2014 DOE/OE Energy Storage Systems Program Peer Review September 17-19 2014

> Loïc Gaillac Advanced Energy Storage Group Manager Advanced Technology Southern California Edison

Southern California Edison

2

Calaveras Co.

SCE Advanced Technology Focus

- Implementing government policies and regulations and improving current utility operations
- Enabling customer adoption of new energy technologies
- Acquiring a deep understanding of the performance and controls of distributed resources
- Investing in next generation infrastructure to enable utilities to be the "optimizer" of distributed resources

Project Objectives

- Test Battery Energy Storage System as a system reliability and/or market driven device
 - Demonstrate the performance of a lithium-ion Battery Energy Storage System (BESS) for 13 specific operational uses, both individually and bundled
 - Share data and results with CAISO, CEC, CPUC, DOE, and other interested parties
 - Assist in the integration of large-scale variable energy resources
- Integrate battery storage technology into SCE's grid
 - Test and demonstrate smart inverter technology
 - Assess performance and life cycle of grid-connected lithium-ion BESS
 - Expand expertise in energy storage technologies and operations

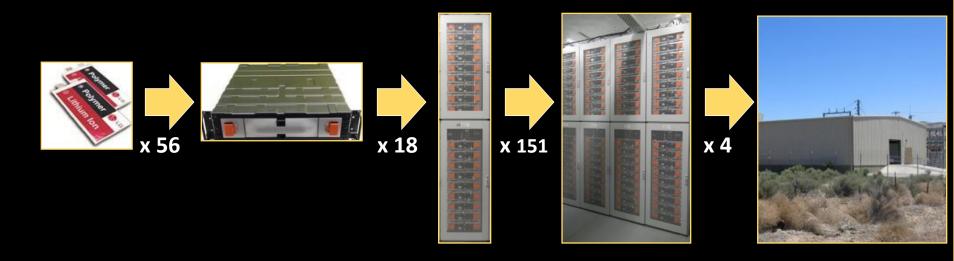
Tehachapi Storage Project (TSP) Facility

BESS facility at Monolith Substation

- Located in the Tehachapi area, California's largest wind resource
- Massive wind development potential (up to 4,500MW) driving grid infrastructure
- Installed at SCE's Monolith Substation
- 6,300 ft² building
- Connected at subtransmission level through a 12/66kV transformer

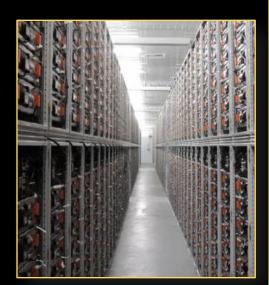
TSP Layout

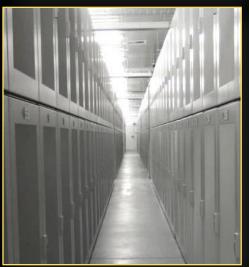
02/09/2010 – Project Started 10/13/2010 – DOE Contract Signed 02/28/2011 – Original Vendor Contract Signed 10/16/2012 – Original Vendor Filled for Bankruptcy 03/27/2013 – New Vendor Contract Signed 07/18/2014 – System Commissioning/Acceptance Completed


System Specifications

- Battery Storage System
 - Li-Ion
 - Manufactured by LG Chem.
 - 32MWh usable
- Power Conversion System
 - 9MVA
 - 12kV connected
 - Manufactured by ABB

System Configuration How to get 32MWh from 60Wh battery cells?




	Cell	Module	Rack	Section	System
Quantity	609 k	10,872	604	4	1
Voltage	3.7 V	52 V	930 V	930 V	930 V
Energy	60 Wh	3.2 kWh	58 kWh	8.7 MWh	32 MWh
Weight	380 g	40 kg	950 kg	N/A	N/A

13 Operational Uses

- Transmission
 - Provide voltage support/grid stabilization
 - Decrease transmission losses
 - Diminish congestion
 - Increase system reliability
 - Defer transmission investment
 - Enhance value and effectiveness of renewable energy-related transmission
- System
 - Provide system capacity/resource adequacy
 - Integrate renewable energy (smoothing)
 - Shift wind generation output
- Market
 - Frequency signal/response
 - Spin/non-spin/replacement reserves
 - Ramp management
 - Energy price arbitrage

