

Techno-economic Analysis of Traditional Hydrogen Transmission and Distribution Options

Amgad Elgowainy *Argonne National Laboratory*

Hydrogen Transmission and Distribution Workshop

National Renewable Energy Laboratory Golden, CO

February 25, 2014

Traditional hydrogen transmission and distribution (T&D) options

Cost contribution of components in pipeline T&D

Key factors affecting pipeline T&D cost contribution

Market demand

- Pipeline capacity ~ D²
- Pipeline cost ~ D
- Significantly large demand with solid projection is needed to justify pipeline investment

Labor Cost

- Labor cost contribution is significant (up to 50% of total pipeline cost)
- Find alternative ways to reduce labor cost (e.g., FRP pipeline)

Regional variation

- Labor and ROW cost vary greatly by region
- Pipeline installation may be more economical in certain regions compared to others

Pipe Diameter, Inches

Pipeline Diameter [in]

Distribution Pipeline Costs

Discussion points for pipeline T&D option

- What demand/projection levels and regions justifies pipeline investment?
- What is the cost premium of H2 pipeline over NG pipelines?
- What are the pros and cons of steel vs. FRP pipeline?
 - FRP suitable for high capacity transmission?
- What is the optimum (or permissible) pipeline pressure (and range of operating pressure)?
 - Are service lines permitted to operate at 20 bar everywhere? (implication on forecourt compression)
- What is the trade off between larger pipes vs. need for booster compression?

Discussion points for pipeline T&D option-Continued

- Can pipelines be used as storage?
 - What is the storage capacity and effects of pressure cycling?
- What is the impact or regional availability and suitable type/size of geologic storage?
- Does geologic storage impact hydrogen purity?
- What is the H2 leakage rate (pipeline and caverns) and odorant suitable for FC applications?

Can leakage rate exceed boiloff losses of LH2 T&D?

- What R&D activities are needed to reduce the cost of pipeline T&D and address technical barriers?

Cost contribution of components in LH2 T&D

Energy Penalty and GHG Emissions of Liquefaction

SMR-H2 \rightarrow 12 kg_{CO2e}/kg_{H2}

3	GHG Emissions (g _{co2e} /kWhe)	GHG Emissions (kg _{co2e} /kg _{H2})*	Liquefaction Capacity (ton/day)
California	380	4.5	30
Louisiana	610	7.4	70
Indiana	1070	13	30
New York		0	40
Alabama	580	7.0	30
Ontario	130	1.6	30
Quebec	20	0.20	27
Weighted Average		5.0	
If US mix	670	8.0	
	/ 1	*Assuming liquefaction energy of 12 kWhe/kg_H2	

Gasoline WTW \rightarrow 11 kg_{CO2e}/gal

Discussion points for LH2 T&D option

- What is the surplus capacity of current liquefaction plants in North America (if any)?
 - > What regions/markets can surplus capacity serve?
- What demand/projection levels (by region) justifies liquefaction investment?
 - Which regions have low cost/ renewable electricity or hydrogen as a byproduct of industrial process?
- Is there a difference between current cost (marginal?) vs. cost of depreciating new capital?
- What demand level/rate justifies liquid delivery? (H2 Boiloff rate vs. boiloff losses)

Discussion points for LH2 T&D option- Continued

- What is the impact of trucking distance on cost of delivered H2 and boiloff losses?
- Is there purity advantage of LH2 delivery for FC applications?
- Can liquefaction efficiency be improved?
 - What is the impact of improved efficiency on H2 cost? (capital vs. operating cost)
 - What is the impact of efficiency and electricity source on GHG? (33% renewable requirement in CA)
- Does liquid delivery help with refueling cost reduction?
- What R&D activities are needed to reduce the cost of LH2 T&D and address technical barriers?

Cost contribution of components in tube-trailer T&D

Total T&D cost \$2 / kg_{H2}

Discussion points for tube-trailer T&D option

Terminals for loading high-pressure tube-trailers with large market demand do not exist and are not well understood

- What compression technology is suitable for loading tubetrailer?
- Is there compressors with high throughput and high pressure ratio, while maintaining H2 quality?
- Is liquid pumping an option? What are cost and WTW energy/GHG of liquefaction?
- > What is the loading time? Is precooling required for fast fills?
- What demand/projection levels (by region) justifies investment in tube-trailer terminals?
- What frequency of delivery is practically acceptable for various end use?
- What is the trade off between trucking distance and payload/ frequency of delivery?

Discussion points for tube-trailer T&D option -Continued

- What is the practical/optimum heel (return) pressure for tube-trailer?
- What are the pros and cons of many small tubes vs. few large tubes?
- What are the pros and cons of type III vs. type IV?
- What are the impacts of depth and frequency of pressure cycling?
- What is the tube-trailer lifetime? What is the retesting frequency/cost?
- Does tube-trailer delivery help with refueling cost reduction?
- What R&D activities are needed to reduce the cost of tubetrailer T&D and address technical barriers?

Thank you! aelgowainy@anl.gov