

Data & Communications for Buildings: Interoperability to Enable Efficiencies Across the Energy Value Chain

Steve Widergren

Pacific Northwest National Laboratory

Technical Meeting on Data/Communication Standards and Interoperability of Building Appliances, Equipment, and Systems

1 May 2014

Topics

Proudly Operated by Battelle Since 1965

- Why are we here?
- Enabling building equipment and system interactions
- Framework for describing interactions
- Sample types of interactions
- Existing and emerging ecosystems to advance interactions

Efforts to simplify integration and maintenance

What are we trying to accomplish?

- Large-scale deployment of clean energy technologies requires advanced approaches to address grid integration
- Improved approaches to technologies and deployments of technologies offer new services if appropriately integrated
 - Examples include...advanced power electronics, "grid responsive" building technologies, vehicle-to-grid technologies
- Buildings (and their components) have a large role to play for grid services and variable renewable resource integration, BUT
 - Limited by existing control and coordination technology
 - Need to expand and scale advanced deployments beyond large buildings
- Integrated building solutions must think across the meter
 - Greater energy efficiencies and business efficiencies can be mined through cooptimization approaches

How? Engage stakeholders – Develop common platforms and frameworks – Leverage existing resources – Encourage partnerships

*Inter*operability

Integration at Arm's Length

What do we mean by interoperability?

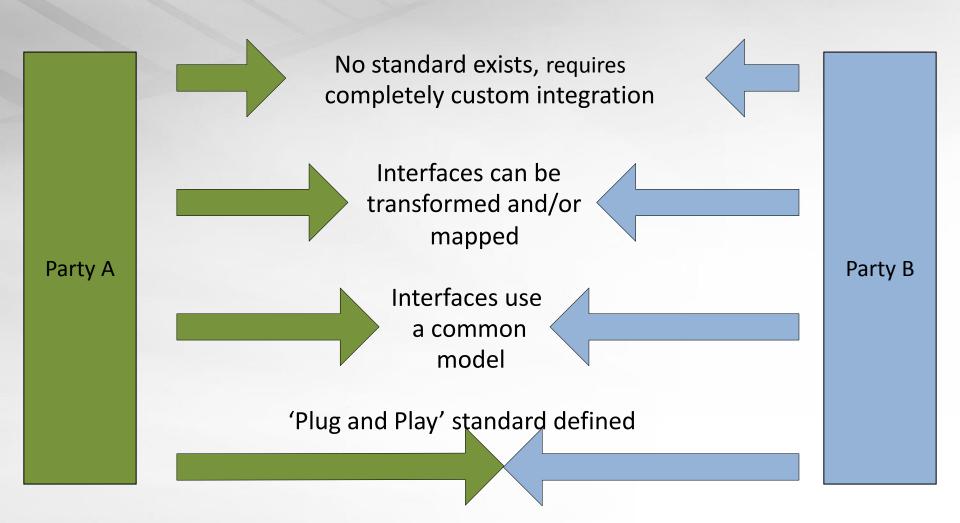
- Exchange of actionable information
 - between two or more systems
 - across organizational boundaries
- Shared meaning of the exchanged information
- Agreed expectation, with consequences, for the response to the information exchange
- Requisite quality of service in information exchange
 - reliability, fidelity, security

Interoperability Benefits

Proudly Operated by Battelle Since 1965

Organization/Human **Business process** Interrelations Issues **Policies Communities Technical/Systems Standards** Inter-connectivity Compliance **Information Semantics Syntax** Data **Business** domains

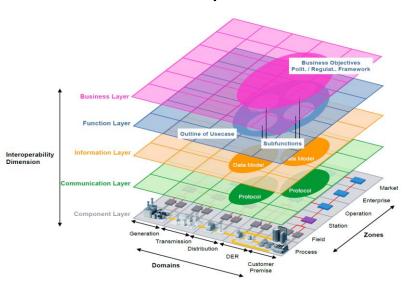
Interoperable Software - Expected Impact:


- Reduces integration cost
- Reduces cost to operate
- Reduces capital IT cost
- Reduces installation cost
- Reduces upgrade cost
- Better security management
- More choice in products
- More price points & features

