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Executive summary

This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast
Improvement Project (WFIP)--Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year
effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric
Administration (NOAA), focused on improving short-term (15-minute — 6 hour) wind power production
forecasts through the deployment of an enhanced observation network of surface and remote sensing
instrumentation and the use of a state-of-the-art forecast modeling system. WFIP encompassed two regions in
the central U.S.: 1) the Northern Study Area (NSA), covering parts North and South Dakota, Minnesota,
Nebraska, lowa, and Wisconsin, and 2) the Southern Study Area (SSA), encompassing most of Texas.
WindLogics led the NSA, effort while AWST directed the SSA campaign.

The key objectives of WFIP were to:

1. Assemble a top-notch team of private, government, and academic partners with collective
experience and expertise in all facets required to ensure a successful completion of the
proposed two-year project.

2. Select a region of interest (ROI), in this case geographically centered on the Electric Reliability
Council Of Texas (ERCOT), that contains a sufficient number of wind farms and characteristic
weather phenomena that enables transfer of the resulting work to other regions of the U.S.

3. Design and execute a targeted observation campaign, in consultation with DOE AND NOAA, to
facilitate deployment of an enhanced network of existing and newly deployed surface and
remote sensing observation platforms that will successfully capture the spectrum of
representative spatial and temporal phenomena that principally influence the short-term
operation of wind power production.

4. Using a diverse approach of individual model, statistical, ensemble-based approaches, and
improved data assimilation systems, determine the value of additional atmospheric
observations on wind power production forecasts leading to improvements in forecasting the
timing, magnitude, and persistence of wind ramp events.

5. Develop improved economic metrics to demonstrate cost savings for utilities and operators
from improved short-term (0 — 6 hour) wind power forecasts.

6. Based on improved short-term (0- to 6-hour) wind power forecasts, demonstrate how applied
forecast performance metrics better reflect the manner in which operators and other wind
forecast users are sensitive to wind power production forecast errors on electric power
systems.

7. Disseminate project results to interested stakeholders, and define the necessary spatial and
temporal characteristics of a nation-wide mesonet observation system devoted to wind energy
applications.

There were three key attributes that formed the core foundation for WFIP: 1) the field deployment and data
dissemination schemes; 2) the tailored forecast model systems; and 3) the economic evaluation. These
qualities set WFIP apart from most classic field and modeling studies — an emphasis on determining the
guantitative value of deploying additional instrumentation assimilated by an improved wind power production
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forecast system and how those savings may be shared among the beneficiaries (that is, utilities, ISOs, wind
generators, and rate payers).

The AWST SSA team included the Electric Reliability Council of Texas (ERCOT): the Balancing Authority (BA)
responsible for managing much of the electrical grid in Texas, three private companies: AWST, MESO, and ICF
International; three academic institutions: North Carolina State University, the University of Oklahoma (OU)
Center for Analysis and Prediction of Storms (CAPS), and Texas Tech University (TTU); and the National
Renewable Energy Laboratory (NREL).

Work on the SSA campaign began in November 2010 with a modeling sensitivity study performed by AWST to
determine the best locations for the WFIP enhanced observation network (composed of surface
meteorological, tall tower, and remote sensing platforms, assets contributed by DOE, NOAA, AWST, TTU, and
NCSU). Instrument deployment occurred during July 2011, and all WFIP SSA instruments were operational by
17 July 2011. The official field and modeling campaign was conducted from 26 August 2011 through 13
September 2012.

The WFIP SSA modeling systems included

1. The AWST WFIP Forecast System (WFIPFS) composed of a 9-member ensemble of three different
numerical weather prediction (NWP) models incorporating a variety of data assimilation and model
physics schemes. Real-time forecasts were produced for the entire 1-year campaign, and a variety
of sensitivity studies were performed;

2. The OU CAPS Advanced Regional Prediction System (ARPS) which produced real-time 3-km grid
scale forecasts for the entire field and modeling campaign with enhanced vertical resolution
covering the WFIP domain and adjacent portions of neighboring states; and

3. The TTU Weather Research and Forecast (WRF) system that performed several data assimilation
sensitivity studies during select periods of the field and modeling campaign.

ICF International and NREL conducted a comprehensive economic analysis of the value of WFIPFS forecasts
and assimilated observations. The study used the results of the pre-WFIP Baseline and WFIPFS power
production forecasts as applied to operational ERCOT market rules to determine the system benefits savings,
reduction in curtailment costs and load payments, and ancillary costs savings (the Non-Spinning Reserve
Service, or NSRS).

DOE, however, has decided to undertake additional studies to explore the complex interactions between wind
forecasting and power system operations prior to publication of the economic analysis results. The initial
work performed by the WFIP teams provided important insight into the benefits and shortcomings of various
power system assumptions, market designs, and modeling tools in identifying costs and savings. The desire to
explore these important issues in more detail is the impetus for the new analysis. Over the next year, DOE
plans to engage with industry experts, grid operators and economic modelers to accurately define
methodologies that provide quantification of total financial savings and other ancillary benefits of improved
short-term wind power production forecasts

For the SSA, a highly successful field deployment and data acquisition operations produced well over 90% data
recovery during real-time operations. The yearlong field campaign captured an excellent set of observations
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depicting the phenomena responsible for the characteristic weather and spectrum of ramp events typical of
the ERCOT domain. This data set should prove invaluable for future post-WFIP analysis and atmospheric
boundary layer studies.

Key findings from the SSA modeling and forecast effort include:

1. The AWST WFIP modeling system produced an overall 10 — 20% improvement in wind power
production forecasts over the existing Baseline system, especially during the first three forecast
hours;

2. Improvements in ramp forecast skill, particularly for larger up and down ramps;

3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the
experimental network instrumentation; however, ramp forecasts showed significant benefit from
the additional observations, indicating that the enhanced observations were key to the model
systems’ ability to capture phenomena responsible for producing large short-term excursions in
power production;

4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small
impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model
resolution in the boundary layer had a greater impact, also in the first 5 hours; and

5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF)
provided better forecasts, and the additional observations resulted in some improvement to the
forecasts in the first 1 — 3 hours.

The results summarized briefly here and presented more in-depth in the following chapters have been
disseminated, in preliminary form, at several conferences and workshops (see Appendix B - Conferences,
Workshops, and User Group Meetings) and at two special User Group meetings held in conjunction with the
Utility Variable Integration Group meetings in Tucson AZ (9 February 2012) and at Salt Lake City UT (27
February 2013).

There is still opportunity for significant improvement, and better understanding (and therefore better
parameterizations or better model physics) of the phenomena that drive the wind and large changes (i.e. ramp
events) in the wind field. In particular, follow on efforts should include:

1. More comprehensive economic analysis inclusive of all forecasting time scales and indirect cost
savings;

2. ldentification of the ultimate recipients of economic benefits;

Additional, more extensive analysis of phenomena responsible for ramp events/outliers;

4. Further analysis of the forecast model performance, including

a. A more in-depth study of the enhanced observation network value, through data denial efforts
focused on particular phenomena and the largest ramp events;

b. An inter-comparison of the data denial experiments for the Northern and Southern Study Areas
that further quantifies the advantages of having a denser network of remote sensing
instrumentation;

c. Aregime-based analysis (i.e. cold season versus warm season);

w
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5. Additional sensitivity experiments to determine how the different components of the WFIP system
contributed to more accurate forecasts, in terms of overall improvement, regime-based performance,
and selected ramp events.
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1 Introduction

Wind energy is a fast-growing source of electrical power in many countries, and it currently supplies around
3% of the world’s generating capacity.! Wind is also playing an important role in weaning the world’s
economies off of non-renewable energy sources that contribute to environmental degradation. With growing
concerns regarding climate change, reductions in cost of energy, and state policy initiatives such as Renewable
Portfolio Standards (RPS)?, a rapidly expanding fleet of utility-scale wind power facilities is now being
incorporated into the grid. As of 2012, nine states obtain more than 10% of their electricity from wind energy
(AWEA 2013). The number of transmission-connected systems above 20 MW in size is expected to increase
dramatically, which will affect electric power system planning and operations processes. Also, there is
increasing interaction between the distribution and transmission systems with the advent of demand-side
strategies, electric vehicles, and more affordable storage.

Unlike conventional energy generation, the ability to accept wind power into electric power systems is
dependent upon calculations using atmospheric observations and wind forecasts. In the event that power
generation from wind does not meet projections, electric power system Balancing Authorities (BAs) are
required to have sufficient energy reserves. As a result, BAs are proposing new rules, charges, and penalties
on wind energy suppliers for not meeting energy generation projections. Several industry investigations (e.g.
Fabbri et al. 2005; Cardell and Anderson 2009) have estimated that substantial savings in annual system
production costs can be achieved with improved wind forecasting accuracy, particularly if predicting the
magnitude and timing of ramp® events in the 0 to 6 hour range can be improved.

A natural response to the increasing amounts of wind energy being integrated into local and regional grids has
been Independent System Operator (ISO) and utility requirements mandating forecast systems. However, with
wind now poised to become a major source of power for the U.S. (DOE 2008; DOE 2013), its inherent
variability combined with system loads drawing more power from wind requires further improvements in
forecasting, especially on the short (0-6 hour) time scales critical for system reliability and economic dispatch.
This is a priority for the utilities, balancing authorities, and other market regulators, as the uncertainty of
variable generation forecasts is still a major obstacle for many users (Makarov et al. 2010).

The first computer models devoted to wind power forecasting were developed during the 1980s, an
outgrowth of a Pacific Northwest National Laboratory (PNNL) working group (Wendell et al. 1978; Bossanyi
1985). Throughout the 1990s, a variety of statistical approaches were employed.* In 1999, eWind™, the
predecessor of the forecasting system used in the Wind Forecasting Improvement Project (WFIP) Southern
Study Area (SSA), was developed by AWS Truepower (AWST). In the early 2000s, the California Independent
System Operator (CAISO) developed a centralized wind power forecasting system (Makarov et al. 2002). Since

'see http://www.gwec.net/global-figures/wind-in-numbers/

2 Thirty-seven states now have mandatory or voluntary RPS programs. See http://www.cleanenergystates.org/projects/state-
federal-rps-collaborative/state-rps-annual-reports-and-compliance-reports-beta/

A ramp is generically defined as an excursion of power production of some magnitude in a specified time frame.

*See Argonne (2009) for a thorough review of the history of wind and wind power forecasting.
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then, a large number of ISOs, utilities, and balancing authorities have deployed wind power forecasting
systems (WPFS). And with deeper penetration of wind energy, forecasting the wind is ever more critical for
developing and managing the modern electrical grid.

In response to this need, in 2010 the U.S. Department of Energy (DOE) put forth a solicitation: Enhancing Short
Term Wind Energy Forecasting For Improved Utility Operations. This is now known as WFIP, a multi-year,
DOE/National Oceanographic and Atmospheric Administration (NOAA) sponsored study whose main purpose
is to demonstrate the value of additional atmospheric observations and model enhancements for improving 0-
to 6-hour wind energy production forecasts. AWST and its partners were selected as one of two teams to
develop and carry out a comprehensive field deployment and modeling exercise to fulfill the goals of WFIP.
The AWST Team, which performed work for the Southern Study Area (SSA) centered in Texas, is composed of
1) the Electric Reliability Council of Texas (ERCOT), the Balancing Authority (BA) partner); 2) MESO, Inc.; 3) the
University of Oklahoma Center for Analysis and Prediction of Storms (CAPS); 4) Texas Tech University (TTU); 5)
North Carolina State University (NCSU); 6) ICF International; and 7) the National Renewable Energy Laboratory
(NREL).

The key objectives for the WFIP SSA team were to

1. Assemble a top-notch team of private, government, and academic partners with collective
experience and expertise in all facets required to ensure a successful completion of the proposed
multi-year effort.

2. Select a region of interest (ROI), in this case geographically encompassing ERCOT, that contains a
sufficient number of wind farms and characteristic weather phenomena that facilitates transfer of
the resulting work to other regions of the U.S.

3. Inconjunction with NOAA and DOE, design and execute a targeted observation campaign using a
network of existing and newly deployed surface and remote sensing observation platforms to
successfully capture the spectrum of representative spatial and temporal phenomena that
principally influence the short-term operation of wind power production.

4. Use a diverse approach of individual model, statistical, and ensemble-based approaches, and
improved data assimilation systems, to determine the impact of additional atmospheric
observations on wind power production forecasts that lead to improvements in forecasting the
timing, magnitude, and persistence of wind ramp events.

5. Develop improved economic metrics to demonstrate cost savings for utilities and operators from
improved short-term (0 — 6 hour) wind power forecasts.

6. Demonstrate how existing and improved economic and new forecast performance metrics better
reflect the manner in which operators and other wind forecast users are sensitive to wind power
production forecast errors on electric power systems.

7. Disseminate project findings to interested stakeholders, and define the necessary spatial and
temporal characteristics of a nation-wide mesonet observation system devoted to wind energy
applications.

WEFIP is the first nationally sponsored project to specifically focus on improvements to short-term wind power
production forecasts, leveraging state-of-the-art forecast models, high resolution remote sensing and surface
observation observations, and sophisticated economic models to capture the hourly cost savings resulting

from improved power production forecasts. It is a large-scale experiment designed to test various methods of

DE- EE0004420



WFIP South Final Report - Page 7

improving short-term forecasts, including rapid-update-cycle forecasts, ensembles of forecasts, and dedicated
observational networks. Furthermore, forecasting systems until now have not aimed specifically at forecasting
ramps on short time scales to improve system reliability, but instead have emphasized general forecast
performance metrics such as mean absolute error (MAE), with focus on next-day plant scheduling. Here,
tailored metrics were applied (such as the Critical Success Index and Ranked Probability Skill Score; see Section
5) to provide appropriate performance statistics on the short-term (0 — 6 hr) forecast windows.

Although the SSA forecasting and observational work focuses on a geographical area covering western and
central Texas, the results, techniques developed, and lessons learned from this study should be of value to
utilities, 1SOs, and Transmission System Operators (TSOs) in other regions interested in investing in or
improving short-term wind power forecasting. To disseminate the information gained and lessons learned
from WFIP, a Users Group was formed consisting of selected utilities, TSOs, and ISOs who are already engaged
in or contemplating wind forecasting operations and have a strong interest in reviewing the progress, findings
and conclusions from this work. Before, during, and after the field deployment and modeling phases of the
project was completed, team members presented an overview of WFIP and preliminary findings at
conferences and workshops sponsored by industry, utility groups, and the scientific community (see Appendix
B - Conferences, Workshops, and User Group Meetings). Frequent interaction with NOAA and DOE scientists
and policy makers also enhanced the visibility and vetting of the WFIP work. Through this review and outreach
process, other forecasting programs, as well as the advancement of the country’s community of practice, have
already directly benefited.

The work performed and results presented here for the WFIP SSA constitute a team effort. Although AWST led
the endeavor and oversaw all components of the project (field deployment, model development and
forecasting, and the economic analysis), each team member performed admirably in their respective roles,
with AWST/MESO providing the foundational modeling system and real-time power production forecasts
throughout the one-year experiment period; ERCOT providing critical real-time power production and
meteorological data from participating wind farms (accounting for nearly 90% of total capacity in the ERCOT
domain); OU CAPS running a version of the ARPS model that was incorporated into the WFIP forecast system
and performed post-operational sensitivity studies; TTU performing case study and data denial simulations
and providing valuable data from its 200-m instrumented tower and 915 MHz wind profiler; NCSU providing a
SoDAR at the TTU site and developing a data gap-filling scheme for the SoDAR and profiler data; and ICF and
NREL performing the tailored and detailed economic analysis.

2 Background

2.1  Project objectives
The DOE acknowledged the need for enhancements in modeling and observation platforms in its 2008 report:
U.S. Department of Energy Workshop Report: Research Needs for Wind Resource Characterization (Schreck et
al. 2008). Key goals in that report relevant to this work include
1) Acquisition of observations for model validation and forecast enhancement; and

2) Improvement of industry and atmospheric modeling in
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a) the near real time, from a few minutes up to one hour ahead, to provide alerts on weather events
which could significantly change the output of the regional wind capacity and affect system
reliability; and

b) one to several hours ahead, to anticipate rapid changes in output from a wind plant to the regional
electrical power grid and the need for scheduling adequate reserve capacity to accommodate up
and down movements in the wind plant output.

Recognizing these needs, the AWST Team engaged in the following efforts to meet the principal project
objectives:

1. Assembled a preeminent team of private, government, and academic partners with collective
experience and expertise in all facets of wind energy forecasting and field observations required to
ensure a successful completion of the project.

2. Selected a region of interest (ROI), in this case geographically centered on the Electric Reliability
Council Of Texas (ERCOT), that contains a sufficient number of wind farms with a large penetration of
wind energy and characteristic weather phenomena that facilitates transfer of the resulting work to
other regions of the U.S.

3. In collaboration with NOAA and DOE, deployed surface and remote sensing observation platforms to
capture the spectrum of representative spatial and temporal phenomena that influence short-term
operations of wind power production.

4. Used a diverse approach of individual model, statistical, and ensemble-based methods and advanced
data assimilation systems, to determine through data denial experiments and other sensitivity studies,
the potential improvement on wind power production forecasts, including the incorporation of the
NOAA High Resolution Rapid Refresh (HRRR) model in the forecast suite and performance analysis.

5. Developed a tailored economic analysis approach with appropriate metrics that show quantifiable
cost savings for utilities and operators from improved short-term (0 — 6 hour) wind power forecasts.

6. Demonstrated how existing and improved forecast performance metrics better reflect the manner in
which operators and other wind forecast users are sensitive to wind power production forecast errors
on electric power systems.

7. Disseminated project results to interested stakeholders, including utility, industry, and government
groups.

2.2 Team members

The AWST Team members have strong skills and experience in the relevant disciplines. The team includes
ERCOT, which manages an electric system with over 10,000 MW of installed wind power, three private
companies with decades of experience in the renewable energy industry, three academic institutions, each of
which have made contributions to the advancement of forecasting model capabilities, and the National
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Renewable Energy Laboratory (NREL), a Federally Funded Research and Development Laboratory (FFRDC) that
is world renowned for its work in renewables.

Team roles were tailored to team members’ resources and capabilities. The distribution of team member
expertise is summarized in Table 2-1.

Table 2-1. WFIP Southern Study Region Team members: capabilities, qualifications, and expertise.

Capabilities/Expertise
L Weather |NWP Model ) . . L. )
Organization Name Industry K X Instrumentation| Economic Analysis{Transmission Analysis
Forecasting | Expertise

ERCOT Private/RTO X
AWS Truepower Private X X X
MESO Private X X
ICF International Private X
North Carolina State

. . . X X X
University Academic
Oklahoma University Academic
Texas Tech University Academic X X X
National Renewable

X X X X

Energy Laboratory FFRDC

The team member organizations and their respective roles include:

1. AWST: led and managed all aspects of the project. AWST Principal Investigator, Dr. Jeffrey M.
Freedman, coordinated the technical and logistical aspects of the work for the team including the kick-
off and subsequent technical review meetings with NOAA and DOE, surveys required before
instrumentation deployment, field campaign, data and economic analyses, all SSA modeling activities
aside from those conducted by NOAA, and the drafting of this Final Report. AWST personnel also
identified features from the observed data responsible for ramp events and worked with other team
members on data quality control, forecast validation, and economic analyses.

2. ERCOT: as the BA partner, ERCOT provided necessary data and supported the evaluation of

systems operations benefits and provided logistical support for the economics team (ICF and NREL) in
determining the economic savings attributable to the improved short-term wind energy forecasts.
Thirty-four wind-powered generating resources (WGRs--the wind farms), representing 85% of the wind
generating capacity in ERCOT’s territory, participated in WFIP in accordance with formalized non-
disclosure agreements signed by team members and NOAA.

3. MESQ, Inc.: designed and operated the WFIP forecasting system, and performed a number of
analyses and multi-model (ensemble) sensitivity studies in collaboration with NOAA and other team
members.

4. Texas Tech University (TTU): prepared, deployed, operated, and maintained various measurement
systems at the Reese Technology Center in Lubbock, TX and contributed a subset of model runs as part
of a sensitivity study using an ensemble Kalman filter (EnKF) in a version of the Rapid Refresh/High

Resolution Rapid Refresh (RR/HRRR) model.
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5. North Carolina State University (NCSU): contributed a SoDAR to the field campaign and developed
automated algorithms based on statistical learning theory for quality control of SOoDAR and profiler
data; NCSU also investigated the mesoscale spectral characteristics of the atmospheric boundary layer.

6. Oklahoma University (OU) Center for Analysis and Prediction of Storms (CAPS): used a version of
the Advanced Regional Prediction System (ARPS) at 3-km horizontal resolution with enhanced vertical
resolution to assimilate all available data including all measurements collected during the field
campaign.

7. ICF International (ICF): oversaw the economic analyses to assess benefits resulting from improved
short-term wind energy forecasting.

