DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Integrated biotechnology platform drives innovation, products, solutions

Goal Statement

Demonstrate the viability and commercial readiness of an integrated biorefinery for low cost production of 1,4-butanediol (BDO), from biomass—deliver the engineered strain and optimized fermentation process to enable the conversion of cellulosic sugars into BDO.

BDO is derived from fossil fuels
Genomatica has developed a glucose to BDO fermentation process

Biomass to BDO could conserve fossil fuels, reduce greenhouse gasses, and provide more flexible feedstock choices

Goal Statement

1: Improving the microbial conversion of cellulosic sugars to BDO.

To deliver commercially acceptable performance and enable scalable integrated biorefineries.

2: Characterizing and improving tolerance to cellulosic hydrolysate.

To deliver commercially acceptable performance and enable scalable integrated biorefineries.

3: Developing and optimizing a scalable fermentation process. Demonstrate the feasibility and scalability of integrated biorefineries.

Deliver strains and process for BDO from cellulosic sugars at titer ≥ 70 g/L, and productivity ≥ 2.0 g/L/hr at 30 L scale.

Goal Statement

Results: Surpassed targets for T & R; 90% of yield reached; need for comprehensive approach to biomass-to-BDO; developed improved strains, hydrolysate specification, BDO recovery, and economic models.

Quad Chart Overview

Timeline

Start: August 2011

Stage gate: 2013

End: 1 March 2015 (ext from 9/14)

Budget

	Total Costs FY 10 –FY 12	FY 13 Costs	FY 14 Costs	FY 15 Costs	Total Funding	
DOE Funded	853,505	1,259,230	1,938,473	947,908	4,999,116	
Project Cost Share (Comp.)	293,400	432,872	442,933	418,329	1,587,534	

Barriers

Barriers addressed

- Consistency, quality, and concentration of cellulosic sugars in hydrolysates.
- Glucose Xylose Arabinose co-utilization
- BDO T-R-Y metrics in hydrolysates vs. refined sugar
- DSP improvements for economics

Partners

- Biochemtex
 - Suppliers of PROESATM hydrolyates, have worked with Genomatica to reach a specification
 - Biweekly or more frequent consultation with Chemtex staff
- API
 - Supplied API AVAP® hydrolysate
- Other Hz suppliers (OTFF, et al.)
- DOE
 - Worked with DOE officer to manage grant and coordinate changes as needed

1 - Project Overview: Biomass-to-BDO Process Using Lignocellulosic Sugars

Biomass-to-EtOH

Biomass-to-BDO requires:

- 1. Pretreatment modifications to produce cleaner, concentrated sugars
- 2. Process design and economic models for total sugar costs
- 3. BDO recovery modifications to produce high quality BDO from biomass

Fermentation development/

scale-up

LIMS

composition/economics with BDO

recovery process economics

- Titer (g BDO/L), Rate (g BDO/L/hr), and Yield (g BDO/ g Sugars) sufficient for commercialization based on TEA
- C-6 & C-5 sugar co-utilization; complete depletion of fermentable sugars
- T-R-Y in cellulosic hydrolysates
- Composition of hydrolysate ([sugar], other 'impurities', inhibitors,
 )
- BDO process for entire process (including recovery)
- Leverage existing knowledge on building BDO producing E. coli
- Evolution + directed changes + 'omics to achieve sugar co-utilization and high T-R-Y
- Milestones for each technical metric

for commercialization based on TEA

- C-6 & C-5 sugar co-utilization; complete depletion of fermentable sugars
- T-R-Y in cellulosic hydrolysates
- Composition of hydrolysate ([sugar], other 'impurities', inhibitors,)
- BDO process for entire process (including recovery)
- Leverage existing knowledge on building BDO producing E. coli
- Evolution + directed changes + 'omics to achieve sugar co-utilization and high T-R-Y
- Milestones for each technical metric

- Leverage existing knowledge on building BDO producing E. coli
- Evolution + directed changes + 'omics to achieve sugar co-utilization and high T-R-Y
- Milestones for each technical metric

Communication: Worked closely with DOE project managers and DOE/NREL Validation Team to refine and direct project.

Project modified; both Genomatica and DOE

Biomass-to-BDO Approach

Biomass
Pretreatment

BDO
Fermentation

BDO
Recovery

- Remove suspended solids
- 2. Concentrate sugars
- Reduce soluble impurities

Focus:

- Simultaneous C5/C6 sugar utilization
- 2. Increase organism hydrolysate tolerance
- Hit Titer, Rate, and Yield (TRY) targets

Understand
 economic impact of
 increased impurity
 load on DSP

Adaptive evolution + genomic re-sequencing for sugar co-utilization.

13C flux analysis + metabolomics to ID metabolic constraints limiting performance.

Consider the entire process to develop one that is commercially viable

Technical overview

First 2 years, BP-1

- Biochemtex hydrolysate testing and optimization
- Process optimization
- Evolve to C-5 + C-6 sugar co-utilization, ID genes via NGS and introduce into clean background
- Optimize sugar transport efficiency

Final year, BP-2

- Optimize redox, energy, yield, and pathway gene expression for biomass use
- Lignocellulosic hydrolysate specification based on fermentation and DSP
- Optimized strain + improved hydrolysate
- Improved DSP for more economical BDO recovery

Evolved and re-capitulated for glucose + xylose coutilization

Evolved for xylose – glucose co-utilization; ID'd allele responsible

- XUM (xylose utilizing mutant) co-utilizes xylose and glucose
- Then modified for arabinose uptake.

