### STATUS OF THE APPLICATION OF THERMOELECTRIC TECHNOLOGY IN VEHICLES

Lon E. Bell BSST LLC

10th Diesel Engine Emission Reduction (DEER) Conference United States Department of Energy August 29 - September 2, 2004 San Diego, California

### Discussion

- Why thermoelectrics (TE)?
- Status of TE technology
- Expected short & medium term advancements in TE technology
- Current vehicular applications
- Prospects for future applications
- Summary and concluding remarks

### BSST

Developer and producer of advanced TE systems for heating, cooling, temperature control and power generation applications

TE contractual relationships with Visteon, Government Agencies, Northrop Grumman, RTI and others Subsidiary of Amerigon Incorporated

- World's largest commercial user of TEs
- Currently supplies TE-based climate control systems to Ford, General Motors, Nissan and Toyota
- Production in California, Mexico and China

### Why Thermoelectrics?

- Solid-state cooling, heating and power generation
- Small, light-weight and potentially very rugged
- Very few (or no) moving parts
- Electrically powered
- Potential contributions to vehicle system efficiency gains and pollution reduction
- Enables distributed cooling/heating/temperature control and waste power recovery

### What Has Limited Usage?

- Cooling efficiency has been about ¼ that of freon
  - Inadequate for most HVAC applications
  - Limits usage to small, spot coolers and controllers
  - Too inefficient for most electronic subsystem cooling
- Thermal flux density has been low
  - TE materials too costly
  - Volume and weight too great at high power levels
  - Form factor not readily adaptable to some application needs
- Lack of design knowledge and effective simulation tools
  - Performance often poorer than predicted
  - Characteristics and, hence response, can be a strong function of operating conditions
- Too inefficient for waste power recovery

### **Recent Performance Gains**

#### **Materials**

BiTe Thermoelectrics (1960s) Heterostructures (2000-2002) Baseline +70 to 160%

Materials/Design Incremental improvements (1960-2002) New ancillary materials and components (1960-2002)

#### System Level

Isolated Element Cycle (2000-2002) Convection Cycle (2001-2002)

#### Power Density Sintered micropower (2002) Heterostructure (2001)

DEER Conference (Aug-Sept 2004)

5 to 15%

5 to 10%

100 to 120% 30 to 80%

Up to 25 X Increase 30 to 300 X Increase

### **TED Performance Roadmap**



### Applications

DEER Conference (Aug-Sept 2004)

## **CCSTM System**

- Provides consumer benefits with significant market pull
  - Heats and cools seats (all year comfort)
  - Quick response time
  - Very effective with leather seating
- Very high take rates
  - 50% to 90% in present applications
  - Sells in all climate zones
- First, sustained solid state heater/cooler application in vehicles
  - Quiet, effective operation
  - No negative contribution to emissions
  - Proven to be very reliable

# CCSTM Vehicle Seat Application



Production CCS™ Assembly Perforated Leather >

Distribution 
Layer

Waste Duct

Perforated Leather

> Cushion TED



Back TED

Supply Duct

、Blower Assembly

Control Module

### **Current CCSTM Vehicle Lines**



#### Cadillac Deville







Lexus LS 430



#### Cadillac XLR



#### Lincoln Navigator



#### Infiniti Q45



### Hyundai Equus



#### Mercury Monterey



#### Ford Expedition



#### **Toyota Celsior**



#### Nissan Cima



#### Escalade ESV



### Lincoln Aviator



#### Lincoln LS

### **CCSTM Growth Rates**



## Primary Vehicular Cooling/Heating/Climate Control

- Long-standing target for TE usage
- Awaits commercial availability of:
  - Materials with double the present figure of merit
  - Lower cost (higher power density) systems
  - Source of 2-4 kW of electric power
- However, these present barriers are reduced for:
  - Small DI & diesel powered vehicles
  - Hybrid vehicles
  - Fuel cell powered vehicles

### Waste Power Recovery

- Over half of the energy consumed by vehicles is wasted:
  - Exhaust gases
  - Engine heating
  - Impact of other smaller losses
- Well recognized and studied opportunity
- System capabilities required to make recovery systems viable:
  - Factor of 1.5 to 2 TE material efficiency improvement
  - Lower cost (higher power density) systems
  - Capability to store recovered waste energy
- However, these present barriers are reduced in:
  - Vehicles with high electrical demands (trucks, vans, busses, luxury vehicles)
  - Meeting governmental demands for CO2 reduction

### Long-term Trends

### Vehicle Industry Trends Favor Solid State (TE) Power Conversion

Vehicles are becoming more electrified

- Higher electrical demands under nearly all driving conditions
- On board electrical energy management and storage systems are more prevalent and support adaptation
- Emission reduction becoming a higher priority worldwide
  - CFC reduction in HVAC, refrigeration systems
  - CO2 reduction in all vehicle types
- Advanced vehicle types requiring new subsystem functionality
  - Diesel and DI gasoline powered vehicles need better heating, cooling and waste recovery systems
  - Hybrids, hydrogen powered vehicles need more compatible HVAC
  - Fuel cell vehicles need HVAC, waste power recovery

# Waste Heat Recovery May Become a Critical Necessity

- Directly addresses the global need to reduce CO2 emissions
- Provides source of additional electrical power without increasing fuel consumption
- Targeted by DOE for a 10% contribution toward OFCVT\* initiative to increase overall efficiency by 30 to 45% for light duty applications and 40 to 55% for heavy duty applications by 2012
- \* Office of FreedomCar and Vehicle Technologies

### Summary

- Over 2 million TE modules are in use successfully in passenger car, SUV, van and light truck seating systems today
  - Reliability is proven for this application
  - Customer satisfaction is high
  - Market is growing rapidly
- Other vehicle applications are envisioned
  - HVAC
  - Waste power recovery
  - New applications are driven by
    - CFC, CO2 reduction policies
    - Vehicle electrification
    - Demands for diesel, DI, hybrid vehicle performance improvement
- But require commercial availability of
  - More efficient TE materials
  - Reduced cost (high power density designs)

### **Concluding Remarks**

Long-term societal needs for emission reduction and greater fuel efficiency are opening opportunities for solid-state TE system usage. Such systems interface well with other advanced components including electronic fuel controls, power management systems and electrical power storage systems. The trend toward further electrification of passenger vehicles offers additional opportunities for application of TE systems because of their ability to interface directly with other electronic subsystems. Thereby, the energy losses associated with converting electrical power to mechanical work in subsystems that employ electric motors, actuators or pumps for operation, are avoided.