8. National Renewable Energy Laboratory (NREL): developed metrics and assisted ICF on the economic
analysis.

2.3 User Group

A main goal of WFIP was to create a manner in which the successful project components can be replicated and
transferred to others. A non-federally funded portion of WFIP included a User Group composed of utilities and
ISO’s engaged in or contemplating using wind forecasting (operations and/or research) and acknowledged an
interest in reviewing the progress, findings and ‘lessons learned’ from this project. Although the WFIP field
campaign and forecasting work focused on a geographical area within the ERCOT domain, the results here
have implications for all utilities and TSOs interested in short-term (and ramp) forecasting. Through this review
and outreach process and the forecasting programs of User Group members, the advancement of the
country’s community of practice directly benefited.

Users Group members included the Hawaiian Electric Company, Southern California Edison, PJM
Interconnection, the New York ISO, and the New England ISO. Other observers and participants in the
workshops included representatives from NOAA, DOE, ERCOT, and other federal, state, and local authorities.

3 Measurement campaign

One of the main objectives of WFIP was to investigate how short-term (0 to 6 hours) wind forecasts may be
improved by enhancing existing observation networks. A key component to meeting this goal was determining
what kind of additional measurements would be most effective in contributing to model forecast
improvement and where those instruments should be deployed most efficiently. The following subsections
discuss why the ERCOT domain was selected, what phenomena affect the performance of short-term wind
forecasts, how additional instrument sites were identified, and how they functioned during deployment.

3.1 Selection of study area
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The WFIP Southern Study ROl was selected because of:

1. The ROI already contained high quality multiple surface-based and remote sensing networks
(Figure 3-6);

2. An excellent road network and the number of favorable sites (i.e. local airports) facilitated easy
access for instrument deployment, operations, and maintenance;

3. The ERCOT territory, wholly within the ROI, contained the largest number of operating wind farms
in the US, with an aggregate installed wind generating capacity (at the time of the field campaign)
exceeding 10,000 MW, representing about 15% of system-wide peak demand;

4. AWST had already developed the ERCOT Large Ramp Alert System (ELRAS), a ramp forecasting
system; and

5. The ROl experiences a wide variety of atmospheric phenomena (LUs, frontal systems, convective
outflow boundaries; see section 3.2 below) relevant to short-term wind power forecasting and
common to many wind-rich areas of the country Thus, lessons learned here should be applicable in
many regions experiencing similar phenomena.

3.2 Phenomena affecting short-term wind forecasts

Accurate wind energy forecasting requires identifying and predicting a spectrum of meteorological
phenomena with varying temporal and spatial characteristics. On short-term time scales (0 - 6 hours), these
phenomena can be difficult to forecast, resulting in significant errors because of inaccuracies in the timing,
magnitude, and placement of wind speed/wind direction discontinuities. More significantly, they can produce
undesirable effects on the power grid, especially those associated with ramp events. For the purposes of the
WEFIP SSA, a ramp event is defined as an aggregate wind power generation excursion (that is, up or down)
defined by the thresholds set forth for the operational ELRAS (see Zack 2011) given in Table 3-1.

Table 3-1. Ramp (MW) thresholds for 15-, 60-, and 180-minute periods for WFIP wind farm regions and the WFIP aggregate.

Ramp Sweet Sweet Sweet

. East McCa North San WEFIP
period VI - water water water Age
(minutes) = East North West

15 High 200 320 80 60 840 160 280 900
Medium 150 240 60 45 600 120 210 700
Low 100 160 40 30 360 80 140 450
60 High 400 640 160 115 1440 320 560 1850
Medium 350 480 120 85 1080 240 420 1400
Low 200 320 80 60 720 160 280 900
180 High 560 720 180 130 2880 360 1120 3700
Medium 480 640 150 110 2160 300 840 2800
Low 320 480 100 75 1440 200 560 1850
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Ramp events can occur at any time of year within and surrounding the WFIP region. Freedman et al. (2008)
identified several meteorological features responsible for up or down ramp events occurring within and
adjacent to the ERCOT domain. The instrument deployment scheme was designed to capture with sufficient
resolution the horizontal and vertical characteristics of the ramp-producing features. A brief discussion of the
relevant phenomena follows.

Frontal system/trough/dry line. These are density fronts or air mass discontinuities usually associated with
synoptic scale (hundreds to thousands of km) features. The largest ramp event during the WFIP campaign
resulted from a frontal system moving across the region on 7 — 8 September 2012. As depicted in Figure 3-1,
this system caused a sudden increase in wind power production (from 17% to over 80% capacity factor in less
than 95 minutes) from WFIP WGRs in the ERCOT domain

Observed Power Output By Capacity Factor For All ERCOT WFIP and Regional Aggregates
For 9/7/2012 To 9/8/2012

- East Texas - ALL WFIP
MCamey RO :
----- North Texas
San Angelo k2
''''' Sweetwater East Lo
Sweetwater North R4 ! !
- Sweetwater West KA

100
|

80
|

Capacity Factor (%)
40
|

-

./Fm}ﬁ 17% to 80% (1400 MW to 6350 MW) in 1.56 hours!

Y /
o - Tl - =, é ;
[ I I I I I I I I I I I I I I I I I I ]
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Ve _Data_II/AWS Data 'OTagg R(251.6-2524)
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Figure 3-1. Observed wind power production (expressed by capacity factor in %) for regional wind farm aggregates (varying colors and line
types) and the entire aggregate of WFIP wind farms (solid black line) during a large up-ramp event on 7 - 8 September 2012.

Thunderstorms and convection-induced outflow boundaries or gust fronts. These features occur on the
mesoscale (tens to hundreds of square kilometers) and can move in any direction and at speeds in excess of
25 m s (Figure 3-2). The frequency of these events varies considerably from year to year within the ERCOT
domain (see Freedman et al. 2008). Outflow boundaries usually propagate radially outward from
thunderstorm clusters (or other mesoscale convective systems). Although gust fronts often lose strength
rather quickly, they can initiate additional convection and subsequent gust fronts. Since individual convective
elements and clusters of storms are small-scale phenomena, short-term evolution of their temporal and
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spatial characteristics is difficult to forecast. Thus, a sufficiently dense network of observations and
incorporation of high frequency data is necessary for more accurate forecasts of these features, especially in
the 0 to 3 hour time scale characteristic of outflow boundaries and gust fronts.

Low-level Jets (LLJs). This phenomenon occurs regularly throughout the year in the southern Great Plains.
Southerly LUs tend to be strongest (wind speeds can reach in excess of 25 m s™) but northerly LUs do occur
(Song et al. 2005). Different classification schemes for LLIs have evolved over time (e.g. Bonner 1968) but two
types commonly occur over the ROI: (1) the nocturnal LLJ, caused by radiative cooling after sunset, and (2) a
pre-frontal LLJ caused by an increasing pressure gradient ahead of a cold front. (Both types were frequently
observed during WFIP.) The height of the LLJ varies between about 50 m and 400 m, but typically occurs at
about 200 m (Banta et al. 2002). A special concern introduced by LUIs is the large vertical shears (upwards of
15 m s™ per 100 m) that can occur across the turbine rotor plane (see Figure 3-4).

Critical observational and forecasting issues concerning LLIs are 1) their variation in height, 2) the magnitude
of the vertical wind speed gradient, 3) their formation and persistence, 4) spatial characteristics such as width
and depth, and 5) intermittent turbulence leading to propagation of strong winds towards the surface. One
observational issue is that the LLJ structure can frequently extend below 100 m (Figure 3-3). To ensure
sufficient vertical resolution of the full profile of the LLJ, the field measurement campaign (see section 3.3)
included the deployment of several integrated observation sites (I0Ss) featuring the co-location of a surface
meteorological station, SODAR, and wind profiling radar.

NEXRAD LEVEL-II
S KDYX - DYESS AFB, TX

AMA RAOB T | 06/16/2012 23:40:20 GMT

- 4 LAT: 32/32/16 N

LON: 99/15/14 W

ELEV: 1517 FT

VCP: 21

REFLECTIVITY
ELEV ANGLE: 0.54

Legend:

Clebur

) 4 W.’ oV J " .' 2
MAF RAOB ' L
.

Reagan
.

Ozona

L

Figure 3-2. Radar imagery of a thunderstorm complex near Sweetwater aggregates on 17 June 2012 2340 UTC. Markers depicting points of
interest include: instrument sites (light blue), and ERCOT wind farms (red). Note the line of convection-induced outflow to the northeast of
Sweetwater.
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Figure 3-3. Time-height cross-section of 10-minute horizontal wind speed (ms'l) from the AWST SoDAR unit at Reagan on 5 May 2012. Note the
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Wind Speed Profile For 4 January 2012 0900 UTC
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Figure 3-4. Wind speeds for the TTU 200-m tower (large red circles), the NCSU SoDAR (large black diamonds), and the TTU 915 MHz wind profiler
(green circles) for 4 January 2012 0400 UTC. Dot-dash lines represent neutral (black) and stable (red) profiles for zo= 0.1 and u* = 0.4. Y-axis is

logarithmic.
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Qualitative analysis indicates that the LLJ is a regular, periodic, and dominant feature that frequently drives
capacity factors to over 60% (and therefore a large fraction of power production) during the nocturnal hours
(see Figure 3-5). In essence, the plethora of wind farms throughout the Great Plains is a product of the
ubiquity of the LLJ.

Observed Power Output By Capacity Factor

For All ERCOT WFIP and Regional Aggregates
For 6/26/2012 To 7/1/2012

--- East Texas = ALLWFIP
------ MCamey

-—-—=  North Texas

San Angelo
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Sweetwater NortH ! "
- -~ Sweetwater West |,\'{

100
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Capacity Factor (%)
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Day Of Year (UTC)

Figure 3-5. Observed power output by capacity factor (%) for regional wind farm aggregates and all WFIP for days 178 -183 (26 June - 1 July)
2012. Horizontal red dash-dot line depicts average capacity factor (35%) for the period.

3.3  Field campaign - instrument deployment

A key goal in meeting WFIP objectives was to determine where additional measurements would be most
effective in facilitating model forecast improvement. A subset of the WFIP program surface and remote
sensing instrument suite was made available to the AWST team (see section 3.3.4) complementing those
contributed by AWST, TTU, and NCSU.
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3.3.1 Existing networks

As mentioned in section 3.1, a major reason for choosing the ROl is the existing high quality surface-based and
remote sensing networks already in place. As depicted in Figure 3-6, surface and tower observation networks
include the Automated Surface Observation System (ASOS) and Automated Weather Observation System
(AWOS) stations operated by the National Weather Service (NWS) and Federal Aviation Administration (FAA),
the West Texas A&M University Alternative Energy Institute data base of public towers, the West Texas
Mesonet (Schroeder et al. 2005), the Oklahoma Mesonet, and Remote Automated Weather Stations (RAWS),
part of NOAA’s Real-time Observation and Analysis Network. Together, these networks include hundreds of
stations throughout the region of interest reporting surface and near-surface wind and weather data on time
scales of one minute to one hour. Much of, but not all, of this data are available through NOAA’s
Meteorological Assimilation Data Ingest System (MADIS) and were assimilated into the WFIP forecasting
systems (see section 4). Most of the surface observation wind measurements were made at the standard 10 m
observation height; tall tower wind observations ranged between 40 and 80 m. Thus, the additional
observations made available through the DOE/ NOAA collaboration were necessary to capture the wind profile
through typical rotor plane depths: 40 — 140 m AGL.

In addition to the surface networks discussed above, there are over a dozen operational wind profilers within
and around the ROI (Figure 3-6). These include facilities operated by NOAA, and other entities such as the
Texas Commission on Environmental Quality, and DOE’s Atmospheric Radiation Measurement (ARM) Program.
The NWS also operates several Next-Generation Radar (NEXRAD) 88D Doppler Radar (NEXRAD) sites
throughout the ROI and launches twice-daily (or more often, depending upon

Existing Surface Networks
Outer grid box is 802 km X 800 km

o West Texas A&M public tower A RAWS o ° B
&9 % oKmesonet @ GPSMET ¢ e
©  ASOS/AWOS WTEXAS

36
1

Latitude

32
1

A
- ©
o °
S
o
b
o
B
>
b
B
@
P
=
=
=
=3
&
b

-106 -104 -102 -100

Longitude

Figure 3-6. Existing surface observation networks within and adjacent to the region of interest (outlined in thick blue line). Dashed lines
represent approximately 200 km grid squares.
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weather conditions) rawinsondes from several sites usually co-located with the NEXRAD 88D or NWS Weather
Forecast Offices within the ROI. Note that the NEXRAD radars and wind profilers only provide wind
information at the lowest one or two range gates within the rotor plane.

Finally, TTU operates a 915-MHz wind profiler and 200-m tower at the Reese Technology Center, about 15 km
west of Lubbock (see Figure 3-8 and Table 3-2). The tower has 10 levels including measurements of the u, v,
and w wind components, humidity, and temperature. This facility, upgraded with funding from WFIP, was
critical in providing detailed and continuous information regarding the wind and temperature profile within
the lower part of the boundary layer (BL), particularly the stable BL, and served as a verification site for model
validation and NCSU data gap filing efforts.

3.3.2 Observation targeting

AWST/MESO has developed two objective methods to predict error reduction in a wind speed forecast due to
the deployment of a given sensor at a specific location. The first method employs an ensemble of NWP models
to determine regions of high forecast sensitivity where observational data for selected variables are likely to
improve the forecast of wind speed for the target location (Zack et al. 2010). A second, less computationally
expensive method uses a time-lagged analysis from a single NWP model. The second approach was employed
in this project owing to computing and project timeline constraints.

Output from a 13-month series of NWP simulations was used to compute the simulated time-lagged
correlations between the prior change in a measurable variable at a potential observation site and the future
change in wind speed at a forecast site. By repeating this calculation for every model grid point, correlation
maps were constructed for different seasons, weather regimes, forecast look-ahead times, and observed
variables. Only correlations that exceeded 0.25 with a confidence of greater than 99% were considered. This
confidence was assessed by assuming the range of possible errors in the correlation followed a normal
distribution with the standard deviation as a function of effective sample size. The effective sample size was
assumed to be a function of the total sample size and the time-lagged autocorrelations of both the predictor
and forecast variables.

The next step was to estimate the reduction in forecast root mean square error (RMSE) or sensitivity for a
given location to each model grid point. This process required computing a weighted sum of the variance
(correlation squared) for the observed variable with the highest time-lagged correlation. The weighted sum
was computed over all sites, look-ahead times, seasons, and regimes. Error reduction was then determined
for representative regime classification schemes (i.e. all times, four time-of-day bins, and four initial wind
direction bins). Finally, the predicted forecast error reduction was mapped for individual forecast sites, 1- to 6-
hour look-ahead times, and seasons. Error reduction was also computed for a combination of locations that
could serve as prospective instrument locations.

Error reduction computed in this manner is effectively the predicted reduction in wind speed root-mean-
square error (RMSE) assuming that none of the information from the new sensors is already available in the
current state-of-the-art forecast. The method does not account for reductions in benefit when multiple
sensors are installed due to correlations between the sensors. It also does not account for additional benefits
from multiple variables measured by the same instrument — only the most highly correlated variable
measured by the sensor is considered for a given site, season, look-ahead time or regime. Finally, it does not
DE- EE0004420
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account for or resolve small-scale, short-lived features that are not adequately represented by the NWP
simulations. These may include convective elements such as thunderstorms, large eddies and circulations
induced by local variability in cloudiness, soil moisture and other factors. This in turn would lead to a reduction
in forecast benefit for deployed sensors (see e.g. section Error! Reference source not found.).

Recommended sensor locations were based on the overall predicted error reduction, predicted error
reduction for specific look-ahead times and seasons, and location of existing sensors. Figure 3-7 shows a
subset of the existing and recommended sensor locations. Background color shading depicts the mean
predicted fractional wind speed RMSE reduction for four seasons, four forecast sites (two in the Sweetwater
East region and one each in the Sweetwater West and Sweetwater North), and six look-ahead times (1- to 6-
hours ahead) for a single proposed IOP site (co-located SoDAR, profiler, and surface station) sited at each
model grid point location. The green and yellow shading shows potential sensor locations with the highest
predicted error reductions. Note that both the recommended co-located instrument sites at 99.4W, 31.2N and
100.6W, 32.5N (orange and pink filled circles with black borders (Figure 3-7) are in regions where the
predicted wind speed RMSE reduction is in the 12 to 16% range.

0.01 0.02 003 0.04 005 008 007 008 01 012 014 018 02 025 03

X Existing 50-80 m met tower ® Sodar
e Existing profiler - 250 m res, 500 m ¢ Surface metor ¢ fluxstation
lowest. @ Existing profiler — no recent observations

O Existing profiler - 60 m res, + 200 m met @ Sodar + surface met or flux station
tower.

© Profiler 100/250 m res., + sodar +
surface fluxstation

© Profiler 100/250 m res., + sodar +
surface met station

Figure 3-7. The mean predicted fractional wind speed RMSE reduction (color shading) for all seasons, forecast sites, and look-ahead times for a
site with a collocated profiler, SODAR, and flux station. Existing and recommended sensor locations area also shown. Recommended sensor
sites were chosen based on the overall predicted error reduction, predicted error reduction for specific look-ahead times and seasons, and
location of existing sensors. Only a representative sample of existing met towers and surface stations is shown. Background color contours
depict the mean predicted fractional wind speed RMSE reduction for all seasons, forecast sites, and look-ahead times for a site with a collocated
profiler, SODAR, and flux station.

+ Existing surface station
o Forecastsite
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3.3.3 Proposed deployment

Most sensible weather and associated phenomena described in Section 3.2 move into and through the ROI
from the south, west, and north (e.g. Bonner 1968; Chang et al. 2002; Song et al. 2005). Specifically, the LLJ
tends to be oriented from the south or southwest (Song et al. 2005); convection (and hence most, but not all,
outflow boundaries) tends to move from the northwest, west, or southwest, depending upon local and
regional dynamics; and frontal systems tend to move from the northern, western, and less frequently,
southern sectors, as guided by larger scale circulation patterns. The targeted observation results largely
conformed to this climatology, and the proposed field deployment scheme (while not duplicating observations
from existing networks) was weighted in these direction sectors, to afford model assimilation schemes the
greatest probability of capturing these features as they develop and move through the ROL.

Elev. (m) 100 300 500 700 900 1100 1300 1500 1700 1900

A ERCOT wind farms

~+ Surface flux

7 West TX A&M tall towers
915-MHz wind profilers
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e Surface mesonet
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Figure 3-8. NOAA/PNNL/AWST WFIP deployment with existing profiler, NEXRAD, and upper air (rawinsonde) networks. 10Ss suites are referenced
in Table 3-2. Solid red line (outlined rectangle) shows the ERCOT ROl and center of the model domain. Figure courtesy of J. Wilczak, NOAA ESRL.
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A key component of the field deployment was the combination of surface and remote sensing platforms as
integrated observation sites (10Ss), to ensure the complete capture of the wind profile from the surface
through and beyond the top of the atmospheric boundary layer (typically 1 — 3 km in this region). Nonetheless,
limitations of the instrument suite available to the WFIP SSA necessitated a considerable scaling back of the
eventual deployment scheme (Figure 3-8).

One attribute of the SSA was the geographically uneven distribution of wind farms in the ERCOT territory (see
Figure 3-9). Approximately 40% of the WGR capacity (over 4000 MW) is clustered in Sweetwater region of
north central Texas, making wind power production susceptible to large ramp events being initiated by
relatively small-scale features (e.g., convective outflow). Although the targeted observation studies (see
section 3.3.2) were designed to observe these events, the limits of their predictability, data assimilation
constraints, and the scaled back instrument availability for the SSA likely produced the mixed results in the
data denial experiments and the ability to successfully forecast the phase and amplitude of ramp events from
these features (see sections Error! Reference source not found., 5.2, and 5.3).

£ 97w

Figure 3-9. Regional aggregates of wind farms in the WFIP SSA (ERCOT domain). Aggregates are defined as NTX: North Texas; SWN: Sweetwater
North; SWE: Sweetwater East; SWW: Sweetwater West; ETX: East Texas; WTX: West Texas; MCM: McAmey; SGL: San Angelo.

3.3.4 Deployment of NOAA, DOE, AWST, and partner equipment

The following paragraphs describe the instrument platforms and observation suites that were used in the field
measurement campaign.

DOE/NOAA instrument suite. NOAA, DOE, and the Pacific Northwest National Laboratory (PNNL) made
available for the WFIP South Team two 915-MHz Wind Profiling Radars (WPRs), three SoDARs, three surface
flux stations, and three surface meteorological stations (see Table 3-2). The three surface stations provided by
the NOAA/DOE deployment package measure standard meteorological variables such as wind speed and
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direction, temperature, dew point, and surface pressure. The three flux stations use eddy covariance systems
that measure the turbulence quantities u’, v/, w’, and T’, and hence calculated the surface heat and
momentum fluxes.

TTU — Reese Technology Center. TTU contributed data collected from several measurement platforms during
the field campaign phase of the project. These data were collected from a 200-m meteorological tower and a
boundary layer radar profiler, both of which are located at the Reese Technology Center 15 km west of
Lubbock, Texas.