All items provide compounding benefits

Reducing Distance to Integrate

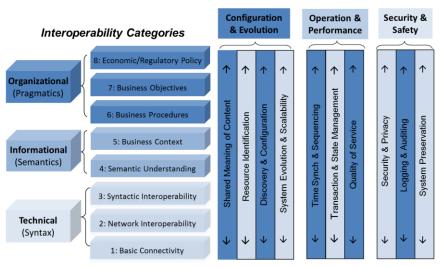
Proudly Operated by Battelle Since 1965


Credit: Scott Neumann, UISol GWAC position paper

Need a Framework for Describing Interactions

Proudly Operated by Battelle Since 1965

- Use case template: title, narrative, actors, information, interaction diagram, etc.
- Conceptual model or architecture
- Standards and guides
- Testing and certification
- Reference implementations


SG-CG Reference Architecture for the Smart Grid CEN, CENELEC, ETSI

SGIP Smart Grid Conceptual Model

Secure Communication Flows
Electrical Flows
Domain

Cross-cutting Issues

GWAC Interoperability Context-Setting Framework

Support a Broad Range of Interactions

Proudly Operated by Battelle Since 1965

Framework for interoperability must enable wide-range of information exchanges, at scale, that is <u>simple</u>, <u>automatable</u> and <u>affordable</u>

The range of exchanges that will become much more transaction-based include:

- Intra-building examples
 - Cap and trade roof-top units to mitigate peak demand charge
 - Tenant s exchange energy allowances from building owner to engage them in efficiency, comfort, and service co-optimization
- Building to third-party services examples
 - Campus microgrid coordination
 - Computation coordinated across data centers to minimize electric bill
 - Commissioning, diagnostics, and maintenance services based on problems corrected
 - Energy services contractor shares efficiency benefits from retrofits with building
 - Real-time management of air shed emissions based on surcharges
- Building to electric grid services examples
 - Building response to market transactions (real-time markets, bilateral contracts...)
 - Building contracts to provide ancillary services (e.g., spinning reserves) to service aggregator
 - Differentiated reliability services (premium paid for higher reliability levels)
 - Emergency power rationing and trading

Enabling Building Interactions

Proudly Operated by Battelle Since 1965

Framework & approaches for interoperability must:

- Be flexible
 - Future energy "mix" predictions are uncertain, but are certain to change over time
 - Technology & methods will evolve
- Focus on the interfaces boundaries of responsibility
 - Energy system too big for central design or control
 - Coordinate at boundaries organizations take internal responsibility
- Accommodate heterogeneity
 - Multiple applications seek integration
 - Multiple vendors with multiple products
 - Multiple versions and mixtures of technology
 - Overlapping representations/models
 - Interaction requires a shared process view
 - At the boundaries where transactions take place

Existing and Emerging Ecosystems to Advance Interactions

- Reach across business sectors for alignment and harmonization
 - SGIP
 - ANSI
- Alliances formed to advance business through technology deployment
 - BACnet
 - LonMark International
 - OpenADR
 - CSEP
 - USNAP

Presentation Outline

Overview of deployment initiative

Mission

Members

Standards deployment architecture
Standards development and maintenance process
Implementations and field experience
Interoperability testing and certification efforts
Gaps and areas of future development

Efforts to Simplify Integration & Maintenance

Proudly Operated by Battelle Since 1965

- Standards bodies to codify definitions, agreements, best practices
 - ASHRAE
 - NEMA
 - CEA
 - AHRI
 - CEE
 - IEC

1 May 2014

- OASIS
- Independent testing agencies
 - Standards compliance
 - Interoperability certification
- Public policy encouragement
 - Performance targets
 - Policy and procurement guidelines
 - Adoption initiatives and incentives

Presentation Outline

Overview of the organization

Mission

Members

Relevant standards and their status

Gaps and new areas of work

•

Directions, Strides, and Fingerprints

Proudly Operated by Battelle Since 1965

Where are we going with this?

- Convene stakeholders in an effort to align on common goals understanding the different perspectives
- Help identify issues, gaps, synergies, and precedence relationships among interoperability and standards activities
- Consider the emerging ecosystem and tools to support their participants
 - E.g., interface registries, interrogation directories, ratings, libraries, test beds...
- Facilitate prioritization (bring focus and perspective) to near-term activities
- For each activity
 - Engage all those who need to be at the table
 - Establish "ownership" to appropriate organizations

What is the federal role to support these activities, such as...

- Convene meetings and encourage participation
- Joint industry/government projects
- Host common repositories and governance groups (e.g., ICANN for Internet naming)