8 Core Tests

- 1) Provide steady state voltage regulation and dynamic voltage support at the local 66 kV bus
- Perform Test 1 while operating under any mode and performing real power injection/absorption required under such mode
- 3) Charge during periods of high line loading and discharge during low line loading under SCE system operator control
- 4) Charge during off-peak periods and discharge during onpeak periods under SCE system operator control
- 5) Charge and discharge seconds-to-minutes as needed to firm and shape intermittent generation in response to a real-time signal
- 6) Respond to CAISO control signals to provide frequency regulation
- 7) Respond to CAISO market awards to provide energy and spin/non-spin reserves
- 8) Follow a CAISO market signal for energy price

Deployment Challenges

Challenges	Resolutions
Construction & Site Constraints	 Made scheduling a priority; deliveries, tasks, crew sizes, and trash disposal
Insects and Rodents	 Installed extra door seals Installed traps Installed sonic repellers
Wind Advisory Mind Advisory As of 10:09 PM PDT on October 8, 2013 Wind Advisory now in effect until 9 PM PDT Wednesday * winds and timing local southwest winds 25 to 35 mph with gusts up to 50 mph will expand across the area through early Wednesday morning. Local gusts up to 60 mph are possible	 Checked weather forecasts daily and scheduled travel, construction crews, & tasks accordingly

Deployment Challenges (cont.)

Challenges	Resolutions
<text></text>	 Managed project onsite, real-time, in- person Communicated continually across teams Implemented additional training, quality inspections and checks
Number and Breadth of Stakeholders	 Continued constant stakeholder engagement and collaborative efforts
Complexity of Interconnection Process	 Remained flexible, engaged, & supportive

System Validation Challenges

- Large energy storage systems are modular
 - Comprised of AC and DC subsystems
 - Scaled by adding additional components in series/parallel
 - Multiple manufacturers
 - Requires integration
 - Increased likelihood of problems
- Utilities need to assess safety and reliability prior to field deployment
- Issues with testing large systems in the field
 - Grid/personnel safety
 - Geographic distance
 - Need to exchange significant power at will
 - Hardware/firmware/software problems can take many months to solve

System Validation Approach: Mini-System Lab Testing

Mini-System enables subscale testing in the lab before full-scale operation of the BESS at Monolith Substation

	Mini-System	Full System
Footprint	77 ft ²	6300 ft ² building
Power	30 kW	8 MW
Energy	116 kWh	32 MWh
Power Conversion System	One Mini- Cabinet	Two 40-foot containers
Sections	1	4
Banks	1	32
Racks	2	604
Modules	36	10,872
Cells	2,016	608,832

Mini-System for Subscale Testing

Mini-System Testing Key Findings

Key Findings	Benefits
Discovered and resolved critical operation aspects regarding the battery system and PCS	Enabled operational aspects to be resolved quickly
Several iterations of software/firmware upgrades were required	Significant time and resources saved due to upgrades performed in the lab at subscale level versus full-scale at remote substation location
24/7 operation for more than 4 months prior to full system commissioning yielded feedback to implement many additional functional upgrades	System operation and features have been enhanced (optimized control algorithms & graphic user interface)

Pre-Operation Challenges

Challenges	Resolutions
System integration between all components; Sub-components may be mature but system integration is not	Assess safety and reliability prior to field deployment
System Acceptance Testing (SAT) is impractical on site	 Introduced multi-step Acceptance Testing based on lab evaluation of: Communication system by SCE IT group PCS controller on the RTDS (Real Time Digital Simulator) Mini-system
 Framework around control ownership in a non-vertically-integrated utility: Generator controlled by Power Supply Group Grid reliability asset controlled by Grid Control Center Shared optimized asset 	Engage stakeholders and identify requirements to be completed for (inter)connection and deployment

Initial Operation

Final Thoughts

- Installation, deployment and initial operation of large-scale ESS has:
 - Provided key learning to facilitate future deployments
 - Demonstrated the benefits of Mini-System testing
- Close collaboration between utility and turnkey system provider has accelerated lessons learned

Questions?