The 200-m meteorological tower (Figure 3-10) includes 10 levels of instrumentation and provided wind speed,
direction, temperature, relative humidity, and barometric pressure sampled at 50 Hz 24-hours per day. Boom
arms containing the instrumentation are mounted at 1.0, 2.4, 3.9, 10.0, 16.8, 47.3, 74.7, 116.5, 158.2, and 200
meters.

For the WFIP experiment, the 50 Hz data was averaged to produce 30-minute summary files for the duration
of the WFIP project.. Additional post-processed 30-minute temperature summaries were constructed by
request for the period January 20, 2012 — September 25, 2012 for all tower levels.

Upgrades were made to the 200 m tower and processing applications to support real-time transmission of
quality-controlled data, and additional web plots and statistics were developed to ease daily monitoring of the
wind observations at each level. Outside of outages due to tower maintenance and upgrades in January 2012,
data recovery from the tower was above 95%. On a few isolated occasions the microwave link between the
field site and the campus network failed, but these cases were resolved quickly and nominally impacted real-
time data transmission for less than a day. While this occurred, data was continually collected at the tower
without interruption; files were processed and uploaded to the web once the microwave link was fixed.

A Vaisala LAP-3000 Boundary Layer Profiler (Figure 3-10) located at the Reese Technology Center was also
made available for this project. The profiler provides vertical profiles of wind speed, direction, and virtual
temperature data constructed over 20 minute intervals. Between 160 — 1600 m AGL, profile bin spacing is 60
m and between 1600 — 6000 m, profile bin spacing is 160 m. Funding from the WFIP project contributed to a
major system upgrade including replacement of the power supply, upgrade of the modulator interface unit,
repair of the amplifier, replacement of the main system server, and an update of the system software.
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Table 3-2. WFIP instrument deployment (July 2011 — September 2012). Shaded rows indicate grouping by 10S.

Brady BDYTX Profiler915  ARL 31.175 99.326 548
Brady BDYFLUX Flux ARL 31.175 99.326 548
Brady BD2TX SoDAR ANL 31.175 99.326 548
Brady BDY SfcMet ARL 31.175 99.326 548
Colorado City  COCTX Profiler915  ARL 32.472 100.921 673
Colorado City  COCFLUX Flux ARL 32.472 100.921 673
Colorado City  CC2TX SoDAR ARL 32.472 100.921 673
Colorado City  COC SfcMet PNNL 32.472 100.921 672
Jayton JTNT2 Profiler404 NOAA 33.017 100.978 707
Jayton JT2TX SoDAR ARL 33.017 100.978 707
Jayton JTNFLUX Flux ARL 33.017 100.978 707
Jayton JTN SfcMet PNNL 33.017 100.978 707
Cleburne KCPT AWOS NA 32.354 97.435 258
Cleburne CLETX Profiler915  TCAQ 32.354 97.435 256
Cleburne CPTTX SoDAR AWST 32.354 97.435 258
Cleburne CPT SfcMet PNNL 32.354 97.435 259
Lubbock RESTX SoDAR NCSU 33.611 102.051 1017
Lubbock TTU Tower 200m tower NA 33.611 102.051 1010
Lubbock LBKTX Profiler915 NA 33.611 102.051 1010
Reagan RGNTX SoDAR AWST 31.199 101.473 793
Reagan BIGL SfcMet TTU 31.199 101.473 823
Ozona KOZA AWOS NA 30.736 101.203 726
Ozona OZA SfcMet PNNL 30.736 101.203 721
Ozona OZATX SoDAR AWST 30.736 101.203 720
Sweetwater KSWW AWOS NA 32.469 100.467 725
Sweetwater SWW SfcMet PNNL 32.469 100.467 717
Coleman KCOM AWOS NA 31.841 99.406 517
Coleman COM SfcMet PNNL 31.841 99.406 514

NCSU. The NCSU group installed and operated a Scintec Flat Array SODAR (SFAS) at the Reese Technology Center as part of the field deployment.
The SoDAR was collocated with the TTU 200 m tall meteorological tower and wind profiler. It was installed 2.9 m above ground level (AGL; see

Figure 3-11). The SFAS SoDAR has a flat array acoustic antenna with 64 piezoelectric transducers and emits
beams in 9 directions in up to 10 frequencies operating in the frequency range of 2525 to 4850 Hz.

AWST deployed three ART model VT-1 SoDARs with a vertical range of 30 - 200 m with 10 m resolution. These
SoDARs were located at local or municipal airports at Cleburne, Ozona, and Reagan TX (see Figure 3-12). The
SoDARs were collocated with PNNL surface met stations at Reagan, Ozona (where an existing ASOS station
was operating), and Cleburne (where a profiler and AWOS station were also located).
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Figure 3-10 (left): Texas Tech 200-m tall tower at Reese Technology Center; (upper right): lowest three levels of instrumentation on the 200 m
tower showing the various instrumentation on each boom arm; (lower right): TTU Vaisala LAP-3000 Boundary Layer Profiler

b3 it
: ¢ arth

Figure 3-11 (left): the deployment locations of NCSU SoDAR, TTU 200 m meteorological tower, and TTU wind profiler; (right): an image of the
NCSU SoDAR (red box). The 200 m tall tower is visible in the background.
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Figure 3-12 (top left): AWST ART-1 SODAR commissioning at Reagan TX; (top right) SODAR commissioning at Ozona TX;(bottom left): PNNL
surface met station at Cleburne TX with AWST ART-1 SoDAR in background; (bottom right): NOAA flux station at Colorado City TX.

3.3.5 LiDAR deployments

During the latter part of the WFIP observation and forecast campaign, an opportunity arose to deploy two
Leosphere LiDARs for a two-month period at a participating wind farm in west Texas. The purpose of this
deployment was to ascertain the value of on-site LiDARs to very short-term forecasting (0 — 1 hour) and to
gather data for possible wake modeling studies. In late August 2012, a Windcube 7 and Windcube 8 were
deployed downwind and upwind of a wind farm in west Texas (see Figure 3-13). However, because of a variety
of technical issues (e.g. air temperature exceeding the operational constraints of the LiDARs and power supply
interruptions), only a few weeks of viable data were collected. Data from simultaneous operation of both
LiDARs was limited to just 2 — 3 weeks. Results did show distinct waking, especially for the along row wind
direction (i.e. ESE) and the presence of the nocturnal LLJ.
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Figure 3-13. Deployment of Leosphere Windcube LiDARs at a wind farm in Texas.

34 Results and discussion

3.4.1 Data acquired

AWST SoDARs. The three AWST SoDARs (at Cleburne, Ozona, and Reagan TX; see Figure 3-8 and Table 3-2)
operated, with the exception of regular maintenance (approximately every 3 months), without interruption
for the entire field and modeling campaign. Commissioning of theses SoDARs occurred in mid-July 2011, and
continued operating through the end of the deployment period (13 September 2012). Data was processed on
site and compiled into 10-minute averages of wind speed and direction, individual u, v, and w components,
turbulence intensity (Tl), turbulent kinetic energy (TKE), and inclined flow angle. All data was uploaded in real-
time to MADIS.

The NCSU SoDAR data. The NCSU SoDAR was operational from 1 July 2011 to 12 September 2012. The SoDAR
wind data were uploaded in real-time to an ftp server. All the Team members were given access to this
secured server for data downloads. The data were also transferred to MADIS from the ftp server in an
automated fashion. During WFIP, it provided 59 vertical layers of wind data (speed and direction) from 10 m
up to a maximum of 300 m with a vertical resolution of 5 m and an averaging time of 10 minutes. These data
were quality controlled in real-time by Scintec’s APRun software.

TTU staff was responsible for the continuous operation of the NCSU SoDAR. With the exception of a few
power failures and communication interruptions, there was an almost continuous stream of SODAR
observations, resulting in only a few temporal data gaps for the entire field campaign. The availability of
SoDAR data is shown in Figure 3-14. The raw SoDAR data were compared with the corresponding TTU tower-
based data as described in Figure 3-14. Beyond the elevation of 100 m AGL, the SoDAR data availability
decreased quite rapidly (below 50% above 140 m). This behavior is common among commercial-grade
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SoDARs, especially in a dry environment such as the panhandle of Texas. Due to these data gaps, the mean
wind speed above 100 m AGL is quite noisy and unreliable in comparison to the tower measurements. At an
elevation of 78 m AGL (close to a typical wind turbine hub-height), the SODAR data underestimate the mean
wind speed significantly, and both Weibull distribution parameters are underestimated. Based on the wind
rose plots (Figure 3-14), there is also a bias in the wind direction distributions of the SODAR as compared with
the tower data.

Table 3-3 Comparison of NCSU SoDAR-based and TTU tower-based wind data for the period 1 July 2011 — 12 September 2012.

Level Altitude RMSE Weibull Parameters Number
(m) (ms™) NCSU SoDAR TTU Tower of data

C (ms™) C(ms™) k points

5 16.76 0.763 1.27 5.47 2.19 6.05 2.55 11611

6 47.24 0.722 1.77 6.40 2.01 7.37 2.57 18274

7 74.67 0.751 1.77 7.63 2.19 8.33 2.46 17770

8 116.43 0.722 2.09 8.93 2.15 8.95 2.24 15405

9 158.19 0.713 2.23 9.33 2.36 8.39 2.16 5698

All data Points* 0.74 1.82 68758

*(Levels 5-9 (16.7 — 158.2 m altitude) data are used for calculating the Statistics)

Note: In order to collocated with 30-minutes tower data and calculated the statistics, 10-minutes SFAS (SODAR) data are

averaged to 30 minutes and interpolated to tower altitude. However, in Figure 3-14, all raw data from 10-minutes
sodar at 78 m and 30-minutes tower at 75 m are used to calculate the statistics.

TTU tower and profiler data. During the WFIP project, the 200-m TTU tower data operated continuously from
16 July 2011 — 13 September 2012. The 915 MHz profiler was operational from 1 December 2011 — 1 April
2012; and from 26 June 2012 — 13 September 2012. The 20-minute wind and temperature data were
assimilated into separate daily text files that were uploaded in near real-time to MADIS for sharing. Additional
web plots and statistics were developed to ease daily monitoring for the profiler data stream.
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Figure 3-14. Comparison of NCSU SoDAR-based (left panel) and TTU tower-based (right panel) wind data. From top to bottom, the panels
represent data availability, mean wind speed, histograms, and wind roses, respectively. Time frame: 1 July 2011 — 12 September 2012.
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3.4.2 Ramp frequency

Ramp frequency was evaluated for events of varying duration, and the atmospheric phenomena responsible
were identified through the seasonal pattern of ramp occurrence. For all regions of the ERCOT domain, longer-
duration (60- and 180-minute; see Table 3-1) ramp events are more frequent during the cold months and into
the spring transition (WFIP aggregate

i i i - i Monthly Occurrence of Ramp Events at or Above
_reglon S_hown In Flgure 3 14) ThIS pattern Medium Threshold Ramp Rate for WFIP Aggregate
is seen in both up- and down-ramps. Duration
These events are attributed to frontal - = 15-min
. 1 60-min
passages, which are more frequent = 180-min

during the winter and spring because of
the southerly location of the polar jet.
There is a peak in the 15-minute ramp 100 4
occurrence with the spring transition,
most likely due to increased convective

Count

activity.
50 -
The atmospheric phenomena discussed
above are associated with both up-and -|]J]
down-ramp events. A previous study o
(Freedman et al 2008) found that up Jan  Feb  Mar  Apr  May Jun  Jul  Aug Sep  Oct Nov  Dec
ramps tend to be more common within Month

the ERCOT domain. This bias towards ) ) )

. . . Figure 3-15. Monthly occurrence of ramp events in the WFIP aggregate region
positive ramps arises because rapldly meeting or exceeding the medium ramp rate threshold, separated by duration
moving transient features such as frontal of event: 180-minute (blue), 60-minute (green), and 15-minute (red).

systems and convective outflow tend to

produce abrupt increases in wind speed, with a more gradual slackening of the wind speed gradient after their
passage (Freedman et al 2008). The present study found a roughly equal number of up- and down-ramp
events for the WFIP aggregate region when considering all 15-, 60-, and 180-minute ramp periods
(approximately 48% up-, 52% down-ramps). For all duration ramp events only of the medium and high
threshold, approximately 61% were up-ramp and 39% were down-ramps. The annual proportion of threshold
up- and down-ramp events observed in this study is consistent with Freedman et al (2008).

3.5 Gap filling analysis and related work (NCSU)

3.5.1 Spectral Characterization

To further assess the quality of the SoDAR-based wind data, the NCSU team performed a rigorous spectral
characterization.. Wind speed power spectra were calculated using three complementary estimation
techniques: fast Fourier transform (FFT), Haar wavelet transform (WT), and auto-regressive moving average
(ARMA) models. The FFT and WT techniques require continuous (i.e., without any missing observations) and
uniformly spaced data series. Given the sporadic presence of missing observations in the SODAR dataset, a
(temporal) linear interpolation was applied to create a gap-filled series prior to the FFT-based and WT-based
spectra calculations. However, this ad-hoc temporal gap filling was not very effective, as its adverse impact on

DE- EE0004420



WFIP South Final Report - Page 29

spectral characterization cannot be quantified in a reliable manner. Therefore, an alternative approach based
on the ARMA models, which is insensitive to randomly missing data, was also utilized for wind spectra
computations. This approach is available via an open-source code called “ARMAsel for Irregular or Missing
Data”, or “ARMAsel-mis” (Broersen, 2006).

Qualitatively, all the estimation techniques lead to very similar wind spectral shapes (Figure 3-16). The FFT-
based spectra show strong diurnal and semi diurnal variations, which is physically expected. However, quite
surprisingly, the wind spectra from all the vertical levels (only two levels are shown in Figure 3-16) portray a -
5/3 scaling regime in frequency range of ~1.2x10” Hz to ~2.7x10™ Hz (called mesoscale range). In the time-
domain, this scaling regime corresponds to ~1 - 24 h. Starting with the classic works by Nastrom and Gage
(Nastrom and Gage 1985; Gage and Nastrom 1986), a -5/3 scaling in mesoscale wind spectra were reported
several times based on observational data from the upper troposphere and lower stratosphere. However, the
presence of a similar regime in boundary layer wind data has rarely been reported in the literature’. This
highlights the uniqueness of the WFIP SoDAR datasets.

Note that at the high frequency end (beyond ~3x10-4 Hz) the spectra show a tendency to flatten. This
tendency is more prominent in FFT- and ARMA-based spectra compared to the wavelet-based spectra. This
plateau is likely related to ‘spectral gap’; however, the temporal resolution of the SODAR data (10 min) is not
fine enough to reach a definite conclusion.
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Figure 3-16. Power spectral density using FFT (red lines), WT (blue lines with circles), and ARMAsel (black lines) for SODAR wind speed from 1
July 2011 to 12 September 2012. The top and bottom panels correspond to altitudes at 18m and 123m above ground level, respectively. The
dashed orange lines represent a slope of -5/3.

> Note that the mesoscale range represents lower frequencies (or wavenumbers) in comparison to the so-called intertial-range turbulence. The
existence of a -5/3 scaling regime in the inertial-range is well documented in the boundary layer turbulence literature.
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3.5.2 Gap-Filling and De-noising

For WFIP, a novel gap filling and de-noising algorithm was developed based on Vapnik-Chervonenkis Statistical
Learning theory (Cherkassky et al. 1999; Cherkassky and Shao 2001; Cherkassky and Mulier 2007). The
algorithm is fully automated and is schematically explained in Figure 3-17. The salient features of this
algorithm are as follows:

1. The algorithm is applied to synthetically merge U and V wind components from the spatially and
temporally collocated SoDAR and wind profiler;

2. Gap-filled and de-noised U and V wind components are calculated using Chebyshev polynomial
based on the best polynomial order;

3. The best polynomial order is calculated using Vapnik-Chervonenkis (VC) theory (Cherkassky et al.
2007);

4. Unacceptable or erroneous gap-filled wind data are eliminated using the small median test
(Lambert et al., 2003);

5. Log-linear polynomial (Oncley et al., 1996; Grachev et al., 2005) is applied further to gap-fill the U
and V wind components;

6. The process of polynomial fitting and erroneous data elimination are repeated in the algorithm to
calculate gap-filled and de-noised wind speed and wind direction;

7. Resulting gap-filled and de-noised wind speed data are validated against the observational data
from the TTU 200 m meteorological tower.

|
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i SODAR |-
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S— Polynomial
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MERGED Erroneous Data { JELUENR
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Figure 3-17. Proposed gap-filling and de-noising algorithm (see text for details).
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In Figure 3-18, the performance of this algorithm is shown using wind data from 30 January 2012. Time-height
plots of raw SoDAR and tower wind speeds are shown in the bottom panels of this figure. Visual examination
of the spatial-temporal evolution of wind speed indicates that high wind speeds occurred in late evening to
morning hours (associated with a low-level jet event). The SFAS SoDAR is able to capture the wind speeds up
to an altitude of 125 m. However, the data availability above this altitude is limited. There is also a data gap
during the early evening hours (SoDARs do not perform well during near-neutral conditions that occur during
the transition from a convective to a stably stratified boundary layer). The top-left panel of Figure 3-18 shows
the time-height plot of wind data from the TTU wind profiler located adjacent to the SOoDAR and the
meteorological tower. Note that the profiler does not measure any wind data below 160 m. The proposed
gap-filling and de-noising algorithm is applied to the SOoDAR and the wind profiler data. The wind profiler data
are available at 20 minutes interval and are interpolated to match with the 10-minute resolution of the SoDAR
data. The algorithm-generated wind speed data are shown in the top-right panel of Figure 3-18. After the
application of the algorithm the data availability was increased reasonably, with improved data consistency,

especially at higher altitudes.
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Figure 3-18. Time-height plots of average wind speed from a wind profiler (top-left panel), a SODAR (bottom-left panel), and a meteorological
tower (bottom-right panel). The gap-filled SoDAR-profiler wind data are shown in top-right panel. Time of interest: 30 January 2012.
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3.5.3 Results and summary

The spectral analysis of the NCSU SoDAR data revealed the existence of a mesoscale scaling regime with a
slope of -5/3. No significant variations in the slopes were found with respect to altitude. At present, it is not
known if this result is specific to the southern Great Plains region or more universal. From a fundamental
atmospheric science perspective, the spectral results are quite intriguing. From a practical wind energy
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standpoint, they offer a rigorous framework for NWP model verification. Furthermore, the spectral
information can be extremely useful for wind time-series forecasting and in mesoscale data assimilation (e.g.,
spectral nudging).

The proposed gap-filling and de-noising algorithm was applied to approximately four months (30th November,
2011 — 2nd April, 2012) of SoDAR and profiler data collected during the WFIP campaign. The results are shown
in Figure 3-19. Clearly, the SoDAR data availability above 120 m AGL is low. Because of this lack of data, the
average wind speed from SoDAR at higher elevation is noisy and unreliable. However, the application of the
proposed algorithm significantly increases the data availability. More importantly, the gap-filled average wind
speed values compare more favorably with the tower observations.
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Figure 3-19. Time-height plots of data availability (top panels) and average wind speeds (bottom panel). Time frame: 30 November 2011 - 2
April 2012. See text for details.
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4 Model systems and forecast campaign
4.1 Forecast systems

4.1.1 AWST/MESO

The WFIPFS is an enhanced and expanded version of AWST’s operational eWind forecast system with five core
components (Figure 4-1): (1) an ensemble of rapid-update short-term NWP forecasts; (2) a statistical
adjustment procedure for each of the NWP forecasts; (3) a set of statistical time series prediction schemes; (4)
an ensemble composite algorithm; and (5) a wind plant output model. Details of all five components are
discussed in this section.

The NWP component of the forecast system is composed of three different modeling systems run by AWST
and the High Resolution Rapid Refresh (HRRR) run by NOAA'’s Earth Systems Research Laboratory (ESRL). The
high-resolution domains for each model are shown in Figure 4-2; most of the models have similar grid
configurations (Table 4-1). However, the following attributes were varied among the ensemble members:

e NWP models used to generate the simulations
e Source of lateral boundary conditions (BC)

e Boundary layer physics schemes

e Convective cloud schemes, and

e Data assimilation schemes used to initialize the models.

The three models used by AWST were 1) the Weather Research and Forecasting (WRF) model (Skamarock et
al. 2005), 2) the Advanced Regional Prediction System (ARPS) model (Xue et al. 2000, Xue et al. 2001), and 3)
the Mesoscale Atmospheric Simulation System (MASS) model (Manobianco et al. 1996). All simulations had a
horizontal grid resolution of 5 km and an update frequency of 2 hours with the exception of a low resolution
Ensemble Kalman Filter (EnKF) member which was only used to produce initial conditions (ICs) and BCs for two
of the high resolutions ensemble members. These models have numerous configuration options and
considerable overlap in their routines (moist convection, turbulence, boundary layer, etc.). For WFIP,
configurations were sufficiently varied but still consistent with the objective of generating the best possible
low-level wind forecast (see Table 4-1).

