

Roll-to-Roll Processing for Solution Processed OLED Devices

Joanne Wilson, Pit Teunissen, Ton van Mol, Juliane Tripathi, Hylke Akkerman, Sandeep Unnikrishnan, Ike de Vries, Eric Rubingh, Robert Abbel, <u>Pim Groen</u>

10,000 €/m²
Rigid glass
40-60 % material loss
Vacuum/litho processes
Rare materials
Glass encapsulation

Flexible substrates
<5% material loss

Direct printing processes

Mainstream materials

Thin-film encapsulation

© Holst Centre OLED Processing 4

R2R Printing & Coating technology Why?

Printing/casting preferred over lithographic patterning

- easier for large scale processing
- fine features/patterning without complicated masks
- higher materials utilisation → lower cost

Topics:

- √ S2S up scalable to R2R
- Multilayer coating
- ✓ Patterning & alignment
- ✓ Prevention of contamination yield control

Summary: Schematic of R2R solution processed OLED (ITO free)

3. Shunting cathode OLEDs by IJP

2. Large area coating

1. Printing and sintering of silver grids (anode)

1. Printing & Sintering

Printing silver: Ink jet – Screen printing

- Baseline Process: Thermal Sintering in furnace at high temperatures (30 min./>150 °C)
 - Limited to T_g of polymer foils
 - Slow and inefficient process
 - In R2R line with 6 m/min a furnace of 60 m needed
- Photonic Flash Sintering

Photonic sintering principle

The principle of photonic sintering is the selective heating of the ink

Lamps are chosen such that the light is mainly absorbed in the printed structures, not

substrate

Achievements:

- Sintering time reduced from minutes to few seconds!

Optimized Flash sintering

.....

......

.....

Extended to 5 print heads

2. Large area coating (using solution processing)

Holst Centre's Approaches:

- **0) Spin coating:** simple, no patterning
- 1) Ink-jet printing: non-contact, patterning is easy
 - Homogeneity over large areas needs to be investigated
- 2) Slot-die coating: non-contact, large area blanket coating
 - **Pattering:** via laser ablation or selective wetting/dewetting or stripe coating and **intermittant coating**

Slot die casting at Holst

- -Pattering !!!
- -R2R atmosphere control
- -Yield

Integration at Holst Centre

Patterning slot die

Intermittent coating with slot-die

Stripe Coating

■133

OLEDs: Large area slot die coated flexible demonstrators

- Slot-die coated layers of 100 30 nm with thickness variation only ± 2 nm
- Sequential coating of up to 3 organic layers on plastic and metal foil proven

Roll-to-roll multilayer coating of OLEDs

Roll-to-roll multilayer solution coated OLEDs on flexible metal foil

Homogeneity 60% @ 1000 cd/m² mostly limited by transparent electrode conductivity

8 cm x 8 cm devices with performance not far from smaller sheet-to-sheet processed OLEDs

Holst Centre multicoat (2 x slot coating) pilot production line

- Unique concept where web is never touched on topside essential for Oled production.
- Concept makes very efficient use of cleanroom space.
- Slot die coating in controlled atmosphere (all coating and drying in Nitrogen environment if needed).
- Closed furnace (class 10 + < 10 ppm O₂/H₂O)

Multicoat R2R line

Summary: Schematic of R2R solution processed OLED (ITO free)

3. Shunting cathode OLEDs by IJP

2. Large area coating

1. Printing and sintering of silver grids (anode)

4. R2R Barrier

3. IJP grid to improve transparent electrode conductivity

Device size 80 x 80 mm2

Without shunting lines:

Inhomogeneous due to limited conductivity of transparent cathode

With ink jet printed shunting lines:

Less inhomogeneous due to shunt lines

4. Barrier Requirements Organic Electronics

22

S2S Thin Film Barrier Technology @ Holst Centre

Holst Centre barrier fundamentals:

- Multilayer thin film barrier
 - PECVD SiN organic coating PECVD SiN
- Inorganic layer (PECVD SiN)
 - real barrier with WVTR < 10⁻⁶ g/m²/day
 - full coverage of cathode
- Organic layer
 - decouple pinholes
- Only 3 layers to keep costs low
- Transparent:
 - suitable for top-emission or bottomemission OI FDs
- Validation done on real OLEDs against product spec:
 - Black spot analysis in accelerated shelf lifetime test (60°C/90% RH)

4 R2R barrier film

- WVTR of the single SiN sampled over 350m length at 60°C and 90%RH for 20 days : Overall WVTR = $(5\pm1)\cdot10^{-5}$ g/m²day
- 450 m/day
- Full barrier stack R2R processed (OCP-SiN-OCP-SiN)

Integration Light Touch Matters

Smart placemat to improve people's diet

Wristband for reminders and feedback

Force-sensitive grip for expressing anxiety

Intuitive interface for Emergency defibrilator

Conclusion

Lighting based on printing/ coating technologies

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 281027 and 310311

