

Integrated Power Module Cooling

Kevin Bennion National Renewable Energy Laboratory May 14, 2013

Project ID: APE047

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

Timeline

Project Start Date: FY 2012

Project End Date: FY 2013

Percent Complete: 75%

Budget

Total Project Funding:

DOE Share: \$750K (FY12-FY13)

Funding Received in FY12: \$350K

Funding for FY13: \$400K

Barriers and Targets

- Cost
- Weight
- Volume
- Performance (Power Density)

Partners

- Interactions/collaborations
 - Sapa
 - Oak Ridge National Laboratory
- Project lead
 - National Renewable Energy Laboratory

Relevance

Synthesis Partners Projected Inverter Cost Drivers to 2016

Synthesis Partners LLC. "Technology and Market Intelligence: Hybrid Vehicle Power Inverters and Cost Analysis." July 2011.

Relevance

Improved heat dissipation is needed to increase power for robust operation within cost and size constraints

Objectives

- Cost
 - Improve power per die area with comparable or better power density
 - Low cost, scalable, and low waste manufacturing methods
- Volume
 - Maintain equivalent or better power density
- Weight
 - Eliminate large cast heat exchangers
- Reliability
 - Remove internal fluid seals to reduce leak-induced failure modes
 - Increase passive thermal stack thermal capacitance for transient heat loads

Integrated Heat Spreader, Heat Exchanger, and Flow Manifold

Direct Cooled Baseline with Seals

Milestones

Date	Description
September 2011	Milestone • Patent application submitted
February 2012	 Go/No-Go Computer simulations of heat spreader design matched preliminary analysis expectations. Proceeded to hardware prototype design for targeted convective cooling performance.
September 2012	Milestone Completed prototype design iterations through computational fluid dynamics modeling, balancing fabrication cost and thermal performance.
February 2013	Go/No-Go • Validated models and confirmed prototype heat exchanger hardware matches design performance from modeling and analysis.
September 2013	Milestone • Report on hardware validation of model results and demonstration of application to power semiconductor package cooling.

Approach/Strategy

Model Validation

- Complete experimental and hardware test setup
- Validate model fluid and thermal performance

(1) Go/ No-Go

Model matches test results

Investigate heat exchanger surface design improvements in collaboration with industry partners

Investigate application and redesign for semiconductor package in collaboration with industry and laboratory partners

Legend

Complete

In Progress

Sufficient data for industry transition

Approach/Strategy

Insulated gate bipolar transistor (IGBT) heat flux comparison of preliminary heat spreader design showing target heat exchanger operating region

- * All packages are compared based on single sided cooling for consistency.
- + Subsequent heat spreader designs increased performance beyond 100% to meet design objectives.

Current State-of-Art:

- Reduce resistance by removing layers
- Require increasingly aggressive cooling techniques (potentially expensive)
- Rely on one-dimensional (1D) heat transfer through the stack

Conceptual Thermal Design:

- Enables multi-dimensional heat transfer
- Utilizes multiple cooling "zones"
- Compatible with multiple heat exchanger fabrication methods and area enhancements
 - Current design focuses on extrusion processes
 - Reduced heat exchanger cost
 - Increased flexibility
- Supports single and double-sided cooling
- Integrates channels (reduces seals)

Heat exchanger, baseplate, and manifold are combined into a single part

TIM: Thermal Interface Material BIM: Bonded Interface Material

Designed to be extruded, easily scalable, and allow double sided cooling

with no modification to design

Significant redesign between heat exchangers (\$\$\$)

Same design can be scaled to suit needs

Designed under Sapa's extrusion guidelines^[1]

Extrusion cost and die stress are minimized by:

[1] Sapa Design Manual, Sapa AB, Rosemont, IL, 2009

Validated heat exchanger modeling with experimental results.

Discrepancy between Modeling and Experimental Results

	Geometry	Material	Pressure Difference	Temperature Difference		
	Baseline	Al 6061	<8%	<2%		
	Design	Al 6061	<9%	<0.4%		
1	Design	Al 6063	<8%	<0.8%		

Flow Rate: 0.034 - 0.1 kg/s (1.9 - 5.6 L/min)

Photo Credits: Kevin Bennion, NREL

 Baseline increases coefficient of performance (COP) by a factor of 4.1 at same flow rate as Lexus*

- Proposed design increases COP by a factor of 7.9 at same flow rate as Lexus*
- Design gives additional 12%
 performance increase relative
 to baseline at equivalent
 parasitic fluid power (system
 flow rate of 10 L/min split
 between 6 branches)
- Compatible with double-sided cooling and bus bar cooling

*Estimated at 0.0086 kg/s per side of package

 Baseline increases coefficient of performance (COP) by a factor of 4.1 at same flow rate as Lexus*

- Proposed design increases COP by a factor of 7.9 at same flow rate as Lexus*
- Design gives additional 12%
 performance increase relative
 to baseline at equivalent
 parasitic fluid power (system
 flow rate of 10 L/min split
 between 6 branches)
- Compatible with double-sided cooling and bus bar cooling

^{*}Estimated at 0.0086 kg/s per side of package

Collaboration and Coordination

Other Government Laboratories

Oak Ridge National Laboratory/APEEM Program

- Support from benchmarking activities
- Ensure thermal design space is appropriate and modeling assumptions are consistent with other aspects of APEEM research

Industry

Heat Exchanger Collaboration Partner (Sapa)

Power Semiconductor Packaging Partner Input

Plan

Model Validation

Investigate heat exchanger surface design improvements

Investigate application and redesign for semiconductor package in collaboration with industry and laboratory partners

Future Work

2012			2013									
Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	

Investigate heat exchanger surface design improvements in collaboration with industry partners.

Investigate application and redesign for semiconductor package in collaboration with industry and laboratory partners.

- The project is scheduled to end in FY13
- Future work:
 - Investigate heat exchanger surface area enhancement design improvements and incorporate lessons learned from initial prototype fabrication.
 - Investigate application to specific semiconductor package with industry input.

Summary

Relevance

- Increased heat dissipation is necessary to reduce power semiconductor cost, weight, and volume.
- Integration of the power electronics package, thermal design, and the cooling design can improve power semiconductor performance.
- A modular and scalable thermal approach can reduce the need for custom heat exchanger redesigns as applications scale in power.

Approach/Strategy

- Reduce cost by increasing semiconductor heat flux at equivalent or smaller volume
- Reduce cost by enabling less aggressive and lower cost cooling methods
- Enable compatibility to alternative power semiconductor packaging technologies

Technical Accomplishments

- Built three prototype designs and validated model results against experimental results
- Met or exceeded project design targets

Collaborations

Established collaboration with heat exchanger development partner (Sapa)

Acknowledgments:

Susan Rogers and Steven Boyd, U.S. Department of Energy

Team Members:

Justin Cousineau Jason Lustbader Mark Mihalic

For more information contact:

Principal Investigator Kevin Bennion Kevin.Bennion@nrel.gov Phone: (303)-275-4447

APEEM Task Leader:

Sreekant Narumanchi @nrel.gov Phone: (303)-275-4062