The lateral BCs provided information about the evolution of the larger scale flow to the high resolution small
domain of the rapid update cycle model. Two different sets of lateral BC data were used: (1) the Rapid Refresh
(RR); and (2) the AWST EnKF forecasting system (discussed later in this section). The fundamental purpose for
varying BCs was to incorporate variability in the evolution of the larger scale flow. By increasing the range of
forecasted conditions, statistical techniques can identify and correct systematic observation and numerical
modeling errors (biases) that can lead to an overall improved deterministic forecast.

All models were run in a cold-start mode using a new set of initial conditions from the large scale model (the
Global Forecast System, or GFS, and the Rapid Refresh, or RAP), every cycle except for the MASS and AWST
EnKF ensemble members which were run in a warm-start mode. The warm-start mode used the forecasted
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state from a previous model run (every two hours for MASS and every 6 hours for the EnKF) as the starting
point for the creation of the new initial state--therefore initialization data from a large-scale model was not
needed.

A key component of forecasting hub-height (for WFIP, 80 m) wind speeds is predicting variations in turbulent
mixing within and just above the planetary boundary layer (PBL), a historically difficult task for atmospheric
models. For example, many parts of Texas experience a fairly strong diurnal cycle in low-level wind speeds
associated with the LLJ. Transition periods, such as the morning rapid growth phase of the PBL (Freedman and
Fitzjarrald 2001) can cause significant wind power ramps. In order to simulate the details of this cycle, NWP
models need to accurately account for the vertical mixing of heat and momentum near the earth’s surface.
Therefore, several turbulent transport routines were used including the ARPS 1.5-TKE (turbulent kinetic
energy; Sun and Chang 1986, Xue et al. 1996), WRF MYNN2 (Mellor-Yamada Nakanishi and Niino Level 2 PBL;
Nakanishi and Niino 2006), WRF UW (University of Washington scheme; Bretherton and Park 2009) and MASS
TKE (turbulent kinetic energy; Therry and Lacarrere 1983; Benoit et. al. 1989).

The cumulus parameterization in each model estimates the amount of convective development and
precipitation on the sub-grid scale. Varying the cumulus parameterization in the ensemble, and therefore the
evolution of precipitation-induced, low-level outflow boundary winds, allows the ensemble forecast to reflect
uncertainty in the development of vertical cloud structures and precipitation. The convective
parameterizations used for the real-time runs were the WRF KF (Kain-Fritsch scheme) for ARPS and WRF (Kain
2004), ETA KF for MASS (Kain and Fritsch 1990), and Grell (Grell and Devenyi 2002) for MASS.

Five different data assimilation schemes were employed including the: (1) ARPS 3D variational (3DVAR)
scheme (ARPS 3DVAR; Gao et al. 2004); (2) Bratseth scheme using the ARPS data assimilation system (ADAS;
Brewster, 1996); (3) Ensemble Kalman Filter (EnKF) scheme using WRF and WRF-DART (Hacker et al. 2005); (4)
four-dimensional data assimilation (FDDA) scheme based on Newtonian relaxation (nudging; Stauffer and
Seaman 1990); and (5) WRF variational (WRFVAR) hybrid scheme (Demirtas et al. 2009). Both the ADAS and
ARPS 3DVAR schemes use isotropic covariance structures while the hybrid scheme uses anisotropic covariance
structures estimated from a lower resolution EnKF ensemble forecast used as the initial conditions. The
WRFVAR assimilation system was used only on the one of the three WRF ensemble members because the
covariance structure could not be easily modified for mesoscale forecasting applications without the use of a
hybrid technique. The objective in varying these schemes is to incorporate variance in the initial state of
different ensemble members to better represent perturbation states in the subsequent model forecasts.

It was not possible to incorporate all permutations of these attributes into a 9-member ensemble.
Computational resource constraints prevented a larger ensemble from being used. However, by producing a
13-hour forecast every two hours, a more recent set of ICs and BCs were available and updated
meteorological observations were assimilated more often than most real-time high resolution ensembles. The
varied model configuration for each ensemble member is summarized in Table 4-2.

The assimilation and forecast cycle for MASS, ARPS, and WREF are illustrated in Figure 4-3. The increased
frequency of assimilation and model initializations allows each forecast to resolve specific meteorological
phenomena better through the use of recent observations. The rapid update cycle also increases the number
of model runs predicting specific wind-related meteorological events and provides up to five independent
forecasts per member overlapping at a specific time. Given the size of the ensemble (13 members), 45
different overlapping NWP forecasts were produced for a given event. This ensemble generated a larger
sample of raw model output for the statistical components of the forecast system and verification.
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Figure 4-1: Overview of the WFIP forecast process.

The second major component of the forecast system is the statistical adjustment of forecasts produced by
each NWP configuration. This approach is routinely referred to as Model Output Statistics (MOS) and its
purpose is to remove systematic errors due to unresolved sub-grid processes, limitations in model physics, or
data assimilation techniques. There are numerous ways in which the MOS concept can be applied. In this
system, a screening multiple linear regression approach (Press et al. 1992) was used and applied separately to
each wind plant site and each NWP model. A set of model state variables are used as input into the regression
and is trained twice, once for observed power, and separately for observed hub-height wind speed. The model
state variables that explain the greatest amount of variance in the observed data set are used. The underlying
concept is that model error patterns are dependent upon the site location and so different adjustments are
applied for each location.

The MOS training sample must be sufficiently large to avoid over fitting (Everett 2002). The training sample at
the start of the project contained an insufficient number of forecasts so no MOS adjustment was performed
until 60 days of forecasts were completed (30 days needed for training each model and 30 days to train
ensemble forecasts). A separate MOS adjustment was formulated for each NWP configuration and updated
daily using a rolling 30-day sample of forecasts and observed data.

The third component of the forecast system was a set of statistical time series prediction schemes. These
schemes use information from the recent time series of meteorological and power production data at a
forecast site to extrapolate future production. They are especially useful in very short-term (0- to 2-hour) look-
ahead periods because the NWP models at the 5-km scale often do not have enough spatial resolution or
sufficient data to initialize and forecast smaller-scale features (e.g. large eddies) that cause a substantial
amount of wind variability on these time scales.
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Table 4-1. AWST model members and static configuration

Parameter

Number of Domains
Resolution
Domain Size
Forecast Length

Initialization
Time Step
Advection

Mixing
Parameterization
Microphysics
Cumulus
Parameterization
Radiation
Parameterization
Surface
Parameterization

ARPS

1

5 km

153 x 135 x 50
13 hours

Cold start

7.5 s large
2.5 s small
4" Order

1.5 TKE / 4™ order
mixing
Lin Ice’
WRF KF

Simplified surface
radiation physics®
ARPS"

0

WRF
2

15/5 km
150x135x50/154%x139x50
13 hours

Cold start

Adaptive 90s /30 s

5" order horizontal, 3"
order vertical

MYNN 2 or UW

WSsMme®
WRF KF

RRTMG™

Thermal diffusion®

MASS

2

15km /5 km
150x135x40/150x135x40
13-hour forecast

4 additional hours nudging
MASS warm start IC /RR BC
(Cold start at 0000 UTC)
27s/9s

MPDATA®
MASS TKE

Mixed Phase’
ETA KF or Grell

SRPH

SRPH™

6 Multi-dimensional positive definite advection transport algorithm; Smolarkiewicz 1998
7 Lin et al. 1983; Tao et al. 1989
8 WRF single-moment 6 class microphysics; Hong and Lim 2006
9 Lin et al. 1983; Rutledge and Hobbs 1983

10 Xue et al. 2000

11 Rapid radiative transfer model G; lcono et al. 2008

12 Surface energy budget-radiation-planetary boundary layer-hydrology scheme
Stephens and Webster 1979; Savijarvi 1990

13 Sun and Chang 1986, Noilhan and Planton 1989

14 Dudhia 1996

15 Surface energy budget-radiation-planetary boundary layer-hydrology scheme; Noilhan and Planton 1989
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Figure 4-2: Domain of the WRF two-way nested and MASS one-way nested runs. The outer grid has 15-km grid space while the inner grid has 5-
km grid spacing. For ARPS, only the inner grid shown here was run.

Table 4-2. Table of AWST model members and run configuration parameters, ARPS members IDs are denoted as DOEA1-3, MASS members are
denoted, DOEM1-3, and WRF members are denoted as DOEW1-3, with the last integer representing each member of the ensemble and model.

Name ID Model Assimilation PERTURBATION IC/BC Grid
Method Spacing

ARPS DOEA1 ARPS IAU-3DVAR 3DVAR RR/RR 5km

3DVAR

ARPS ENKF DOEA2 ARPS IAU-3DVAR EnKF EnKF/EnKF 5km

DS DOEA3 ARPS IAU-ADAS ADAS RR/RR 5km

MASS DOEM1 MASS Nudging KF Convection WARM/RR  15/5km

NUDGING

MASS OBS DOEM2 MASS Nudging No Project WARM/RR  15/5km

DENIAL Observations

MASS DOEM3 MASS Nudging Grell Convection WARM/RR  15/5km

GRELL

WRF ENKF DOEW1 WRF Hybrid- MYNN2 PBL EnKF/EnKF 15/5km
WRFVAR

ENAW A DOEW2 WRF None-DFlI UW PBL RR/RR 15/5km

WRF UW DOEW3 WRF None-DFI MYNN2 PBL RR/RR 15/5km

HRRR HRRR ERSL None - RR/RR 3km

WRF
ENKF EnKF WRF DART - WARM/GFS  45/15km
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TIME (UTC)

Model Description 20:00 21:00 22:00 23:00 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 800 9:00 10:00 11:00 12:00 13:00 14:00 15:00

0000 UTC RUNS

DOEM1 MASS FORECAST

DOEA1 ARPS 3DVAR IAU
DOEA1 ARPS FORECAST
DOEW1 WRFVAR DFI

DOEW1 WRF FORECAST

0200 UTC RUNS
DOEM1 MASS NUDGING

DOEM1 MASS FORECAST
DOEA1 ARPS 3DVAR IAU
DOEA1 ARPS FORECAST
DOEW1 WRFVAR DFI

DOEW1 WRF FORECAST

Figure 4-3: Assimilation and forecast timeline for one member of the 0000 and 0200 UTC ARPS, MASS and WRF WFIP cycle, the hatched area
denotes the part of the forecast that was unavailable for real-time applications.

There is a lag before NWP forecast data are available due to the time required for data gathering, analysis,
initialization, and model execution. Thus, there is typically more recent data available than what is used to
initialize the latest available NWP run. There are, however, time series prediction schemes that take
advantage of the newer data to improve the NWP forecast performance for the 0- to 2-hour look-ahead
period. The use of the time series prediction system, known as the Persistence Adjust (PA) method, was
incorporated into the WFIPFS NWP forecast and also included in the MOS-adjusted forecast.

The PA method determines the initial forecast bias at the time of forecast generation and then applies a static
bias correction to the remainder of the 6-hour forecast. Similarly, the MOS method corrects the initial bias but
applies a separate bias correction independently to each forecast interval. For both bias correction techniques
under persistent conditions, the first available forecast interval (i.e. the two-hour forecast at 15-minute
intervals) will be a persistence forecast using the latest observations translating to an extremely low forecast
error.

The fourth component of the forecast system is the ensemble composite model. This model ingests forecasts
from other system components and statistically generates the final deterministic or probabilistic forecast
product. For a deterministic forecast, the role of the ensemble composite model is to weight each individual
forecast according to its performance in a training sample from the previous 30 days. The fundamental
concept is to assign greater weight to forecast members that are likely to perform better based on previous
forecasts and observations in the training sample. This approach also permits the weighting of the individual
methods to shift from one look-ahead period to another.

In a probabilistic mode, all model forecasts are used to generate the probability of exceedance for several
ramp rate thresholds and a probability distribution of ramp rates based on quantile regression (Koenker 1994).
For both the deterministic and probabilistic forecast, separate prediction equations were developed for each
look-ahead period (i.e. 1 hour, 2 hour, etc.) and each wind plant. The deterministic ensemble forecast system
was trained using the most recent 30 days of observed data and model forecasts, while the probabilistic
ensemble forecast system was trained using the previous 60 days of observed data and model forecasts.

The experiments run for the deterministic ensemble forecast system are shown in Table 4-3. During the forecast
campaign, only two ensemble forecasts were run; the optimized ensemble (OPTENS) used as the final WFIP
real-time forecast and the OPTENS_STWPF or short-term wind power forecast system (used as a Baseline) to
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compare with the OPTENS forecast. The OPTENS_STWPF used MASS model forecasts with ICs and BCs from
the GFS and NAM. Both real-time ensemble methods were retrained daily, producing a new set of prediction
equations used to produce the forecast.

Several WFIP probabilistic forecasts were also generated in real-time during the WFIP campaign. One for each
individual WFIP model forecast and then an ensemble forecast which included forecasts from all WFIP model
members. The forecasts produced a probability of exceedance value for several ramp rate thresholds. These
forecasts were compared to a probabilistic ramp forecast produced using the ERCOT Large Ramp Alert System
(ELRAS), an operational ramp forecasting system based on an earlier version of the ARPS model that does not
include incremental analysis update (IAU; Bloom et al. 1996) observation assimilation.

The entire forecast process depicted in Figure 4-1 is summarized as follows: First, the NWP component is run
and the forecast information is passed to a statistical adjustment package. The statistical adjustment package
extracts an unadjusted 6-hour NWP model forecast at 15 minute intervals for input into the MOS, PA, and
unadjusted methods in which an updated 6-hour forecast is produced. Then the 15-minute forecast methods
are combined and used as input into the ensemble forecast system, which generates a 6-hour deterministic
forecast every 15 minutes.

Due to the data volume and computing resources needed to process the HRRR forecasts in a real-time setting,
the HRRR was not included in the real-time OPTENS forecast. To determine the sensitivity of including the
HRRR as inputs for an ensemble forecast, several additional experiments were run historically with static
weighting coefficients that were not updated (Table 4-3) with (ENS_WHRRR) and without (ENS_NHRRR) the
HRRR model. The static weights provide an indication of HRRR member performance and are preferred over
the time varying weighting due to the large computational resources needed to retrain each predictive
equation on a daily basis.

For an additional sensitivity study, the ensemble was generated from the best three performing WFIP
members (ARPS 3DVAR, WRF MYNN2 and MASS Grell) based on forecast performance discussed in Chapter 5.
This new experiment was run to determine the performance of an ensemble forecast using only the best
performing NWP members. For the second experiment the ensemble was run with (ENS_BWHRRR) and
without (ENS_BNHRRR) the HRRR forecast to determine an additional sensitivity of the 3-member ensemble
forecast performance to including the HRRR model (especailly given the HRRR’s 3 km resolution 1 hr update

cycle versus the model members’ 5 km resolution 2-hr update cycles).
Table 4-3: List of ensemble forecast methods for the WFIP project by type and included members. The real-time WFIP forecast method is
optimized ensemble (OPTENS) and the baseline forecast method is OPTENS_STWPF (short term wind power forecast). To compare sensitivity to

model members, ENS_WHRR, ENS_NHRRR, ENS_BWHRRR, and ENS_BNHRRR were run but without time varying weighting as used in the
OPTENS method.

Ensemble Name . Method Type . Members

OPTENS (WFIP Composite) Time Varying, Site WFIP members without HRRR
Varying Weighting

OPTENS_STWPF (Baseline) Time Varying, Site GFS/NAM Operational MASS
Varying Weighting members

ENS_WHRRR Static Weighting All WFIP with HRRR

ENS_NHRRR Static Weighting All WFIP members without HRRR

ENS_BWHRRR Static Weighting Best 3 WFIP members with HRRR

ENS_BNHRRR Static Weighting Best 3 WFIP members without

HRRR

DE- EE0004420



WFIP South Final Report - Page 40

The fifth and final component of the forecasting system is the wind plant output model. This statistical model
represents the relationship between meteorological variables and power production for each wind plant. This
relationship is constructed from a sample of measured meteorological and power production data from each
wind plant. The forecasted power production for regional or system-wide aggregates of wind plants is
constructed by adding the predictions from the individual facilities. The plant output model is used to convert
forecasts of meteorological variables to predictions of power production. An ensemble of power production
predictions was generated for each forecast time using the meteorological forecasts from each ensemble
member as well as the ensemble composite forecast.

The five components discussed previously were integrated to produce both real-time operational and
historical forecasts for several sensitivity studies during the project. In the operational implementation, wind
power production forecasts were generated every 15 minutes for the duration of the modeling campaign. The
15-minute forecast frequency was greater than the update frequency of all NWP cycles (Figure 4-3).

Each forecast timeline extended 6 hours after the time of forecast delivery. For each site, the forecasts
included the (1) 15-minute averaged wind speed and direction, (2) 15-minute average power production, (3)
probability of the 15-minute, 60-minute, and 180-minute ramp rates exceeding a set thresholds beginning at
the start of each 15-minute interval in the forecast period, and (4) ramp events and attributes (start time,
duration, amplitude, and maximum 15-minute embedded ramp rate) that were expected to begin within the
6-hour forecast period. All individual and ensemble composite forecast data for the target sites and subsets of
the NWP output data were archived for the evaluation and analysis activities.

Numerous types of project and non-project data were incorporated into the assimilation system used in the
physical NWP forecast and statistical models (Table 4-4). Each forecast system assimilated a particular suite of
observations dependent upon what data were supported by the assimilation system. All members assimilated
observations with the exception of the two WRF members initialized from the RR without any additional data
assimilation (Table 4-2). The vast majority of routine observations were assimilated by the WRF, ARPS, and
MASS including upper air (rawinsonde), land (Automated Surface Observation System, ASOS), and marine
surface (buoy) observations.

The capability for all three models to assimilate SoDAR, profilers, tall tower, and mesonet observations was
developed at the beginning of the project. In addition, several additional data types were supported for
specific assimilation systems, including radar data for ARPS and satellite winds for WRF and the EnKF
assimilation system.

All project and non-project data were subjected to quality control (QC) procedures. This QC included out-of-
range checks and procedures to identify bad data based on the spatial gradient of analysis increment and large
differences of the observation from the background state. The assimilation of project and non-project
observations in the NWP models improved the analysis used to initialize each short-term forecast ensemble
member (see results discussed in Chapter 5).

Assimilating observed project and non-project data may lead to dynamically unbalanced initial conditions that
can degrade short-term forecasts. Therefore, each model used a technique to address this issue (Figure 4-3 and
Table 4-2). For WRF, a digital filter (WRF DFI; Lynch and Huang 1992) was run forward and backward for one
hour before starting each run. ARPS used an IAU scheme that nudged a set of previous initial conditions 15
minutes before forecast initialization. In MASS, a nudging scheme was used for assimilation of observations
over a 4-hour period ending at the initialization time. In addition MASS was only cold started once per day
from a larger-scale model run instead of a previous MASS forecast. This approach was used to limit the
amount of imbalance from a new set of lower resolution RR initial conditions. The other models were cold
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started each cycle with the exception of the EnKF--it was never cold-started except in the rare instance of
hardware or software malfunction.

Several sensitivity studies were performed to determine the impact of observations from the sensors
deployed in this project on forecast performance. For the real-time 9-member ensemble, one MASS member
(MASS OBS DENIAL) omitted project observations to determine their impact on a daily basis in real-time. In
addition to the real-time, data denial ensemble member, the ARPS 3DVAR member (DOEA4) was run
historically for two 30-day periods in December 2011 and April 2012 with all observations or only non-project
observations (DOEA5S) producing a 13-hour forecast every 6 hours.

The two, 30-day historical observation denial runs provide insight into the impact of project observations on
forecast performance given the large sample size and variability of weather conditions in the 30-day period.
These simulations were run using the RR that assimilated project observations for ICs and BCs. Therefore
DOEA4-DOEAS forecasts could be influenced by project observations still present in the IC and BC. To address
this issue, ESRL ran a 7-day period of forecasts without assimilating project observations from 1 - 7 December
2011. This period was selected due to a large ramp event that occurred on 3 December 2011. The ARPS
forecasts (DOEA7-DOEAS8, Table 4-5) were generated using ICs and BCs from the experimental data-denied RR
forecasts to determine the impact of project observations over this 7-day period.

Table 4-4: Table of observations assimilated into the AWST ensemble members. Project data are highlighted in grey.

Data Type Ingest Source for AWST Model Members ‘
WRF ARPS MASS EnKF
Surface MADIS" NOAAPort NOAAPort | MADIS
Rawinsonde MADIS NOAAPort NOAAPort MADIS
Profiler MADIS MADIS
Mesonet MADIS MADIS
WFIP SoDARs and profilers MADIS No decoder
SAT WINDS MADIS No decoder No decoder | MADIS
ERCOT WGR met towers ERCOT No decoder
TTU tower TTU No decoder
Radar velocity azimuth display (VAD) No decoder | 88d2arps (ARPS radar | 88d2arps No decoder
data decoder).
Radar reflectivity No decoder | 88d2arps No decoder | No decoder
Radar radial velocity No decoder | 88d2arps N/A No decoder
Buoy MADIS NOAAPort NOAAPort MADIS
Rapid Refresh 3-D gridded data WPS ext2arps (ARPS WPS ungrib | WPS ungrib
Yungrib gridded data
decoder).