Result: Efficient co-utilization of all 3 sugars during fermentation.

BDO strains have reduced diauxie vs. wt (orange)
Still accumulate other sugars when glucose is present

Intermediate (2 yr) DOE/NREL validation visit, XUM biomass strain vs. original benchmark strain, hydrolysate

 Intermediate XUM ara-using biomass strain vs. original benchmark in Chemtex lot 014.2

> 2 L & 30 L fermentations; Intermediate XUM, arausing, same hydrolysate for both 2 & 30 L

Benchmark

BDO Production using a different feedstock & pretreatment

- Hydrolysate samples via acid pretreatment of wood
- Very clean, high sugar concentration
- Same strain on less clean hydrolysate
- Earlier (original benchmark strain) on less clean hydrolysate

Different responses to different hydrolysates

Motivation:

- Variation from BDO producing E. coli to the many non-sugar components of lignocellulosic hydrolysates
 - Multiple responses have been observed with varying pretreatments
- Identify evolution/engineering targets for improving performance in hydrolysate

	Exp 1225	Exp1263	Exp1376	Exp1413
Strain	ECKh7-9	ECKh7-0	ECKh7-9	ECKh7-9, ECKh7-5
Hydrolysate	Supplier A, lot 1	Supplier A, lot 1.2	Synthetic sugar mix + added organic acids feed	Supplier B, lot 1
Feedstock & Pretreatment	Agricultural waste Proprietary	Agricultural waste Proprietary	Reagent grade sugars	Wood Pulp & Paper
Omics	Transcriptomics , metabolomics	Transcriptomics, metabolomics	Transcriptomics	Transcriptomics, metabolomics, proteomics

Lignocellulosic hydrolysates from various suppliers (differing pretreatments)

Acid pretreatment, hardwood, XUM strain, earlier

OTFF concentrated 1.3X Latest XUM strain

OTFF unconcentrated Latest XUM strain.

Dilute Acid supplier# 1 Latest XUM strain Dilute Acid supplier# 2 Latest XUM strain

Elapsed Time(h)

Lignocellulosic Hydrolysates from multiple suppliers

Acid Pretreatment, Hardwood

Very high [sugar], very clean, OLDER strain

OTFF (RSA): Pulp & Paper 'unconcentrated' and 1.3 X by Rotovap

Performance limited by sugar concentration + furfural/HMF response (omics studies)

2 suppliers using dilute acid pretreatments:

Performed as expected based on conductivity of the feed

1,4-BDO Production with API-AVAP® Biomass Hydrolysate (agricultural residue)

DOE/NREL final validation

- 30 L scale fermentation w/API AVAP® hydrolysate
- 2 L were run in parallel, similar results
- Biomass-to-BDO strain, Latest XUM strain
- Co-utilized glucose and xylose, both depleted:
 - Glucose >99%
 - Xylose 96%
- Process optimization sped up run, finishing in <40 hrs
- Titer (122 g/L), Rate (3.1 g/L/hr) well above proposed targets (70, 2.5); yield, lower than target.

Complete Process Technology for Bio-BDO®

Complete Process Technology for Bio-BDO®

Relevance and Summary

Relevance

- Increases potential feedstock choices for BDO
- Geographic flexibility
- Lessons on strain design, process design, BDO recovery

Summary

- Range of biomass-to-BDO strains suitable for multiple biomass sources (feedstocks, pretreatments, ...)
 - C5/C6 co-utilization
 - Genes to perform better in certain hydrolysates
 - Improved yield genotypes
- Improved understanding of strain genotypes vs. cellulosic hydrolysates
- Evidence that biomass-to-BDO could be a commercial process
- More economical BDO recovery
- Built economic models to progress potential commercialization

Acknowledgments

our core purpose

Lead the irresistible transition to sustainable materials through our technology and, united with industry leaders, make our world a better place.

our core values

we are real

Results count. Commitments count. Integrity and honesty are absolutes.

we are innovative

We invent, experiment and create across our entire business. We seek out and embrace differences, to help us think differently.

we are united

We work better together. Shared mission. Shared accountability. Shared learning. Shared success.

we are relentless

We don't give up. We strive for excellence. Our passion flows from our shared vision.

Publications, Presentations, and Commercialization

- Barton, Nelson (VP, R&D, Genomatica) Biomass 2012, 11 12 July 2012, Wash., DC http://www1.eere.energy.gov/biomass/pdfs/bio2012_final_agenda.pdf
- Trawick, John D. (Research Fellow, Genomatica) 2013 SBFC meeting (2 May 2013) http://sim.confex.com/sim/35th/webprogram/Session2437.html
- Trawick, John D. (Research Fellow, Genomatica) 2014 SBFC meeting (29 April 2014)
 http://sim.confex.com/sim/36th/webprogram/Paper26489.html
- Trawick, John D. (Research Fellow, Genomatica) Biomass 2014 (30 July 2014)
 http://www.energy.gov/eere/bioenergy/biomass-2014-growing-future-bioeconomy-agenda

Responses to Previous Reviewers' Comments

• N/A.

Note: This slide is for the use of the Peer Review evaluation only – it is not to be presented as part of your oral presentation, but can be referenced during the Q&A session if appropriate. These additional slides will be included in the copy of your presentation that will be made available to the Reviewers and to the public.

