

#### We Put Science To Work

# Fiber Reinforced Composite Pipelines

#### George Rawls

#### Savannah River National Laboratory



#### Hydrogen Transmission and Distribution Workshop February 25, 2014

This presentation does not contain proprietary, confidential, or otherwise restricted information

### Fiber Reinforced Piping for H<sub>2</sub> Delivery

- Impact:
  - Composite pipeline technology has the potential to reduce installation costs and improve reliability for hydrogen pipelines.
- Fiber Reinforced Piping
- The FRP product form consists of an inner polyethylene liner with an outer fiberglass structural layer.
- Existing Technology:
- FRP is an existing commercial technology currently employed in the oil & gas industry
- Commercial product up to 6" diameter and 2500 psig pressure rating.
- Spoolable to ½ mile lengths .



**FRP Product** 



**FRP Installation** 



### Fiber Reinforced Piping For Hydrogen Delivery







**ORNL** Data

### **Burst Testing**

Leak Testing

## **Fatigue Testing**

Fatigue testing over the range of 750 psig to 3000 psig has been completed. The data provides an initial indication on the fatigue life of FRP. A preliminary design fatigue curve has been proposed based the current test data with a design margin applied based on literature review to estimate the variability



**Fatigue Service Degradation** of FRP



Flaw tolerance tests show that for flaws up to 40% through-reinforcement and up to 2 " length and 0.25" width a factor of 3X margin is maintained on rated pressure.





### **FRP B31.12 Codification Effort**

#### B31.12 Codification

- A report summarizing the FRP testing by SRNL and ORNL has been completed. The report will become the basis for ASME Codification of FRP.
- Review comments from ASME, ORNL and the FRP Manufacturer have been incorporated.
- The report will be updated to include the 2014 fatigue testing data and the service experience data from the FRP Manufacturer
- Data was provided to the B31.12 Code Committee in September 2013
- Next meeting with B31.12 is planed for March 2014





#### **Research Need- FRP Fusion Bonded Joint**

- Current Issue
  - The current design relies on O-Ring Seals to ensure a leak tight joint. Current testing has shown that the O-Ring could be a weak link in the design.
  - Pipeline manufacturers have expressed concern about using a mechanical seal that may require maintenance.
- Development Opportunity
  - Develop a FRP fusion bonded joint for the HDPE layer to control leakage. An additional structural layer would be added for pressure integrity.
  - Utilize exiting HDPE bonding techniques for fusion joint.
  - Develop structural layer using current pipe wrap repair technology.
  - Perform burst testing to evaluate structural integrity of joint



#### **Current Mechanical Connector**



**Fusion Bonded HDPE Joint** 



### Technology Demonstration – FRP Hydrogen Pipeline

- Install a 1000' FRP pipeline operating in hydrogen service at a design pressure of 1500psi.
- The pipeline would serve as a test, surveillance and demonstration facility for FRP in fielded hydrogen service.