16 Meteorolgocial assimilation data ingest system
17 WRF preprocessor system
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The historical sensitivity study quantified the impact of project observations on raw, short-term power
forecasts directly from the NWP model without using a statistical model to post process the NWP output data
as is done in the full forecast system. The real-time sensitivity study helped determine the effect of project
observations using MOS-corrected forecasts. Results from both studies focused on short-term power forecast
errors over all sampled cases (see Chapter 5).

Table 4-5: List of model members for the data denial sensitivity analysis.

Project Assimilation Initial Conditions (IC)
Observations  Method Boundary Conditions (BC)
ARPS All Obs DOEA4 Yes ARPS 3DVAR RR
ARPS Obs Denial DOEAS No ARPS 3DVAR RR
ARPS All Obs DOEA7 Yes ARPS 3DVAR Data Denial RR
ARPS Obs Denial DOEAS No ARPS 3DVAR Data Denial RR

Table 4-6: List of AWST and ESRL data denial periods.

Name Period

AWST Winter December 2011 (4 initializations per day)
AWST Spring April 2012 (4 initializations per day)
ESRL Winter 1-7 December 2011 (12 initializations per day)

4.1.2 CAPSOU

The Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma (OU) produced real-
time 3-km grid scale forecasts covering the WFIP domain and adjacent portions of neighboring states (Figure
4-4). The 12 hour-long forecasts were produced every 6 hours using the CAPS ARPS numerical model (Xue et
al., 2000, Xue et al., 2003). The ARPS model has a TKE 1.5-order sub grid turbulence closure model used with a
Sun and Chang (1986) planetary boundary layer (PBL) parameterization for the mixed boundary layer. Surface
fluxes are specified by similarity theory, using a diagnosed PBL height. Single-moment 5-category ice-
microphysics (Lin-Tao, Tao et al, 1993) was used.

The ARPS model was configured to provide high vertical resolution in the boundary layer to better resolve the
difference between the surface wind (typically measured by anemometers at 10 m above ground level (AGL)
and the wind turbine hub height (80 m AGL). The number of vertical grid levels was set at 58, and average grid
spacing of 360 m was specified with stretching of the vertical distance between adjacent grid levels following a
hyperbolic tangent profile rather than the usual cubic function. The result was the placement of 5 vertical
grid levels in the lowest 200 m AGL rather than the more typical 3 vertical levels (Figure 4-5), with similar
improvement in spacing elsewhere in the lowest 1-km AGL.

Data assimilation, including Doppler weather radar wind and reflectivity data from the NEXRAD radars in the
region, was done using a 3DVAR method with cloud analysis (Gao et al. 2004, Brewster et al. 2005, Hu et al.
2006) and Incremental Analysis Updating (IAU, Bloom et al. 1996) following real-time strategy similar to
Brewster et al. (2008). Observation data used included available standard surface data, mesonet stations
(Oklahoma Mesonet and West Texas Mesonet), and surface observations, SODAR, and profiler data from the

DE- EE0004420



WFIP South Final Report - Page 43

WEFIP field deployment. For each forecast the 3DVAR analysis was run at 15 minutes before the hour, and 15-
minutes of IAU was performed (Figure 4-6). The latest model forecasts available in real-time from the
operational 12-km NAM were used as the background and BCs.

Post processing included the generation of model forecast soundings every 15 minutes at pre-determined
verification and ensemble processing points relevant to wind production in the ERCOT area. These soundings
were automatically transferred to AWST/MESO for use in the production of multi-model ensembles and

forecast verification.

WEFIP forecasts at OU ran from 26 July 2011 through 13 Sept 2012. Computing resources provided to the
project by the OU Supercomputing Center for Education and Research (OSCER) included 120 cores on an Intel
Harpertown Xeon cluster (Sooner) from August 2011 to March 2012 and then 64 cores on an upgraded Intel
Sandy Bridge Xeon cluster (Boomer) from March to September 2012. Although the computer and forecast
system are an academic systems without 24/7 support, about 92% percent of forecasts ran to completion. An
additional 1.5 % of forecasts ran but not to completion. Lost forecasts were due to unscheduled computer
outages or networking downtime that led to loss of needed background or boundary condition data.
Verification of the OU production runs is presented as part of section 5.2.
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Figure 4-4, Map of the CAPS 3-km forecast domain (1200 x 1080 km), with the WFIP-South Study Area in the inner box.
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Figure 4-5. Vertical spacing of mass and horizontal wind levels in the lowest 500 m. Left: the ARPS production runs for WFIP, right: typical
vertical spacing in real-time high-resolution models.
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Figure 4-6: Schematic of data assimilation and forecast timeline for a sample run time (1200 UTC) showing IAU applied with a triangular time
weighting scheme in the 15-min pre-forecast period and a 12-h forecast.

4.13 TTU

The TTU WFIP modeling system used for WFIP is the Advanced Research WRF model version 3.3 (Skamarock et
al. 2008). The model physics used for all experiments are the Yonsei University (YSU) PBL scheme (Hong et al.
2006), the Kain-Fritsch cumulus parameterization (Kain and Fritsch 1990, Kain and Fritsch 1993), the Noah land
surface model (Chen and Dudhia 2001), Thompson microphysics (Thompson et al. 2004), the Rapid Radiative
Transfer Model (RRTM) longwave radiation scheme (Mlawer et al. 1997), and the Dudhia shortwave radiation
scheme (Dudhia 1989). All model integrations use 38 vertical levels and are performed at 12-km grid spacing
(with the exception of the runs performed on the 36-km domain that provide BCs for the 12-km EnKF
experiments). Ensemble boundary conditions for the 36-km domain are produced through perturbations
about the GFS global model described in Torn et al. (2006). For the GSI experiments, the boundary conditions
are provided by the GFS model every 6 hr to the 12-km domain.

This TTU effort utilized both an EnKF and a 3DVAR data assimilation system. The EnKF employed is the Data
Assimilation Research Testbed version (DART, Anderson et al. 2009). It uses the ensemble adjustment Kalman
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filter (Anderson 2001) technique, which Anderson (2001) showed performs better than the traditional EnKF.
To mitigate the effects of small sample size (Anderson and Anderson 1999), adaptive prior covariance inflation
(Anderson 2009) in space and time are employed, as well as a Gaspari-Cohn localization radius (Gaspari and
Cohn 1999) in both the horizontal and vertical direction. EnKF covariances are purely flow-dependent and
calculated from the ensemble. The ensemble size is 50 members, which is the same ensemble size within the
real-time Texas Tech ensemble prediction system (TTEPS) that is able to run operationally on a large
computing cluster. Every assimilation experiment for WFIP ran on a 6-hr cycle. The ensemble is initialized
through random perturbations drawn from climatological covariances within the WRFVAR system (Barker et
al. 2004). Figure 4-7 shows the 12-km domain on which the EnKF system is run. In addition, there is a larger
parent 36-km domain (not shown) that stretches across the majority of the Pacific Ocean used to provide
flow-dependent boundary conditions in the form of a 1-way nest to the ensemble members on the 12-km grid.
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Figure 4-7. The 12km modeling domain used in this study. The black circle indicates the ramp verification area containing the 80-m
meteorological towers, and the black box shows the verification area for the month-long experiments. A typical distribution of routine
assimilated observations is also shown by the colored circles.

The 3DVAR system employed in WFIP is that of the WRF-based Global Statistical Interpolation system Version 2 (GSI, WRF Developmental

2 (GSI, WRF Developmental Testbed Center 2010). Analogous to the EnKF, the GSI possesses a number of specific parameters that affect the
specific parameters that affect the horizontal and vertical extent of analysis increments (similar to EnKF localization), and a weight placed on the
localization), and a weight placed on the first-guess variance (similar to EnKF inflation). GSI covariances are static and are generated using the
static and are generated using the NMC method (Parrish and Derber 1992) with NAM 12km model forecasts. Both data assimilation and

Both data assimilation and forecasts within the GSI 3DVAR system occur over the same domain shown in Figure 4-7. BCs to the GSI 3DVAR
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forecasts are provided by the GFS. Both the EnKF and GSI data assimilation parameters are tuned since the quality of analyses and forecasts in
each system depend on these variables and can vary with, for example, different domain sizes and terrain complexity. The tuning procedure
was performed by cycling the assimilation system for a range of parameter values over a week of data assimilation cycles during the month-long
verification period of December 2011 used in this study (28 assimilation cycles). Extended 24-hr forecasts were produced from each analysis,
and the mean absolute errors measured against domain-wide surface-based and rawinsondes wind observations, averaged over all assimilation
cycles were inspected to choose the optimal parameters. The tuned parameters were those that produced the smallest errors over the forecast
period. These parameters were tuned specifically for optimal wind forecasts, and different parameters might exist that optimize other forecast
aspects (although the same parameters found to optimize wind forecasts also optimized temperature forecasts). For the EnKF, the inflation
parameters (6 total) and both the vertical and horizontal localization radii were tuned. For GSI, there are three parameters that weight the first-
guess variance and control vertical and horizontal localization. Unlike the EnKF, for which a single parameter value collectively addresses all
analysis variables, the GSI parameters exist independently for the following analysis variables: streamfunction, velocity potential, temperature,
surface pressure, and specific humidity. In turn, a very large number of runs were required to tune these parameter values. Figure 4-8 shows an
example of two such tuning runs, one associated with the vertical localization within the EnKF, and the other associated with the horizontal
localization within the GSI. Three parameter values are shown in each example, with the optimal value depicted by the black line. The final
tuned values for both the DART EnKF and GSI 3DVAR systems are shown in

Table 4-7.
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Figure 4-8. Two examples of tuning runs for DART EnKF vertical localization and GSI 3DVAR horizontal localization performed over the first week
of December 2011.

A variety of experimental runs were performed in order to compare the performance of the DART EnKF and
GSI 3DVAR, and to test the observational impacts of both mesonetwork surface data and profiler/SoDAR
observations in each system. Two sets of experiments were performed: 1) a month-long continuously cycled
integration during December 2011, and 2) individual periods of cycled assimilation runs that capture 10
individual wind ramp events (more specifically, 7 up ramps and 3 down ramps). High priority wind ramps for
sensitivity studies were selected based on their internal ramp thresholds over the winter 2011/spring 2012
season. Each of these wind ramps were synoptically forced, either through frontal/dry line passages or
synoptic-scale forcing of the surface pressure field, and do not include ramp cases from other phenomena
such as convectively-driven outflow events or LLIs. A series of 24-hr forecasts were run from all analyses for
both the month-long integration as well as each individual cycling period in order to evaluate any dependence
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of performance on forecast lead time. Furthermore, for each cycled integration, a spin-up period of 2 days
was run on a 6-hr assimilation cycle in both the EnKF and 3DVAR systems, mostly to allow flow dependence to
build within the EnKF runs.

Table 4-7. Parameter values for the DART EnKF and GSI 3DVAR systems

DART EnKF
Horizontal Localization 500 km
Vertical Localization 5km
Inflation:inf_initial 1.02
Inflation:inf_sd_initial 0.9
Inflation:inf_damping 0.9
Inflation:inf_lower_bound 1.0
Inflation:inf_upper_bound 10000000
Inflation:inf_sd_lower_bound 0.9
GSI 3DVAR
as_op 0.5,0.5, 0.25, 0.35, 0.35
vVS_op 1.5
hzscl 0.1,0.2,0.4

The month-long runs are verified through mean absolute errors against wind observations from surface
METAR stations (scattered throughout the black box in Figure 4-7). The wind ramp events are verified against
wind observations from twenty 80-meter meteorological towers located at WGRs (contained within the black
circle in Figure 4-7). Four aspects of the wind ramps are used to measure the forecast skill of each
experimental run: 1) ramp onset, 2) ramp duration, 3) ramp magnitude (that is, the difference between the
minimum and maximum wind speed occurring during the ramp event), and 4) ramp maximum wind speed.
This object-oriented verification approach was taken because large mean absolute errors were found with
wind ramps that possessed relatively small timing errors (but showed otherwise well-forecast characteristics
such as ramp duration and magnitude) compared with other runs that appeared to capture the overall ramp
much less accurately. This verification strategy has the potential to allow wind plant operators to decide
which forecasts are best for their purposes based on the skill associated with the different ramp aspects.
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5 Results and discussion — Forecasting

51 AWST/MESO

Forecast performance can be validated using several different metrics. The choice of metric depends upon
which aspects of the forecast are being validated. Deterministic forecasts are traditionally validated by
computing the MAE, RMSE, and bias with respect to observed wind speed or power production. These error
characteristics highlight the deviation of the forecast from the observed state. The results can be subdivided
by delivery hour, forecast look-ahead hour, and model initialization time to emphasize the performance
associated with a specific subset of forecasts or observations. In this study, observations and forecasts
locations were aggregated to provide an overall regional or system-wide representation of forecast
performance.

The MAE and RMSE metrics are most appropriate for large samples and longer-term trends in time series
datasets. For ramp events or large changes in power production over short periods of time, these traditional
metrics penalize phase errors and reward persistence forecasts. For WFIP forecasts, it was important to
resolve these events given their disruptive nature and impact to system operations. Therefore, in addition to
the standard deterministic power and wind speed forecasts, probabilistic and deterministic ramp forecasts
were also produced.

The deterministic ramp forecasts were validated using a critical success index (CSI, Wilks 1995). The first step
in computing CSl is to define a time window around an observed ramp. If the predicted ramp is forecasted
within the window, either before or after the ramp event, then the forecast is considered a “hit”, otherwise it
is considered a “miss.” When a predicted ramp event does not occur, it is considered a false alarm. The CSl is
calculated as:

hit
- (hit) + (miss) + (false alarm)

csi

(1)

CSl is the ratio of the hits to the sum of the hits, misses, and false alarms. When the CSI=0, it means there are
no hits and therefore there is no forecast skill. When the CSI=1, all the observed ramp events were predicted
with no false alarms representing perfect forecast skill. For the CSl to be a representative forecast
performance metric, a large enough window must be chosen to accommodate some degree of phase errors. A
forecasted ramp event that occurs outside the determined window will be penalized twice; first from
classifying the ramp event as a missed forecast, and second from a false alarm, since the ramp event was
predicted outside of the ramp window. Therefore, for this study, several CSI hit windows were used, offering a
more comprehensive set of results than can be provided by a single window.

An alternative to deterministic ramp event forecasts is probabilistic ramp rate forecasts. The probabilistic
forecasts can communicate a range of possible forecasted outcomes by providing a probability distribution as
a function of ramp rate and probability of exceedance for several ramp rate thresholds. This metric is more
appropriate for determining ramp event forecast performance. For instance, convective weather can cause
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both up ramps and down ramps. A deterministic ramp forecasting system may forecast only one of these
events without the indication of a possible ramp of the opposite sign. On the other hand, a probabilistic
forecast system can show that an up and down ramp are probable and the possibility of persistent conditions
is low. This information cannot be communicated with a deterministic forecast.

To validate the ramp-based probabilistic forecasts, a Ranked Probability Skill Score (RPSS, Murphy 1969) is
used to determine the forecast skill for each ramp rate bin using the Ranked Probability Score (RPS) The RPS
(equation 2) is the sum of the squared deviation of the predicted (P;) and observed (0;) event cumulative

probabilities summed over all bins:
m m
(27)- (%)

n
RPS = 1 z
T on—-1
k=1 I=1

m=1

2

(2)

The RPSS (equation 3) contains the ratio of the RPS of the probabilistic forecast to that of the climatological
probabilities (based upon the period December 1 2011 through Sept 1 2012) and used as a reference in this
study:

RPSForecast

RPSCHmo

RPSS = 1-— (3)

The RPSS represents the improvement of the ramp probability forecast over the climatological ramp
probabilities. A RPSS value less than zero indicates the reference (climatological) forecast has more skill than
the actual forecast while values greater than zero indicate greater forecast skill than the reference
(climatological) forecast. For completeness, a RPSS contribution metric was also computed to determine the
contribution of each ramp rate bin RPSS to that of the RPSS for the whole sample of all ramp rate bins.

In addition to RPS and RPSS, probability-based forecasts can also be verified using a reliability diagram, which
compares forecasted probability to the observed frequency of an event. This metric can communicate
information about biases in the probability forecast for a sample of events. A forecast exhibits perfect
reliability when the forecast probability of an event equals the observed frequency. When the observed
frequency is less (greater) than the forecast probability, the forecast shows a positive (negative) bias.

5.1.1 Deterministic forecast performance.

The nine AWST high-resolution models produced 13-hour forecasts'® every two hours for each forecast
location for one year. During the project, most of the NWP runs had high availability. Both the ARPS 3DVAR

18 Note, as set forth earlier (see section 4.1.1), there were two forecast types: a bi-hourly model forecast and a 15-min delivery
forecast. The WFIP models were run out 13 hours every 2 hours for each model member; the bi-hourly forecast were then used to
generate a deliverable 6 hour forecast every 15 minutes using the 3 bias correction methods
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and the WRF members (excluding the WRF EnKF) had the highest forecast availability around 94% (Figure 5-1)
due to their previous use in an operational setting before the beginning of the project. The EnKF initialized
members were missing BCs and ICs from the continued development of the EnKF forecasting system and
resulted in both high-resolution members having lower forecast availability (60 - 75%). The HRRR forecast
model states were generated sequentially by forecast hour at ESRL. The HRRR availability was much higher for
forecast in the first 1-6 hours after model initialization and decreased sequentially for longer forecast hours
due to missing model state data for longer forecast times.

WFIP Member NWP Forecast Sample Size
November '11 - September '12
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Figure 5-1. Forecast system sample size as a percent of maximum number of possible model runs for the each of the 10 high-resolution WFIP
NWP members.

The raw NWP model forecasts were used to characterize initialization error and performance since they do
not include the impact of either recent observations or bias correction. The RMSE of the system-wide WFIP
aggregate power production forecast from each raw NWP ensemble member and the HRRR is shown in Figure
5-2. At the beginning of the forecast period, the MASS members have the lowest short term forecast error.
This result was most likely due to the four-hour nudging scheme and warm start model initialization that
prevented the model from drifting out of dynamic balance after data assimilation. The HRRR, ARPS 3DVAR,
and ARPS ADAS forecast members also had a lower forecast error compared with the WRF and EnKF initialized
members at the beginning of the period.

There is a rapid decrease in error (~4% of capacity) within 30 minutes after observation assimilation for the
ARPS members that may be attributed to the assimilation of radar data resolving convective features not
present in the course resolution IC. ARPS, MASS and the HRRR also had the lowest error during the end of the
forecast period. The EnKF ensemble members had the highest forecast error (18-22% of capacity) most likely
due to the lower resolution of the EnKF forecast system used as IC and BC (which could not resolve the
mesoscale phenomena as well as the RR which was also used as IC and BC for the high resolution members).
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The results for the system wide WFIP aggregate wind speed RMSE are similar to that of power (Figure 5-3).
The wind speed verification only shows minor differences in performance when compared to power
verification. All models showed a general increasing trend towards a positive bias during the forecast period
(see Figure 5-4). The ARPS model had the greatest negative bias at the beginning of the forecast period (at -
10% of capacity), most likely from biases in the assimilation system, while WRF and HRRR consistently showed
a high positive bias (5% of capacity) in the aggregate power forecast (which has been documented in Mass
2011). The MASS model, that was warm started and included a nudging scheme, had the lowest model bias (0-

4 % of capacity).

WFIP Member NWP Forecast RMSE
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Figure 5-2. Root Mean Square Error (RMSE) of 0- to 13-hour power production forecasts for the WFIP system-wide aggregate as a percent of
nameplate capacity for the each of the 10 high-resolution WFIP NWP members. The “zero” represents the time of model initialization,
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Figure 5-3. Root Mean Square Error (RMSE) in m/s of 0- to 13-hour capacity-weighted forecasts of average 80-m wind speed for the WFIP
system-wide aggregate for the each of the 10 high-resolution WFIP NWP members. The “zero” time represents model initialization.
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WFIP Member NWP Forecast Bias
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Figure 5-4: Bias of the 0- to 13-hour power production forecasts for the WFIP system-wide aggregate as a percent of nameplate capacity for the
each of the 10 high-resolution WFIP NWP members. The “zero” time represents model initialization,

The unadjusted forecast method verification is shown in Figure 5-5 (top) and differs from the forecast
verification shown in Figure 5-2 as follows: (1) forecasts are issued every 15 minutes instead of every 120
minutes (2 hours), (2) the forecast extends 360 minutes (6 hours) being at the first 15 minute interval instead
of 780 minutes (13 hours) beginning at the time of initialization, and (3) missing NWP model data are
substituted using an older NWP run to generate the 15-minute forecast (up to 2 previous runs). ARPS (3DVAR,
ADAS) and HRRR were the best performing unadjusted methods with the lowest RMSE (13 -14 % of capacity in
Figure 5-5 (top) for a 360 minute (6-hour) forecast, followed by the MASS and WRF (MYNN, UW) models.

