced Reactor Licensing Framework
 - Multi-module control
 - Staffing of smaller units or modules
- ICHMI R&D specifically targets challenges associated with unique operational and process characteristics of advanced reactor concepts

DOE Established Advanced Reactor Technologies (ART) Program in FY15

Nuclear Energy

- Advanced Small Modular Reactors
- Advanced Reactor Concepts
- Next Generation Nuclear Plant

Advanced Reactor Technologies

ICHMI R&D Priorities Were Adapted for Transition from AdvSMR to ART

- Research priorities
 - Address technology gaps (e.g., sensors)
 - Resolve key technical and licensing issues

Sensors	^
O&M Efficiency/Staffing	•
Automation	•
Diagnostics/Prognostics	←→

- Key research targets [Observability and Operability]
 - Environment, architecture, and dependability for critical measurements and in-vessel monitoring
 - High-fidelity condition determination and incipient failure detection to support extended operation
 - Flexible, robust automation for non-traditional operation (multi-unit, integrated energy systems), including off-normal conditions and events
 - Optimized human resource utilization for safe and cost-effective operations and maintenance

Ten ART ICHMI Projects Continued in FY15

- Johnson Noise Thermometry for Drift-Free Temperature Measurements
- Key Technology Demonstration for Under Sodium Viewing (Waveguide Transducer Assembly)
- Under-Sodium Viewing (Submerged Transducer Assembly)
- Prototypic Prognostic Technique Demonstration for Advanced Reactor Passive Components
- Supervisory Control of Multi-Modular Advanced Reactor Plants
- Enhanced Risk Monitors with Integrated Equipment Condition Assessment
- Impact of Active Control on Passive Safety Characteristics of Advanced Reactors
- Modeling Tools for Dynamic Behavior Simulations of Advanced Reactors
- Operational Concepts for Advanced Reactors
- Framework for Human-Automation Collaboration

FY-15 ART ICHMI Accomplishments

- Johnson Noise Thermometry for Drift-free Temperature Measurements (AT-15OR230103)
 - Field demonstration at HFIR cooling pond completed and second compact JNT system prototype developed for offsite demonstration at SNL sCO2-Brayton Cycle loop
 - Demonstrated self-calibration capability in laboratory testing
- Key Technology Demonstration for Under Sodium Viewing (AT-15AN230101)
 - Integrated brush-type ultrasonic waveguide transducer (BUWT) and phased array (PA) techniques
 - Tested HT submergible ultrasonic transducer #1 in sodium with potential in-situ defect detection sensitivities of 0.5 mm in both width and depth
- Undersodium Viewing (AT-15PN230102)
 - Developed submersible, matrix phased-array, transmit-receive longitudinal (TRL)
 10x3(x2) engineering test unit (SN3) for testing and evaluation

FY-15 ART ICHMI Accomplishments (cont)

- Prototypic Prognostic Technique Demonstration for Advanced Reactor Passive Components (AT-15PN230104)
 - Developed component-level (Bayesian) prognostics health management framework for passive components
 - Conducted in-situ, real-time ultrasonic measurements of 316 SS under high-temperature (~650C) creep to investigate diagnostic and prognostic indicators for true-state characterization and remaining life assessment
- Supervisory Control of Multi-Modular Advanced Reactor Plants (AT-150R230202)
 - Developed deterministic decision-making tools and expanded capabilities of probabilistic decision algorithms
 - Developed component level decision-making capabilities based on complex fault trees
 - Established framework to combine insights from the probabilistic module (individual decision alternatives) with deterministic evaluations (i.e., plant status, diagnostics, simulation results, etc.)

FY-15 ART ICHMI Accomplishments (cont)

- Enhanced Risk Monitors with Integrated Equipment Condition Assessment (AT-15PN230105)
 - Demonstrated ERM capability to account for dynamically updated component conditions when computing safety and non-safety/economic risk metrics
- Impact of Active Control on Passive Safety Characteristics of Advanced Reactors (AT-15AN230201)
 - Evaluated safety consequences related to operator errors or control system failures (based on reference LMR) and assessed impact of enhanced passive safety characteristics (e.g., inherent feedbacks) for advanced SFR
 - Developed methodology for treating multiple control system failures and performed transient analysis to evaluate plant safety response

FY-15 ART ICHMI Accomplishments (cont)

- Modeling Tools for Dynamic Behavior Simulations of Advanced Reactors (AT-150R230203)
 - Completed multiple unit reactor architecture for ALMR concept and incorporated HTR modules into library
 - Advanced Reactor Modeling Tool interface capabilities established to support web-based collaboration
- Operational Concepts for Advanced Reactors (AT-15IN230204)
 - Developed Work Domain Analysis Methodology and completed example WDA for generic SFR
- Framework for Human-Automation Collaboration (AT-15IN230205)
 - Performed pilot studies on human-automation collaboration based on four defined scenarios, including faults to be injected, to represent different levels of automation

Future Targets for ICHMI R&D Emphasize Observability

- High-sensitivity, high-temperature fission chamber
- Gamma thermometer (in-core power)
- In-vessel flowmeter (e.g., ultrasonic)
- Optical measurement technology
- In-vessel integrity monitoring
- Prognostic sensors and in situ inspection/NDE techniques

Eight ART ICHMI Projects are Scheduled for FY16

- Johnson Noise Thermometry for Drift-Free Temperature Measurements
- Technology Demonstration for Under Sodium Viewing (Waveguide and Submerged Transducer Assembly)
- Technology Demonstration for Under-Sodium Viewing (Submerged Transducer Assembly)
- Measurement Technologies for Prognostic Indicators for Advanced Reactor Passive Components
- Supervisory Control of Multi-Modular Advanced Reactor Plants
- Enhanced Risk Monitors with Integrated Equipment Condition Assessment
- High Temperature Fission Chamber
- Sensor Technology Assessment for Advanced Reactors

Nuclear Energy

ICHMI Research Addresses Advanced Technology Development

- ICHMI research advances state of the technology for addressing critical ICHMI needs to ensure technology needs for Advanced Reactors are resolved
- ICHMI research priorities focus on Observability technologies for combined Advanced Reactor Technologies Program (Fast Reactors, High Temperature Reactors)
 - Emphasize gap resolution for Observability technologies [sensing, inspection and prognostics research]
 - Conclude Operability research focused on longer term, more generic issues
 - Identify future research targets to proceed with addressing technology gaps