The unadjusted forecasts are produced from model runs that are only available for bias correction in real-time
(see Figure 4-3). These forecasts exclude the first two hours of model integration generated while the model
members are running. Unlike the unadjusted forecasts, the previous initialization results include these data
from the latest model cycle and are not representative of the current real-time forecast system. Similar to the
NWP initialization performance results (Figure 5-2) the EnKF initialized members (WRF and ARPS) had the
highest forecast error of 18-22% of capacity (Figure 5-5 (top)).

The MOS forecasts were also created every 15 minutes using a time-weighted bias correction technique and
recent power observations (Figure 5-5 (bottom)). The MOS technique can remove the systematic bias that was
displayed in Figure 5-4. The improvement between the unadjusted and MOS forecasts is quite dramatic since
recent power observations lower the RMSE significantly (removing up to 85% of the error in the first 15
minute forecast). The improvement is most notable in the 1- to 3-hour time frame when a persistence forecast
is expected to be a good predictor. For the remaining 3 hours, ARPS (3DVAR, ADAS), WRF (MYNN, UW) and
MASS members perform the best, with the HRRR and EnKF initialized forecasts (ARPS and WRF) having a
substantial (2-5% of capacity) higher RMSE.

The forecast bias for the unadjusted and MOS methods is shown in Figure 5-6. A substantial amount of
systematic bias has been removed by applying the MOS method, leaving the non-systematic counterpart. The
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most dramatic bias reduction is for the HRRR forecast. The unadjusted HRRR has a very positive high bias while
the HRRR MOS method has a slightly negative bias. Overall, the magnitude of the bias for all unadjusted
methods is greatly reduced by MOS.

WFIP Member Unadjusted Aggregate Forecast Performance
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Figure 5-5: Forecast system aggregate power RMSE as a percent of nameplate capacity for unadjusted (top) and MOS (bottom) 15-minute
forecast methods for each of the high-resolution WFIP NWP members.
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WFIP Member Unadjusted Aggregate Forecast Bias
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Figure 5-6: Forecast system aggregate power bias as a percent of nameplate capacity for unadjusted (top) and MOS (bottom) 15-minute forecast
methods for each of the 10 high-resolution WFIP NWP members.

Table 5-1 summarizes the forecast error of the 6-hour forecast for each of the three 15-minute forecast
methods. “Unadjusted” clearly has the highest forecast error as no bias correction is applied. The PA method,
which applies a very basic bias correction, does not perform as well as the more dynamic, time varying bias
correction method which is used in MOS. Overall, the HRRR member has the lowest forecast error when the
PA method is applied while the MASS GRELL and WRF MYNN members have the lowest forecast errors when

the MOS method is applied.
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Table 5-1. Time averaged aggregate ensemble member performance for three forecast methods. Error is RMSE as a percent of nameplate
capacity of the aggregate. Larger errors are denoted with darker red shading, The RF MYNN PA method was unavailable during the forecast
project due to an error in the configuration software.

Time Averaged % capacity aggregate RMSE by model and method
November ‘11 — September ‘12

Unadjusted PA MOS
ARPS 3DVAR 13.35 10.49 9.52
ARPS ENKF 18.39 11.86 12.31
ARPS ADAS 13.65 10.85 9.76
MASS NUDGING 15.14 10.58 9.34
MASS OBS DENIAL 15.45 10.82 9.61
MASS GRELL 14.45 10.48 9.17
WRF ENKF 20.14 unavailable 11.60
WRF MYNN 15.55 13.62 9.31
WRF UW 18.03 11.70 9.53
HRRR 13.87 10.07 10.87

5.1.2 Ensemble forecasts.

The individual forecasts were combined to generate an ensemble forecast for each wind plant, regional
aggregate, and the system-wide aggregate. The ensemble forecast algorithm, known as OPTENS, weighted
each of the three methods from each of the 10 different NWP models based on the relative performance over
the previous month.

Figure 5-7 shows the improvement of the WFIP OPTENS versus the OPTENS_STWPF baseline forecast. The
greatest error reduction occurs in the first 90 minutes of the forecast. Beyond 90 minutes, the forecast error
reduction steadily decreases but improvement persists out to 6 hours. The improvement is thought to be due
to the more accurate high resolution WFIP models (with little impact from the assimilation from project
observations, discussed in section Error! Reference source not found.).

To determine the value in adding the HRRR to the ensemble, several historical ensemble forecasts were
generated to include the HRRR (without dynamic weighting as discussed in section 4.1.1). The forecast
performance for each ensemble forecasts is shown in Figure 5-8. The best forecast is obtained using a
dynamically weighted ensemble of all WFIP members (OPTENS_AGG) with the other WFIP methods having a
slightly higher error (~0.5% of capacity over the OPTENS_AGG method). The baseline (OPTENS_STWPF) has
the highest error (8-12% of capacity) even though it is dynamically weighted. The exclusion of high resolution
WFIP members degrades the forecast significantly. This result highlights the improvement in forecast
performance by running a high resolution NWP ensemble. There was very little difference in the performance
of the ensemble forecasts with and without the HRRR. This use of dynamic weighting with HRRR may have
shown better performance in the ensemble.

DE- EE0004420



WFIP South Final Report - Page 56

% Forecast Improvment

40

70%

60%

(%)
o
X

w
o
X

20%

10%

Aggregate WFIP Ensemble Forecast
% Performance Improvement WFIP vs Baseline
Nov '11 - Sept '12

=—9% RMSE IMPROVEMENT

30

60 90 120 150 180 210 240 270 300 330 360
Minutes after forecast delivery

Figure 5-7: Comparison of the percent improvement in forecast performance as a function of forecast look-ahead time using the OPTENS versus
OPTENS_STWPF (baseline) method. The values represent the percent reduction in RMSE of the OPTENS_WFIP over that of the OPTENS_STWPF
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Figure 5-8: RMSE (% capacity) of six ensemble forecasts of the WFIP system-wide aggregate power production (discussed in Chapter 4.1.1 and

Table 4-3).
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Taylor diagrams. One way to graphically summarize how closely the ensemble performance (individual
members and the optimized forecast) matches the observations is through a Taylor diagram (Taylor, 2001).
The similarity between the ensemble performance and observations is quantified in terms of their correlation
(or coefficient of determination—R?), their centered root-mean-square difference, and the amplitude of their
variations (represented by their standard deviations). Thus, Taylor diagrams can be especially useful in
evaluating multiple aspects of model performance in a phase/amplitude space. In Figure 5-9, the black
asterisk (observations) is the benchmark to which the model member/ensemble performance is measured.
Note that the individual model members (un-optimized—no statistical post

WFIP (Entire Domain) 3-hr Forecasts (Cap. Fac. %) Versus Observations
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Figure 5-9. Taylor diagram showing individual ensemble member, STWPF (open upside down black triangle), and WFIP (optimized
ensemble, depicted by the open green triangle) 3-hr forecast performance as compared with observations (black asterisk). Thin
grey solid lines represent the centered RMSE, black dotted lines depict the coefficient of determination (R2), and blue dotted lines
show the standard deviation.
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processing) show considerable scatter in the phase/amplitude space, with the MASS and HRRR members
performing best. There is also significant increase in overall skill shown by the WFIP ensemble as compared
with the baseline STWPF, with definitive movement towards minimizing RMSE, increasing R?, and capturing
observational variability.

5.1.3 Probabilistic Ramp Rate Forecasts

The deterministic ramp forecasts discussed previously cannot communicate the likelihood of occurrence or
likelihood of different ramp event scenarios. Therefore, 6-hour probabilistic ramp event forecasts were
created every 15 minutes. The probabilistic ramp event forecasts contain the probability of exceedance for
several ramp rate thresholds and a probability distribution of ramp rates. These probabilistic ramp forecasts
were compared to an operational ELRAS ramp forecasting system based on the ARPS model.

A reliability diagram shown in Figure 5-10 compares the predicted ramp rate probabilities to the observed
frequency of occurrence. For most of the distribution, the forecasted probabilities are similar to the expected
frequency with two exceptions. First, in the 20-60% probability range the probability forecasts of most
members show a high bias of about 10%, forecasting higher probabilities than the observed event frequency.
Second, the ARPS members show a high bias in the 90-100% probability bin. These results indicate that for the
most part, the probabilistic ramp event forecasting system generates reasonable probabilities within 10% of
the actual observed frequency.

e ARPS 3DVAR
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Ramp Rate Reliability Diagram
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Figure 5-10: Reliability diagram for all individual WFIP member ramp forecasts, and ramp forecasts generated from a combination of WFIP
forecast members (all, best 3, all w/o HRRR). For reference, a perfect forecast is shown in orange.

DE- EE0004420



WFIP South Final Report - Page 59

The probabilistic ramp forecasts were also verified using the RPSS to determine how well each of the
probabilistic ramp forecasts performed compared to climatology. The results show that the ensemble forecast
methods produced a more accurate probabilistic forecast of 60-minute ramp rates than any one of the single
forecast member methods (Figure 5-11). There is on average a 20% improvement in RPSS (forecast skill) of the
ensemble forecasts (‘Best 3’, ‘All’) over the best performing single member methods (i.e. HRRR, MASS). This
result highlights the additional value from using an ensemble to generate a probabilistic ramp forecast. Of the
single member methods, the HRRR probabilistic ramp forecast performed the best followed by the MASS and
WRF (MYNN, UW) forecast members. The ARPS (3DVAR, ADAS) and EnKF members (ARPS, WRF) performed
poorly, mostly due to the higher false alarm rate. The baseline ELRAS also performed poorly when compared
to the other WFIP members (grey line in Figure 5-11).

The RPSS results shown in Figure 5-11 help determine the predictive skill of the ensemble forecast system
based on its members for a particular ramp rate period and look-ahead time but do not differentiate forecast
skill between varying ramp rate thresholds. The RPSS contribution (discussed in section 5.1) for 60-minute
ramp rates at all look-ahead times is shown in Figure 5-12Error! Reference source not found.. For forecasted
events without verifying ramps, the RPSS is negative indicating that climatological ramp probabilities are a
more accurate forecast in persistent conditions. The largest contributions to RPSS occur for larger up and
down ramp events (750-2000 MW/hour), indicating greater forecast skill in predicting ramp events of this
magnitude as compared to ramp events of smaller and larger magnitudes. The contribution is still positive,
but much smaller for the largest binned ramp rates (>2000 MW/hour), most likely due to the small sample size
compared with other bins. The ensemble ramp forecasts tend to perform better than a ramp forecast
generated using a single NWP model as noted by the higher RPSS contribution scores for the ‘Best 3’ and ‘All’
forecasts as compared to the other single model members.

DE- EE0004420



WFIP South Final Report - Page 60

Individual WFIP Member 60-minute RPSS
Dec '11 - Aug '12
20
18 e ARPS 3DVAR
eeeeoe ARPSENKF
16
== = ARPS ADAS
14 MASS NUDGING
12 eeeese MASS OBS DENIAL
00000 oo esre ™ -
a et et T, T MASS GRELL
e 10 T
pand s \\/RF ENKF
8 eeeese WRFMYNN
== == \WRFUW
6
: @» @» o All w/o HRRR
2 ELRAS
e HRRR
0
15 45 75 105 135 165 195 225 255 285 315 345 ®esoeeBest3
Forecast Minutes

Figure 5-11: Ranked Probability Skill Score (RPSS) for all individual WFIP member ramp forecasts, and ramp forecasts generated from a
combination of WFIP forecast members (all, best 3, all w/o HRRR).

5.1.4 Data denial experiments.

To determine the impact of project observations on forecast performance, several additional historical
forecasts were performed for two 30-day periods: one in December 2011 and the other in April 2012. The
forecast performance based on RMSE for WFIP system-wide aggregate power production forecasts is shown
separately for December (Figure 5-13, top) and April (Figure 5-13, bottom). It is important to note that while
the type and amount of data assimilated varied among the experiments, the RR dataset was used for ICs and
BCs in all of the experiments and the RR runs assimilated all project data.

For these experiments, there is only a marginal impact from project observations. This result is most evident
by comparing the run that included the assimilation of the project data (ARPS All Obs) with the run that did
not include the assimilation of these data (ARPS Obs Denial). The improvement is most prominent in the first
30 minutes after initialization time (ARPS All Obs RMSE decreases 2% of capacity). These results also are also
similar for aggregate wind speed verification (Figure 5-14).
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Figure 5-12: Ranked Probability Skill Score (RPSS) contribution averaged over all forecast times shown by 60-minute ramp rate. RPSS
contribution is shown for all individual WFIP member ramp forecasts and ramp forecasts generated from a combination of WFIP forecast
members (all, best 3, all w/o HRRR). Observed ramp magnitude values along the x-axis are in MW/hour units.

Data from instrumentation deployed for WFIP in the southern study area produced only marginal
improvements in power production forecasts. This minimal impact may be caused by a number of factors
including the weather regime, assimilation system, and configuration of the NWP model. The project
observations would likely have more impact if assimilated using regime-dependent instead of isotropic
structure functions in the NWP modeling systems. Such functions vary for specific weather events and more
accurately represent how observations influence the analysis of model parameters at nearby grid points
(discussed later in this section).

An additional ESRL historical reanalysis period was also run using a set of RR runs for BC and IC that did not
assimilate project observations. The ARPS model was run in two different configurations: ‘ARPS All Obs’
assimilated all observed data and ‘ARPS Obs Denial’ assimilated only non-project observations. The key
difference for these runs was the use of the RR model for ICs and BCs that did not assimilate project data. The
forecast errors for the WFIP system-wide aggregate power production and wind speed forecasts are shown for
the first week of December (Figure 5-15). The results are very similar to that of the previous December 2011
and April 2012 historical runs showing little to no impact of project observations on the forecast performance
for the period.
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Figure 5-13: The RMSE of power production forecasts for the WFIP system-wide aggregate for the AWST data denial experiments for a 30-day

period (top) December and (bottom) April.
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Figure 5-14: The RMSE of capacity weighted average wind speed forecasts for the WFIP system-wide aggregate for the AWST data denial
experiments for a 30-day period (top) December and (bottom) April.
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Figure 5-15: RMSE of forecasts of the WFIP system-wide aggregate (top) power generation (% of capacity) and (bottom) wind speed (m/s) for
data denial experiments that included denial of project data to the ESRL RR data assimilation process for one week in December 2011.

5.1.5 Ramp event analysis

To determine the impact of project observations on specific ramp events, 20 ramp cases were compiled for a
6-month warm season period and a 6-month cold season period (Table 5-2). The ARPS model was run in rapid
update mode with 13-hour forecasts generated every 2 hours beginning 6 to 8 hours before each ramp event.
This strategy yielded several sets of overlapping runs for each ramp case.

For each ramp event, several experiments were performed: (1) a forecast in which ARPS assimilated all
observations and (2) a forecast in which ARPS assimilated all observations except project observations. A 9-
hour deterministic ramp forecast was generated at 15-minute intervals for the entire forecast period for each
experiment. The CSI was computed to determine impact of observation assimilation on the performance of

deterministic ramp forecasts.
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Table 5-2: List of days covering each ramp event during the winter and summer periods. An asterisk (*) denotes that more than one ramp event

occurred during the listed date.

Cool Season Cases Warm Season Cases
2 November 2011 * 31 March 2012

8 November 2011 7 April 2012

16 November 2011* 15 April 2012*

3 December 2011 17 April 2012

26 December 2011 25 April 2012

30 December 2011 — 1 January 2012* 6 May 2012

28 January 2012 20 May 2012

29 January 2012 16 June 2012

20 February 2012 — 21 February 2012* 15 July 2012

8 March 2012 7 September 2012

5.1.6 Ramp Verification

Although the data denial experiments indicated that the assimilation of project observations had very small
impact on the wind speed and power production forecasts over the entire data denial experiment period, it
was still possible that the assimilation of observations may improve the skill of ramp event forecasts.
Therefore, deterministic ramp forecasts were created for several observed high magnitude ramp events
occurring within two 5 month periods (Table 5-2). Then, CSl results were generated to determine if there was
an improvement of the deterministic ramp event forecasts from the assimilation of project observations.

The results for the winter and summer ramp cases are shown in Figure 5-16. For both periods, there is an
improvement in the CSI for the 1- to 3-hour forecast when project observations were assimilated (ARPS All
Obs) compared with no assimilation of project observations (ARPS Obs Denial) for both 60-minute (Figure
5-16a) and 180-minute (Figure 5-16d) ramp rates. The improved CSI scores (40% for previous examples) for
the ARPS All Obs forecast highlights the importance of project observations to ramp prediction in the 1- to 3-
hour forecast time, although, other periods and ramp rates did not show conclusive results.

Overall, the improved CSI results in the 1- to 3-hour forecast time frame when the project data were

assimilated are in contrast to the impact of the assimilation of project data on the wind speed and power time
series forecasts shown in the previous subsection.
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Figure 5-16: Critical Success Index (CSl) for ramp event forecasts for the November 2011 — April 2011 (panels a and b) and April 2012 -
September 2012 (panels c and d) periods. Panels (a) and (c) are for 60 minute ramp rates using a 30-minute “hit” window and panels (b) and (d)
are for 180 minute ramp rates using a 60-minute “hit” window.

5.1.7 Phenomena-based model performance

The impact of atmospheric phenomena on model performance can be inferred from diurnal and seasonal
evaluation of forecast error. In the present analysis, we focus on two aspects of power forecast modeling: 1)
the ability of individual atmospheric model members to accurately predict instantaneous wind speeds, and 2)
the power generation forecast of the optimized ensembles.
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Shown in Figure 5-17 is the diurnal forecast speed mean absolute error (MAE) of the WFIP ensemble members
for various forecast hours. Subsets of this data are presented for three seasons: NDJF (November - February),
MAMIJ (March —June), and JASO (July — October). These three seasons correspond to the cool season, spring
transition, and warm season (selected for the dominant modes of characteristic weather disturbances). In
general, we see a maximum of MAE during the overnight hours 04 UTC—12 UTC (10 PM — 06 AM CST), with a
period of rapid decline 12 — 18 UTC (06 AM — 12 PM CST). This pattern is markedly exaggerated during the
transition and warm seasons.
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Figure 5-17. Diurnal forecast speed mean absolute error (MAE) of WFIP ensemble forecast members for varying time-ahead forecast hours.
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The observed and predicted instantaneous power generation was compared for the WFIP and baseline
forecasts, as is depicted in Figure 5-18 and Figure 5-19. Shown in Figure 5-18 is the model capacity factor bias
by time of day and season for forecast hour 2. These results are presented for the WFIP aggregate, McCamey,
Sweetwater East, and East Texas regions. Additional results of the forecast capacity factor for the WFIP
aggregate region as predicted by the WFIP and baseline forecasts for various times ahead are shown in Figure
5-19. The diurnal model errors vary between the WFIP and baseline forecasts, both in absolute magnitude and
distribution. The WFIP optimized forecast has overall bias closer to near-zero values, as seen by the lower
interquartile range and lesser outlier distribution. Although both optimized models show a general over
prediction of regional capacity factor values 10 — 14 UTC (4 — 8 CST), the baseline forecast also exhibits an
under prediction of capacity factor values 0 — 4 UTC (particularly during the transition season, 18 — 22 CST). In
addition, the baseline forecast tends to have extreme outliers in the bias distribution around noon and during

the evening hours (MAMJ and NDIJF).
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Figure 5-18. Diurnal capacity factor bias for the WFIP (left) and baseline (right) forecasts, decomposed by region and season. Seasons are as
follows: November, December, January, and February (NDJF, red), March, April, May, and June, (MAMJ, green), and July, August, September,

and October (JASO, blue).
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Figure 5-19. Diurnal mean absolute error (MAE) of capacity factor for the WFIP (left) and baseline (right) forecasts, decomposed by season and
time-ahead forecast hour. Seasons are as in Figure 5-18: NDJF (dashed red), MAMIJ (solid green), JASO (dotted blue).

The 15-minute change in capacity factor was also evaluated for the WFIP and baseline forecasts, shown in
Figure 5-20 and Figure 5-21. The diurnal distribution of model errors varies between the WFIP and baseline
forecasts. The baseline forecast shows a clear diurnal signal, with MAE values varying between 2-5 %. In the
baseline forecast, there is strong over prediction of 15-minute ramp values at 02 — 04 UTC (08 PM — 10 PM
CST) and under prediction at 14 — 16 UTC (08 AM — 10 AM CST). The WFIP forecast exhibits near-zero median
bias for all hours. A relatively small and randomly distributed bias allows for less than 2% mean absolute error
in predicted capacity factor, with the largest errors during the late morning, as evidenced by the peak values

at 14 —16 UTC (08 AM — 10 AM CST).

Through analysis of the diurnal and seasonal patterns of wind speed and capacity factor bias described above,
one can deduce the boundary layer atmospheric processes responsible for coherent patterns in model
forecast underperformance. The analysis below will focus on the following diurnal periods: overnight, mid-

morning, and evening.
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. Overnight. During the overnight hours, there is an increase in model speed MAE (particularly during
the warm season. The time of day and seasonal fluctuation suggest that this pattern is likely associated with
low-level jet development. The pattern is less readily seen in the distribution of model capacity factor from the
ensemble forecasts, likely due to model output statistics (MOS) applied to optimize the forecast system.
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Figure 5-20. Diurnal bias of the 15-minute change in capacity factor for the WFIP (left) and baseline (right) forecasts, decomposed by region and

season. Seasons are as follows: NDJF (red), MAMIJ (green), JASO (blue).
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Figure 5-21. Diurnal mean absolute error (MAE) of the 15-minute change in capacity factor for the WFIP (left) and baseline (right) forecasts,
decomposed by season and time-ahead forecast hour. Seasons are as follows: NDJF (dashed red), MAM!J (solid green), JASO (dotted blue).
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. Mid-morning. During the mid to late morning hours, there is a sharp decrease in the forecast speed
MAE, and concurrent peak in the 15-minute change in model capacity factor MAE. Also evident during this
time frame is an overall high bias of model instantaneous capacity factor values. This period corresponds to
the morning transition. During the morning transition, the boundary layer evolves from a thermally stable,
high-shear environment to one with increasing instability and convective mixing. During this time, momentum
is transferred from higher levels to nearer the surface and surface wind speeds increase. In the cold season,
this boundary layer transition is shifted later in the morning hours due to a number of factors, e.g., lower sun
insolation angle, later sunrise, and stronger nighttime surface inversions. These peak values of MAE during the
morning transition hours show a clear seasonal trend in both the WFIP and baseline forecasts, demonstrating
that the diurnal pattern of model error is phenomena-based.

. Evening. The nighttime under prediction occurs during the hours of the evening transition, a time
during the first few hours after sunset in which the rate of radiative cooling is maximized. During this time,
turbulent mixing becomes confined to a shallow, stable layer near the surface. It is surmised that the under
prediction in capacity factor during these hours may be due to insufficient model resolution of the stable
layer, within which low-level winds are still greatly affected by surface frictional effects.

,Various atmospheric processes contribute independently or in concert to the forecast bias. Overall, for
temporal and seasonal regimes, the WFIP optimized forecast shows great improvement over the baseline
forecast, as evinced by the dampening of forecast error magnitudes. Future work would further evaluate the
model performance bias under varying physical conditions such as mean wind speed, stability, terrain
complexity, and land cover.

5.2 OUCAPS

OU CAPS analysis focuses on a set of sensitivity studies for selected ramp cases. The experiment set included
a configuration withholding the special WFIP surface and sounding data, and forecasts using less dense
vertical grid spacing, spacing that is more typical for convection-allowing models run at this horizontal
resolution. The reduced vertical spacing had 53 levels, 400 m average grid spacing and a cubic stretching
function (see right pane of Figure 4-5). All forecasts in the experiment set have 3 km horizontal grid spacing,
used the same operational weather observations, including radar data, and used the same data assimilation
strategy as the production forecasts.

Verification for the ramp study was done using data from the TTU Tower and at the project wind SoDAR sites
and to measure and visualize high-resolution vertical structure in the boundary layer important for the wind
power forecasts. Verification was done at 80-m AGL, corresponding to the typical wind turbine hub height.

The analysis of the results begins by considering some sample ramp events covering the most typical types,
and then examines the overall statistics over all the WFIP-selected ramp cases. In most ramp cases the results
for the data denial experiment tracked closely to the production forecast, so for clarity the result of that
particular run is not included in many of the figures.

An example of a ramp due to synoptic scale front is shown in Figure 5-22. This case from 30-Dec-2011 shows a
large-scale down ramp over 12 hours that was fairly well predicted by the production configuration (denoted
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“P”, red squares) and the reduced vertical grid spacing experiment (denoted “R”, green, circles). Data from
the TTU Tower interpolated to 80 m AGL is in black. Although, in many cases the reduced-vertical resolution
experiment produces slightly slower wind speeds, in this case there is variation from run-to-run, and the
forecasts with the stronger wind speed seems to be correlated with a stronger initialization. The down ramp
is followed by an up ramp, apparent at 18 UTC and beyond. The increase in wind speed is somewhat under
forecasted by all the forecasts in the experiment set.

A sample spring case from 7-May-2012 showing multiple up- and down-ramps, shows that the observed initial
small ramp well is very well predicted (Figure 5-23 ). There is a down ramp at the 15-hr mark that is over
forecasted in the models, then there is an up-ramp that is depicted well in the forecasts initialized at 18 UTC,
but was poorly handled by the 12 UTC forecasts. In operational use of such multiple forecasts (known as a
time-lagged ensemble) the variation among forecasts with differing initial times could be used as an indicator
of the level of uncertainty in the forecasts.

A summer thunderstorm case from 16-June-2012 is shown in Figure 5-24. This case shows a well-forecasted
up-ramp that rises to more than 20 ms™ in the observations. The forecasts handle short-term wind
fluctuations between the 20- and 30-hr marks remarkably well, although a short-term up-ramp at 16 hours is
missed. The production run with higher vertical resolution produces forecasts of higher wind speeds at peaks.

Figure 5-25 shows that the CAPS ARPS production run had the best scores over the length of the forecast
period, with the 80-m wind speed MAE for all ramp cases increasing from about 2.25 ms™ in the first few
hours to around 3.0 ms™ at 10 hr. Withholding the WFIP surface and profile data produced slightly larger
average errors, about 0.05 ms™ greater in the first 6 hours, then nearly the same, and the reduced vertical
resolution forecasts had errors about 0.15 ms™* more than the production, with the difference decreasing after
about 5 hours. Similar errors and trends were measured at the SODAR sites in the network (not shown),
though at some of the sites the reduced vertical resolution actually showed lower errors than the production
runs in the longer forecast times (8 - 12 hr). This may be due to the distribution of vertical levels above the
boundary layer being superior in the reduced vertical resolution cases thus able to handle better mid-level
waves.

An examination of the vertical extent of forecast errors hints at possible causes in the data denial experiment.
Figure 5-26 and Figure 5-27 show the mean absolute wind speed forecast error (ms™) for the CAPS ARPS WFIP
run and the ARPS run with reduced vertical resolution, respectively. The verification shows there is a gradient
in the error near the 80 m AGL level with greater errors at and above that level. The increase in errors aloft is
reduced in the production run compared to the more typical vertical grid spacing. The more significant
difference there may be due to the fact that the vertical separation of grid levels in the typical configuration
(Figure 5-27) increases more rapidly there and may lose the ability to properly resolve of the top of the
nocturnal boundary layer.
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Figure 5-26. Mean Absolute Speed Error (ms'l) as a function of height and forecast time for all ramp cases for the CAPS Production forecasts.
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Figure 5-27. Mean Absolute Speed Error (ms'l) as a function of height and forecast time for all ramp cases for the reduced vertical resolution
forecasts.

DE- EE0004420



WFIP South Final Report - Page 76

53 TTU

5.3.1 Month-long period sensitivity study

The mean absolute 0-24hr wind speed errors measured against METAR surface observations for the EnKF and
3DVAR month-long experiments, averaged over 120 assimilation cycles, are shown in Figure 5-28. Analysis
errors (0 hour) reflect the fit to assimilated observations prescribed by the data assimilation parameters of
each system and should not be considered an appropriate measure of analysis quality. Throughout the
remainder of the forecast window, however, neither system consistently performs better. In the early
forecast hours prior to 12hr forecast time, the EnKF outperforms 3DVAR.

This difference is largest at forecast hour 7 when the EnKF produces a 3.3% improvement over 3DVAR (1.47
m/s compared with 1.52 m/s, statistically significant at the 85% confidence level using a one-sided Student T
test). In the middle of the forecast window from roughly 12-18 hr, the two systems perform essentially the
same, and by 24-hr forecast time, 3DVAR is slightly better (1.58 m/s vs 1.61 m/s). This improvement late in
the forecast window is less prevalent than the differences found earlier, and is statistically significant at only
the 70% confidence level. Nonetheless, these results suggest the EnKF performs better with regard to surface
winds at 0-12 hr lead times, 3DVAR performs better at lead times greater than around hour 18, and a
transition period exists from about 12-18 hr where neither system outperforms the other.

hMean Absolute Surface Wind Errors
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Figure 5-28. The mean absolute 0-24hr wind speed errors for the EnKF (green line) and 3DVAR (red line) month-long routine observation
experiments averaged over 120 assimilation cycles in December 2011.
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The improved performance at short lead times of the EnKF is likely caused by the flow dependent covariances
it uses during assimilation. Figure 5-29 shows the background field and the analysis increments of both 500-
hPa geopotential height (GPH) and 80-meter meridional (V) wind component for the 1200 UTC December 1,
2011 initialization for EnKF and 3DVAR. At that time an upper-level trough had just moved ashore over the
southwest coast of the U.S., with broad cyclogenesis occurring in the lee of the Rocky mountains in the Texas
panhandle. An arctic surface cold front can be seen surging southward along the east side of the Rocky
Mountains (marked by the wind shift from northerly to southwesterly). This synoptic pattern is described in
Colle and Mass (1995) as one that is commonly associated with strong southward moving cold fronts into the
west Texas region. As expected, EnKF flow-dependent analysis increments exhibit features that are aligned
with both the strong 500-hPa geopotential height gradient at the base of the trough, and along the ridge axis
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Figure 5-29. The 500-hPa background field (black contours, contour interval is 30 m) and analysis increments (shaded) in the
top row, and the sea-level pressure background field (black contours, contour interval is 2 hPa), background 80-m wind barbs,
and 80-m meridional (V wind) analysis increments (shaded) in the bottom row for the EnKF and 3DVAR analyses valid at 1200
UTC December 1, 2011.

extending from the Texas panhandle into Wyoming. EnKF analysis increments at the surface show a clear
signal along the southward surging cold front with values of roughly -7 m s™. The negative values indicate that
the assimilation procedure significantly strengthened the northerly flow behind the front. Also as expected,
3DVAR analysis increments at 500-hPa are in similar locations and possess similar maximum magnitudes, but
are clearly more isotropic in nature and less aligned with flow features at analysis time. This behavior extends
to the surface where 3DVAR is unable to achieve the along-front increment of the EnKF from the assimilated
observation in the north panhandle of Texas. It follows that the EnKF analysis increments that are clearly
more realistic evolve in time to improve early forecast performance over that of 3DVAR.
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6-hr Wind Speed Errors
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Figure 5-30. The mean absolute EnKF (green line) and 3DVAR (red line) wind speed errors for all 120 assimilation cycles in
December 2011 at both 6hr and 24hr forecast time for the month-long routine observation experiments

The improved performance of 3DVAR by the end of the forecast window, however, suggests it is more
efficient than the EnKF in improving the larger scale features in the analysis. Ancell (2012) also showed
roughly a 12-hr window of improvement from forecasts integrated from analyses produced with a high-
resolution EnKF over forecasts downscaled from coarser EnKF analyses. That study speculated that the
improvements in the higher-resolution assimilation run were diminishing near the end of the 12 hour
timeframe because downscaled forecasts begun from improved synoptic-scale analyses aloft from coarser
assimilation were beginning to positively force the near-surface fields. We speculate that the same behavior is
occurring here, and that around 12-18 hr forecast time the improved surface forecasts of the 3DVAR system
must be emerging as the improved governing synoptic-scale flow begins driving the surface fields, dominating
any positive forecast effects of flow dependence achieved by the EnKF. This idea is supported by the
inspection of mean absolute 500-hPa geopotential height errors measured against rawinsonde data in the
month-long verification area (not shown). The 3DVAR run possesses smaller 500-hPa errors at all forecast
times, and whereas errors are slightly smaller from 6 - 12hr (a few meters), they grow throughout the
remainder of the forecast window.
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Figure 5-31. The mean absolute 0-24hr wind speed errors for the month-long control run (black line, routine observations only), the run
that assimilates mesonetwork observations in addition to routine observations (cyan line), and the run that assimlates profiler/sodar
observations in addition to the routine observations (red line) for both EnKF and 3DVAR.

Although the EnKF exhibits better performance on average at 6-12hr forecast time, and the 3DVAR system
shows improved forecasts beyond 18hr, neither system consistently performs better. Figure 5-30 shows the
mean absolute errors averaged over the verification area for all 120 assimilation cycles at both 6hr and 24hr
forecast time. Note that both forecast times show cycles for which the EnKF was better than 3DVAR, and vice-
versa. This provides a good next step to further research into the benefits of each system for surface wind
forecasts. Since the different systems perform better at different analysis times, it is possible the success of
each system depends on specific flow situations, and this will be further evaluated in the future.

Further motivation for this evaluation is warranted since synoptic-scale flow-dependent predictability was
clearly shown in Ancell and McMurdie (2013), and may be manifesting itself here within the different data
assimilation systems.

Figure 5-31 depicts the mean absolute errors for both the EnKF and 3DVAR for the month-long control run
(no mesonetwork or profiler/SoDAR observations, only routine observations) as well as the runs that
independently assimilate mesonetwork observations and profiler/SoDAR observations in addition to the
routine observations. Both systems show the same result - mesonetwork data improves early forecasts, and
SoDAR/profiler observations degrade them. There are essentially no statistically significant impacts from
either observation type beyond roughly 12-hr forecast time in both systems. This lack of impacts beyond 12 hr
for any observation type in either system, either positive or negative, supports the idea that the lower
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Figure 5-32. The background (6-hr forecast) mean wind speed errors for all assimilation cycles measured against 80-m tower
data for EnKF (green line) and 3DVAR (red line), the mean EnKF surface wind speed errors for the same cycles measured against
surface METAR data, and the surface analysis bias for the EnKF control run (black line) as well as the run assimilating
profiler/sodar observations (red line).

atmospheric observation types tested here provide temporary benefits until the influence of driving synoptic
flow becomes dominant.

For mesonet observations, positive impacts were realized in both systems up to about 6 hr forecast time. The
largest improvement from mesonet observations within both systems is at 3hr forecast time, and for 3DVAR is
3.9% (1.47 m/s vs. 1.53 m/s), while improvements are more subtle in the EnKF (2.9%, 1.34 m/s vs. 1.38 m/s).
These improvements are statistically significant at the 85% confidence level.

Since more assimilated observations generally improve forecasts, it is unexpected that the WFIP observations
so clearly degrade early forecasts. However, this issue is likely due to a lower atmospheric slow wind bias.
Figure 5-32 depicts the background (6-hr forecast) mean wind speed errors for all assimilation cycles
measured against the 80-m tower data. For both assimilation systems, the average mean error, or bias, is at
least -4 mph (-1.8 m/s). Figure 5-32 also shows the mean surface wind speed errors for the same cycles
measured against surface METAR data, which shows a significantly smaller but fast wind speed bias of about
0.6 m/s. Lastly Figure 5-32 depicts the surface analysis bias for the EnKF control run as well as the run
assimilating profiler/SoDAR observations. The EnKF experiment that assimilates profiler/SoDAR observations
has a fast wind speed bias (0.73 m/s) that is about twice as large as that of the EnKF run without
profiler/SoDAR observations. This strongly suggests that the removal of the lower atmospheric slow wind
speed bias during assimilation of profiler/SoDAR winds is being spread to the surface through covariance
relationships, producing surface wind speeds that are too large. This results in the degradation of early
forecasts from both systems when profiler/SoDAR observations are assimilated. This underscores a critical
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need to address lower atmospheric model wind bias during assimilation if profiler/SoDAR observations are to
provide value to wind forecasts. Since Ancell (2012) showed simple wind bias removal schemes can improve
analyses but degrade forecasts upon the return of bias during model integration, the development of good
bias removal techniques should be a key focus for wind power forecasting in the coming years. It is also

possible that other physics schemes, such as boundary layer parameterizations, may produce smaller near-
surface wind bias, and this potential solution should also be explored.

5.3.2 Wind ramp forecasts

Forecasts from the EnKF and 3DVAR were compared for 10 wind ramp cases, and surface network and
profiler/SoDAR observation impacts were evaluated in each system for the same ramp cases. Since this
evaluation focuses on specific ramp forecasts, differences among the experimental runs can be quite large.
Figure 5-33 shows an example of the differences between the two systems for one such wind ramp forecast
initialized at 1200 UTC December 2, 2011 valid at a single 80-m meteorological tower. A very large upramp
began around 4 hr into the forecast period, an onset that was captured very well by the EnKF. However, the
EnKF achieved only about half the magnitude of the observed ramp, whereas the maximum winds during the
ramp were well forecast by the 3DVAR run (but were forecast too early). Ultimately, these differences were a
result of each system's evolution of the synoptic features creating the wind ramp. A midlatitude cyclone with
a trailing Pacific cold front tracked over the location of the meteorological tower in the EnKF run, producing a
smooth veering of winds with time (shown in Figure 5-33). The 3DVAR run, however, was associated with a
cyclone track further north, allowing the cold front to track across the observation location and ramp up the
winds more strongly. The 3DVAR wind direction forecast shown in Figure 5-33 reveals the frontal passage by
the wind shift from southerly to westerly, a feature also captured by the observations. Thus, whereas the
3DVAR system seemed to locate the synoptic ramp-producing features better, the EnKF seemed to better
capture their timing, at least with respect to the enhanced pressure gradients involved with higher wind
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Figure 5-33. Example wind ramp speed and direction forecasts from the EnKF (blue line) and 3DVAR (black line) systems

initialized at 1200 UTC December 2, 2011 valid at the location of a single 80 m meteorological tower. The observed wind speed
and direction from the tower are also shown.
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speeds. Similar differences were observed (not shown) between the runs from each system that assimilated
the different sets of observations. In order to more generally understand the wind ramp forecast
performance of each system, as well as that when the different observational assets are included, we now
present composites of the errors for different ramp characteristics.

In terms of ramp magnitude and maximum winds, a consistent picture emerges with regard to the
performance of the two assimilation systems. For all lead times, Figure 5-34 shows the performance of the
EnKF versus 3DVAR, as well as the different observation impacts in each system, for absolute ramp onset (hr)
and duration (hr) errors. Figure 5-35 shows the same comparisons for absolute ramp magnitude (m/s) and
maximum wind speed (m/s) errors. The results are composited by three categories of forecast lead time
(early: 0-9hr, middle: 9-15hr, and late: 15-24hr), and data was placed into each of these forecast lead time
bins based on the forecast hours over which the majority of the observed ramp occurred. Results averaged
over all lead times are also presented in the same figures. Data from all twenty 80-m towers was used for this
composite verification, although there were some cases for which some of the towers had missing data. For
this forecast wind ramp analysis, since statistical significance is very challenging to appropriately apply to a 10-
member sample, we have chosen a rough set of guidelines to reveal the relative performance of the various
experimental runs from the composite of cases used here. Onset and duration errors are viewed as
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Figure 5-34. Example wind ramp speed and direction forecasts from the EnKF (blue line) and 3DVAR (black line) systems
initialized at 1200 UTC December 2, 2011 valid at the location of a single 80-m meteorological tower. The observed wind speed
and direction from the tower is also shown.
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"significant" if they exceed 15 min, whereas ramp magnitude and maximum wind speed errors are viewed as
significant if they exceed 0.5 m/s. These guidelines are also influenced by what we perceive would be
important with regard to error to wind farm operators. It should be noted that without formal statistical
testing, however, these results are only suggestive of the forecast performance of the various runs more
generally.
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Figure 5-35. Ramp timing and duration errors averaged over all wind ramp cases for the EnKF and GSI routine and observation
impact experiments.

Much like the month-long comparison, EnKF and 3DVAR ramp onset and duration errors averaged over all
lead times were similar, but the EnKF showed roughly a 15-min advantage for early lead times, and 3DVAR
showed an advantage at later forecast hours. This advantage for ramp duration was most prominent for
middle forecast lead times at which point it was about 15 minutes, and didn’t occur until late lead times for
ramp onset at which point the improvement was over an hour. The ramp characteristics of onset and
duration identify the timing and structure of the ramp events and the features controlling them (i.e. the front).
Thus, it stands to reason that the same factors influencing the month-long results apply to the ramp cases as
well: the EnKF provides early forecast improvements through flow-dependent adjustments that are
outweighed by downscaling of improved larger-scale structure in 3DVAR at later forecast hours.

In terms of ramp magnitude and maximum winds, a consistent picture emerges with regard to the
performance of the two assimilation systems. For all lead times, and particularly at late lead times, the 3DVAR
system outperforms the EnKF. This likely is a result of the tendency of the mean EnKF forecast to

underforecast wind speeds associated with significant events. This was examined in Ancell (2013), who
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showed that wind speeds involved with synoptic-scale cyclones were underforecast by as much as 10 m/s over
a 48-hr forecast window, and that this issue became worse as lead time increased. The reason for this issue is
that the ensemble mean is not constrained to be on the model attractor, resulting in unrealistic behavior that
favors reduced magnitudes. This suggests that best member techniques that select ensemble members in
some way closest to the ensemble mean might improve EnKF wind ramp forecasts (a technique also shown to
be successful in Ancell 2013). This will be explored in future work. In any case, results here suggest the
deterministic 3DVAR forecasts will most likely be better than an ensemble mean for metrics that are based on
ramp magnitudes at all forecast times.

The data denial experiments produced mixed results. For ramp onset and duration, observation impacts were
negative at early forecast hours within the 3DVAR system for profiler/SoDAR observations, which perhaps is
caused by the bias issue identified with near surface winds in the current model configuration. Mesonetwork
observations were beneficial for early and middle lead time 3DVAR forecasts, but otherwise impacts were
negligible. Within the EnKF, there were improvements in ramp onset errors of about 45 min at late lead
times, and roughly a 15-30 min improvement at middle and late lead times from mesonetwork observations.
Profiler/SoDAR observations also improved EnKF onset errors in late forecast hours by about 45 min but
degraded forecasts of ramp duration by about 15 min throughout the forecast window. It is somewhat
puzzling how assimilated observations can improve one feature of the ramp (timing) but degrade another
(duration) when both aspects might be expected to be strongly correlated for a specific ramp-causing event.
However, the results here suggest this is not the case on average, and that it is possible for an assimilation
system to beneficially adjust the location of a front, for example, but not correct for the magnitude and
intensity of the front in terms of the wind field surrounding it. One method to examine this behavior is
through ensemble sensitivity analysis of different ramp aspects, and this is a planned future extension of this
work. Since profiler/SoDAR observations are unexpectedly degrading duration forecasts in the EnKF, we also
speculate that the lower atmospheric bias issue may play a role.

Observation sensitivity was subtler for ramp magnitude and maximum wind forecasts in both the EnKF and
3DVAR. In fact, 3DVAR essentially showed no significant effect from either observation type at any forecast
time. In the EnKF, observation impacts were positive for both types of observations for short forecast lead
times. This likely is a result of adjustments made during assimilation to account for the unrealistically slow
wind speeds produced by the ensemble mean. No significant impacts were seen at middle or late forecast lead
times within the EnKF. Interestingly, this suggests surface and near surface observations are more efficient at
making adjustments to the timing and structure of ramp-inducing events (onset, timing) than to the
magnitudes of the associated wind field (magnitude, maximum winds).
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6 Accomplishments

WEFIP represents the first large-scale comprehensive public-private collaborative endeavor to investigate how
to improve short-term wind power production forecasting. For the SSA, the coordination between all project
partners—DOE, the NOAA labs (ESRL and ARL), PNNL, NREL, and the SSA team—resulted in the project
meeting all major objectives set forth in the original proposal, This includes

1)

2)

3)

4)

An NWP-based analysis to provide objective guidance for the selection of locations for sensor
deployment for the field campaign;

The setup, testing, establishment, and operation of the full set of the 13 member AWST-based
forecast model run cycles, the OU CAPS ARPS runs and sensitivity analysis, and the TTU EnKF
3DVAR data assimilation tests;

Deployment and operation of all surface (meteorological and flux measurements) and remote
sensing (SoDAR, wind profilers) stations;

Completion of the initial'® economic analysis of cost savings attributable to improved wind power
forecasts.

Final results include

1)

2)
3)
4)

5)
6)

Significant improvement in forecast power production performance for the AWST modeling
ensemble, including
a. adecrease in mean absolute error (MAE) of aggregate power from the WFIP ensemble
versus baseline forecasts with the largest (60%) at hour 1 and smallest (< 20%) after hour 3;
and
b. enhanced project observations resulting in up to a 200% improvement in the critical success
index (CSI) for deterministic ramp;
Identification and analysis of the principal phenomena responsible for significant ramp events
affecting the ERCOT domain;
Insight into of data assimilation scheme performance (TTU) in the context of ramp predictions and
data withholding (TTU);
The value of greater vertical resolution for wind speed and ramp forecasts (OU CAPS);
Successful development of gap-filling techniques for remote sensing instrument platforms; and
Preliminary findings showing significant annualized production cost savings and load payment
savings resulting from the improved short-term forecasts.

Technology transfer: Two project User Group (composed of utilities, ISOs, and other interested stakeholders)
meetings were held in Tucson AZ on 7 February 2012 and Salt Lake City on 27 February 2013. Presentations
were given on project progress and preliminary results. Preliminary and final results and findings were also
presented at other conferences and workshops (see Appendix B).

19 The Department of Energy (DOE) has decided to undertake additional studies to explore the complex interactions between
wind forecasting and power system operations prior to publication of results.
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7 Summary and Conclusions

7.1  AWST WFIP Forecast System

An AWST ensemble of nine high-resolution models and the NOAA ESRL HRRR model were used to produce 15-
minute forecasts for the WFIP southern region. The AWST NWP ensemble featured multiple models (ARPS,
MASS, WRF), different data assimilation methods, and physics packages. A power and wind forecast was then
generated for each ensemble member and wind plant location by applying a statistical bias correction
method. Finally, a single deterministic forecast was generated using an optimal weighting scheme based on
model performance. The ensemble WFIP forecast was then compared to a baseline forecasting system to
examine forecast performance. The baseline power forecast did not use any WFIP ensemble members or
project observations as input, but did include the statistical bias correction and ensemble weighting scheme.
The attributes of the NWP baseline and WFIP ensemble forecast are summarized in Table 7-1. The results
showed a decrease in MAE of aggregate power from the WFIP ensemble versus baseline forecasts with the
largest (60%) at hour 1 and smallest (< 20%) after hour 3 (Section 5.1.1).

The more accurate WFIP forecasts resulted from a combination of factors summarized in Table 7-1. To isolate
the impact of project observations on forecast improvement, several data denial experiments were conducted
(Table 7-2). The experiment with the MASS ensemble member ran for one year as part of the real-time AWST
nine-member ensemble whereas the ARPS historical runs were of much shorter duration (Table 7-2) and
examined several active weather periods.

Results from the real-time data denial experiments showed that assimilating project observations had minimal
impact on overall forecast performance, reducing the aggregate forecasted power RMSE by 0.3 % of capacity.
For historical forecasts, the assimilation of project observations showed little to no improvement in forecast
performance, even when they were withheld from the RR model used for IC and BC. However, project
observations did improve deterministic ramp event forecasts for specific cases with up to a 200%
improvement in the CSI score during certain forecast hours (section 5.1.6). This result suggests that project
observations have value in certain regimes that cannot be readily quantified using metrics such as MAE and
RMSE over large samples.

To improve aggregate statistics of MAE or RMSE over many cases would require sampling the complete suite
of relevant meteorological variables (i.e. temperature, moisture, and wind) over a larger volume of the
atmosphere. A recent study summarizing results from NOAA’s Winter Storm Program suggests that under
sampling is one of several factors that can lead to minimal impact from targeted observing campaigns (Hamill
et al. 2013). In fact, NOAA found that special WFIP observations in the NSA produced a greater impact than in
the SSA. This result was attributed to the fact that more instrumentation was deployed over a wider
geographic area in the northern versus SSA.

Ramp events can adversely impact system reliability. Therefore, accurate forecasts of ramp events can help
system operators anticipate disruptive impacts from large changes in wind generation over short periods of
time. Probabilistic ramp forecasts were produced using each WFIP ensemble member as input and compared
to a baseline ELRAS system. The ELRAS system was composed of a single ARPS member that did not include
IAU after assimilation, but included project observations (Table 7-3). Ramp forecasts using several NWP
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models from the WFIP ensemble more accurately predicted the timing and magnitude of ramp events than

those produced from a single NWP member in EL
ramp forecast was generated with the HRRR mod

RAS (Section 5.1.3). The best performing single member
el as input and benchmarked using RPSS as the performance

Table 7-1: The NWP baseline and WFIP ensemble forecast attributes.

Attribute Baseline

Forecast

Observations Standard observations®
Satellite-derived sea
surface temperatures

WFIP Ensemble Proposed Sensitivity
Forecast Experiment
Standard observations, Baseline with project
Non-project observations

observations?, Project
observations?

Data assimilation  Optimal interpolation 3D variational, nudging Change baseline

method (warm start) assimilation scheme to
nudging

Forecast models MASS ARPS, WRF, MASS Baseline with model
members

Model grid 10 km 5 km Decrease baseline grid

spacing spacing

Ensemble size 2 members 9 members Increase baseline
ensemble size

Initial and GFS/NAM Real-time RR Use real-time RR

boundary boundary conditions

conditions with baseline

Initialization 6 hours 2 hours Increase baseline

frequency frequency

1 Rawinsondess, automated surface observing system stations, buoys

2 Mesonet surface stations, WSR-88D (radar reflectivity), satellite winds

3 Sodars, profilers, Texas Tech tall tower, wind plant towers

Table 7-2: Comparison the of real-t

ime and historical observation denial experiments.

Period Initial and Forecast Product Metric'
Boundary Validated
Conditions
MASS 1 Year Real-time Aggregate power, MAE/RMSE/
real-time (Nov 2011-Sep 2012) Rapid Refresh  wind speed RPSS
(RR) (warm Probabilistic ramp
start) forecast
ARPS 2 Months Real-time RR Aggregate power, MAE/RMSE
historical (Dec 2011, Apr 2012) (cold start) wind speed
ARPS 1 Week Data denial RR  Aggregate power, MAE/RMSE
historical (1-7 Dec 2011) (cold start) wind speed
ARPS Ramp Cases Real-time RR Deterministic ramp Csl
historical (Table 5-2) (cold start) event
1 Detailed metric descriptions in Section 5.1
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Table 7-3: Baseline ELRAS and WFIP ensemble ramp forecast attributes.

Attribute Baseline WFIP Ensemble
ELRAS Forecast Forecast
Data assimilation method 3D variational 3D variational (no 1AU),
(IAU) nudging (warm start)
Forecast models ARPS ARPS, WRF, MASS
Ensemble size 1 member 9 members
Initial and boundary NCEP RUC/RR ESRL Real-time RR
conditions

metric. The improved ramp forecasts were likely due to the larger WFIP ensemble versus the single model
used in ELRAS.

The observation targeting technique used in this study was based on a simplified correlation analysis of time-
lagged forecasts from a single NWP model rather than a more advanced method using the EnKF. The EnKF
uses regime-dependent instead of isotropic structure functions in the data assimilation systems. These
weighting functions vary for specific weather events and more accurately represent how observations
influence the analysis of model parameters at nearby grid points. However, even ensemble based methods
can be limited by small sample (i.e. cases) and ensemble size.

Although the EnKF assimilation system was tested in this study, the limited computational resources
precluded running many ensemble members at high resolution. In addition, the EnKF system as configured for
the project could only assimilate a few types of available observational data at less frequent update cycles. As
a result, the AWST models initialized using the EnKF hybrid method for WFIP produced no significant
improvement in real-time power forecasts. With capability to assimilate all available observations at higher
resolution over much larger numbers of ensemble members, such techniques have potential to improve
model accuracy which would translate to improved wind power forecasts (Schwartz and Zhiquan 2014).

In addition to improved data assimilation and observation targeting techniques, several sensitivity
experiments should be performed as part of future efforts to determine which component of the WFIP system
contributed most to more accurate forecasts. A number of different parameters including the model used,
grid spacing, and other factors (Table 1) should be varied to determine which attributes are most important
for improving forecast accuracy. The current ERCOT operational forecast system is already running a larger
ensemble of NWP models at higher resolution to leverage forecast improvements compared with the original
STWEP.

7.2  OU CAPS sensitivity studies

For the duration of the WFIP field deployment and modeling campaign, OU CAPS contributed unique 12-hour
real-time numerical weather forecasts that included high resolution vertical boundary layer structure, and
assimilated all NEXRAD Doppler radar data in the region and the standard surface ASOS, mesonet, and upper
air data. The CAPS forecasts also included the special observations from the project wind profilers and
SoDARs. The number of vertical model levels in the lowest 200 m was increased to 5 levels from the more
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typical 3 levels. A total of 58 vertical levels were used in the CAPS forecasts. The horizontal resolution of the
CAPS forecasts was 3 km, which is considered the minimum resolution needed to support the explicit
forecasting of thunderstorms.

In addition to providing the high-resolution forecasts to the WFIP real-time ensembles that were evaluated by
AWST, CAPS ran some additional experiments on major ramp event days with two principal goals, 1) to
determine the impact of the special project wind profiler and SoDAR data, and 2) to gauge the effect of the
additional vertical resolution in the boundary layer. Our evaluation of these tests focused primarily on the
Texas Tech University Tall Tower (TTU) in Lubbock, Texas.

At the TTU site we found that the best wind speed forecasts at the wind turbine height (80 m AGL) came from
the CAPS operational forecasts, which included the special WFIP observation data (including the TTU tower
data) and had the high resolution in the boundary layer. The main benefits among experiments were found in
the first 5 hours of the forecasts. The CAPS operational 80-m wind speed forecasts during the ramp days had
mean absolute errors of about 2.25 ms™ in the first 2 hours, with MAE increasing to near 3.0 ms™ at 10 hours.
Removing the special observation data had a small negative effect on the forecasts at this site with
approximately a 0.05 ms™ increase in mean absolute wind speed error. Reducing the vertical resolution in the
boundary layer had a greater impact, with a 0.15-0.20 ms ™ increase in error in the first 5 hours. We also
verified the forecasts using the WFIP SoDAR data at other locations. The results from those sites were similar
although for some cases the reduced resolution forecasts had slightly better results than the higher resolution
forecasts beyond 8 hours. This may be explained by the increased resolution in the boundary layer producing
somewhat reduced resolution of features in the upper layers.

7.3 TTU data assimilation sensitivity studies

The first objective of this study was to compare lower atmospheric wind speed forecasts from a fully flow-
dependent ensemble data assimilation/forecasting system (EnKF), to that of a deterministic 3DVAR system
that uses static covariances. Verification of 24-hr forecasts was performed against surface observations over a
large area including Texas and Oklahoma over a month-long period. Forecasts from each system for 10 wind
ramp cases were also evaluated against 80-m tower data within a relatively small area of existing wind farms
in central Texas. For the month-long period, it was found that 0-12 hr forecasts were better within the EnKF,
likely a result of a more realistic analysis achieved through flow-dependent covariance relationships.
Forecasts from 18-24 hr, however, were better in the 3DVAR system, suggesting that they benefit later in the
forecast from their dynamical links to an improved synoptic-scale flow aloft. Neither system was better than
the other consistently at any forecast hour, however, and understanding whether certain flow regimes are
associated with advantages in the different systems is a logical extension of this work.

Both profiler/SoDAR and mesonetwork observations had little impact on later forecast hours. Mesonetwork
observations tended to improve early forecasts in both the EnKF and 3DVAR and should be considered
beneficial to lower-atmospheric wind prediction, but profiler/SoDAR observations degraded early forecasts in
both systems, a likely result of assimilating lower-atmospheric wind observations in the presence of a lower-
atmospheric slow wind bias. Mitigating this issue can be done by 1) testing different physics schemes, such as
the PBL parameterization, in the hopes of discovering a physics configuration that produces sufficiently small
biases, or 2) developing a bias removal technique that improves the analysis, yet doesn’t degrade forecasts as

it has been shown to do in previous work. Until these recommendations are tested, assimilating
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profiler/SoDAR observations will likely continue to degrade near-surface wind forecasts within the current
modeling configuration, and shouldn’t be used for 0-12hr wind power prediction.

Wind ramp forecast performance showed some similar behavior to that of the month-long experiment. Ramp
onset and duration, which reflect mostly the timing, location, and structure of the synoptic and mesoscale
structures creating the ramps, was improved at early forecast hours with the EnKF, but was improved at late
forecast hours with 3DVAR. In tandem with the month-long experimental results, this implies different data
assimilation systems should be used as the best guidance at different forecast lead times for day-to-day wind
prediction and ramp timing. The effects of nonlinearity, which can cause the ensemble mean to possess wind
speeds that are unrealistically too slow, result in 3DVAR outperforming the EnKF with regard to forecasts of
ramp aspects at all lead times that are associated with wind speed magnitudes (ramp magnitude and
maximum winds during the ramp). Thus, the ensemble mean should not be used for wind prediction for these
ramp characteristics. This will always be an inherent property of the ensemble mean, and “best member”
techniques that select specific ensemble members (typically close to the mean in some way) should be
employed to improve the value of the EnKF forecasts related to wind speed maximum magnitudes. Whether
sufficient improvement in this way can be obtained to become competitive with the better 3DVAR forecasts
shown here is a key question, and will be examined in future work.

Observation impacts on wind ramp forecasts varied. Profiler/SoDAR and mesonetwork observations generally
had very little impact on 3DVAR forecasts of any ramp aspect. The exception was for early and middle lead
time forecasts of ramp duration, which were improved by mesonetwork observations. Aside from early
forecast improvements in the EnKF likely associated with the unrealistic behavior of the ensemble mean, no
significant impacts were seen with regard to ramp magnitude and maximum winds. Both observation types
improved ramp onset forecasts later in the forecast window. Mesonetwork observations also improved
longer lead time forecasts of ramp duration, but profiler/SoDAR observations degraded EnKF forecasts over
the entire forecast window. A planned next step toward understanding the mixed results found here among
different ramp characteristics, assimilation systems, and lead times, is to perform ensemble sensitivity analysis
of the different ramp characteristics used here. It is hoped that such an examination reveals a more detailed
picture of the mixed impacts exposed by the observations used in this study. Observation types and locations
could then potentially be chosen to minimize forecast errors associated with wind ramp aspects deemed most
important to wind power operators. Finally, it should be noted that the results here should be viewed as a
benchmark for further investigation into more advanced assimilation systems, such as 4DVAR or hybrid
techniques, which have the potential to improve forecast over that of both the EnKF and/or 3DVAR.

8 Recommendations

WFIP, a project with substantial breadth and depth in the context of field observations, modeling efforts, and
economic analyses, generated a huge amount of observational data and model output. The analysis presented
here (and in the companion reports presented by NOAA and WindLogics), although comprehensive, is not
complete in the sense of investigating the science, economics, and policy incentives to further the application
and facilitate the use wind power forecasts in the stakeholder community. The results highlighted in the
preceding sections demonstrate that improved model systems, data assimilation methods, statistical post-
processing, and an enhanced (remote sensing) observation network can produce more accurate short-term
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wind power forecasts. However there is still opportunity for significant improvement, and better
understanding (and therefore better parameterizations or better model physics) of the phenomena that drive
the wind and large changes (i.e. ramp events) in the wind field. In particular, additional post-WFIP work
should include:

More comprehensive economic analyses inclusive of all forecasting time scales and indirect cost
savings (some of this work is being considered by DOE as a contingency to release of the economic
studies undertaken by the AWST and WindLogics teams);

Identification of the ultimate recipients of economic benefits;

Additional, more extensive analysis of phenomena responsible for ramp events/outliers by leveraging
one-year’s worth of continuous remote sensing/surface observation field data;

Further analysis of the forecast model performance, including

a. A more in-depth study of the enhanced observation network value, through data denial efforts
focused on particular phenomena (i.e. convectively-driven and LLJs) and the largest ramp
events;

b. An inter-comparison of the data denial experiments for the Northern and Southern Study Areas
that further quantifies the differences (and forecast value) of having a denser network of
remote sensing instrumentation (as in the NSA);

c. Aregime-based analysis (i.e. cold season versus warm season);

Additional sensitivity experiments to determine which component (see Table 7-1) of the WFIP system
contributed most to more accurate forecasts, in terms of overall improvement, regime-based
performance, and selected ramp events (particular focus should be on data assimilation schemes such
as 4DVAR).

General recommendations include:

9

Embrace efforts by DOE and NOAA to use information learned from this project to expand existing
network capabilities or deploy new sensor networks in regions already populated by or undergoing an
expansion of wind farms, or those areas set to deploy such facilities;

Apply lessons learned from modeling sensitivity studies to further enhance forecasting efforts and
reduce power production forecast errors (and increase cost savings) on a variety of temporal and
spatial scales;

Further engage stakeholders (BAs, utilities, ISOs, wind energy non-governmental organizations) in
outreach efforts to better quantify the value of improved forecasts to their interests; and

Ensure that the lessons learned here (e.g. thoroughness of an economic analysis) are applied to future
WEFIPs.
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NREL — DOE/National Renewable Energy Laboratory
NWP — Numerical Weather Prediction

NWS — NOAA/National Weather Service

OU CAPS — Oklahoma University - Center for Analysis and Prediction of Storms
PNNL — DOE/Pacific Northwest National Laboratory
RAP — Rapid Refresh model (run at NOAA/NCEP)

RASS — Radio Acoustic Sounding System

RFI — Radio Frequency Interference

RMSE — Root Mean Squared Error
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RPSS - Ranked Probability Skill Scor

RR — Rapid Refresh model (run at NOAA/ESRL)

RUC — Rapid Update Cycle model

SDSU — South Dakota State University

SoDAR —Sound Detection And Radar

SNR — Signal-to-Noise Ratio

SSA — Southern Study Area (AWS Truepower domain)
STWPF — Short Term Wind Power Forecast

TTU — Texas Tech University

QC — Quality Control

WFIP — Wind Forecast Improvement Project

WPR — Wind Profiling Radar

WRF — Weather Forecasting and Research

3DVar — Three-dimensional variational data assimilation
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